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Abstract: In recent years, wireless networks are widely used in different
domains. This phenomenon has increased the number of Internet of Things
(IoT) devices and their applications. Though IoT has numerous advantages,
the commonly-used IoT devices are exposed to cyber-attacks periodically.
This scenario necessitates real-time automated detection and the mitigation
of different types of attacks in high-traffic networks. The Software-Defined
Networking (SDN) technique and the Machine Learning (ML)-based intru-
sion detection technique are effective tools that can quickly respond to
different types of attacks in the IoT networks. The Intrusion Detection System
(IDS) models can be employed to secure the SDN-enabled IoT environment
in this scenario. The current study devises a Harmony Search algorithm-
based Feature Selection with Optimal Convolutional Autoencoder (HSAFS-
OCAE) for intrusion detection in the SDN-enabled IoT environment. The
presented HSAFS-OCAE method follows a three-stage process in which the
Harmony Search Algorithm-based FS (HSAFS) technique is exploited at first
for feature selection. Next, the CAE method is leveraged to recognize and
classify intrusions in the SDN-enabled IoT environment. Finally, the Artificial
Fish Swarm Algorithm (AFSA) is used to fine-tune the hyperparameters. This
process improves the outcomes of the intrusion detection process executed
by the CAE algorithm and shows the work’s novelty. The proposed HSAFS-
OCAE technique was experimentally validated under different aspects, and
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the comparative analysis results established the supremacy of the proposed
model.

Keywords: Internet of things; SDN controller; feature selection;
hyperparameter tuning; autoencoder

1 Introduction

Internet of Things (IoT) refers to a dynamic network that contains smartphones, sensor nodes,
software, switches/routers and servers [1]. IoT was developed as a phenomenon. In this dynamic
network, real-time data movements or activities are processed and sensed. The IoT network acts as a
common platform for data transmission between the physical world and the Internet of conventional
things. The idea of the IoT network has resulted in extensive consumption, production and processing
of information [2]. The number of devices connected via the Internet has surpassed the global
population and is expected to increase considerably in a few years [3,4].

On the other hand, the devices with constrained resources contribute to the security issues in
the IoT network, which considerably augments it in terms of risks, vulnerabilities and threats [5]. In
this background, an appropriate analysis of the information recorded in the IoT platforms assists in
predictions and early detection of the threats [6]. The Intrusion Detection Systems (IDSs) can rectify
malicious activities in the IoT network through real-time traffic analysis. The IDS takes measures
to protect the system from getting damaged through attack detection and classification processes.
Software-Defined Network (SDN) is a naïve concept in the networking domain that decouples the
packet-forwarding plane and the control plane. The SDN approach provides a global view of the
network and its centralized control [7,8]. Different authors have focused on developing novel IDSs
for conventional networks in literature. These studies focused on the constrained devices in the IoT
networks and the recognition of malicious activities in them [9]. Fig. 1 depicts the processes involved
in the SDN environment. The concept of IDS-based software defines network systems as unique,
especially in the IoT environment [6].

Figure 1: SDN environment

In conventional networks, network devices such as routers or switches can forward the data
through different control mechanisms [10]. However, the SDN model conceived the network as a
programmable entity and decouples both the control plane and the data plane. Here, the routers or
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switches simply act as a forwarding devices since the control module is operated from the centralized
control. The SDN approach deals with the networks based on the abstraction of low-level functionality
and maintains an Application Programmable Interface (API) to control the low-level devices [11]. In
general, the SDN controller has a global view of the network, making it easy to configure it as and
when required.

Furthermore, if there are any modifications to be done to the networking systems, the pro-
grammability feature of the SDN makes it relatively straightforward [9]. The security system and the
associated features are programmed via an API module and are performed in a network by following
the flow rules. These rules are administered through an OpenFlow protocol [12]. The programmability
feature increases the flexibility of the network. As mentioned earlier, in case of a modification in the
networking system, the control plane performs it instead of reconfiguring every device in the network
individually.

In the study conducted earlier [13], an SDN-enabled deep-learning-driven structure was suggested
for attack detection in the IoT environment. The existing classifiers such as the Cuda-Deep Neural
Network (DNN), Cuda-Bidirectional Long Short Term Memory (Cu-BLSTM) and the Gated Recur-
rent Unit (Cu- DNNGRU) were efficiently leveraged for attack detection. In this study, a tenfold
Cross-Validation (CV) was executed to display the unbiased results. Shu et al. [14] used a Deep
Learning (DL) technique with generative adversary networks. They explored the distributed-SDN
to devise a Collaborative IDS (CIDS) for the Vehicular Adhoc Network (VANET) model. In this
model, multiple SDN controllers are allowed to train a global ID method mutually for the entire
network without any direct interchange among the sub-network flows. Shrestha et al. [15] suggested
a satellite-related, Unmanned Aerial Vehicle (UAV) 5G-network security method in which a Machine
Learning (ML) technique was used to identify the cyberattacks and other vulnerabilities efficiently.
The solution had two major phases: the model created for the intrusion detection process using several
ML techniques and the application of the ML-related techniques in satellite or terrestrial gateways.

Aslam et al. [16] suggested an Adaptive ML-related SDN-enabled Distributed Denial of Service
(DDoS) attack Detection and Mitigation (AMLSDM) structure. The suggested AMLSDM structure
was an SDN-enabled security system for the IoT gadgets. An adaptive ML classification method was
utilized to achieve fruitful mitigation and the detection of DDoS attacks. The presented structure used
ML methods in an adaptive multi-layered feed forwarding method to identify the DDoS attacks in
a successful manner. This was accomplished by probing the static attributes of the network traffic
under review. Derhab et al. [17] suggested a security architecture in which the Software-Defined
Network (SDN) model and the Blockchain technology were integrated. The suggested IDS security
structure was created by integrating the K-Nearest Neighbor (KNN) technique and the Random
Subspace Learning (RSL) technique. This was done to defend the forged commands that target
the industrial control procedures and the Blockchain-related Integrity Checking System (BICS) that
prevents the misrouting assault that meddles with the SDN-enabled industrial’s OpenFlow regulations
IoT mechanisms.

The current study devises a Harmony Search algorithm-based Feature Selection with Optimal
Convolutional Autoencoder (HSAFS-OCAE) for the purpose of intrusion detection in the SDN-
enabled IoT environment. The presented HSAFS-OCAE method follows a three-stage process in
which the Harmony Search algorithm-based FS (HSAFS) technique is first exploited for feature
selection. Next, the CAE algorithm is used for the recognition and classification of the intrusions
in the SDN-enabled IoT environment. Finally, the Artificial Fish Swarm Algorithm (AFSA) is used
to fine-tune the hyperparameters to boost the intrusion detection performance of the CAE algorithm.
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The proposed HSAFS-OCAE technique was experimentally validated, and the results were assessed
under different measures.

2 The Proposed Model

In this study, a new HSAFS-OCAE model has been proposed for a proficient recognition of
intrusions in the SDN-enabled IoT environment. The presented HSAFS-OCAE model follows a three-
stage process in which the HSAFS technique is exploited at first for feature selection. Next, the CAE
approach is leveraged to recognize and classify intrusions in the SDN-enabled IoT environment.
Finally, the AFSA-based hyperparameter fine-tuning process is executed to boost the intrusion
detection performance of the CAE model. Fig. 2 shows the overall block diagram of the HSAFS-
OCAE approach.

Figure 2: Overall block diagram of the HSAFS-OCAE approach

2.1 Design of HSAFS Technique

In this study, the HSAFS technique is exploited for feature selection. In the HSA method, the
optimal solution (or component from the solution space) is named ‘harmony’ viz., n-dimensional
real vector. An arbitrary value is assigned to the initial population and is loaded from the Harmony
Memory (HM) [18]. Then, a novel candidate (following iteration or generation) is evaluated and the
harmony is generated based on the component from HM, either by altering the pitch or through an
arbitrary selection of the element from HM. Afterwards, the component from the harmony memory
and the newly-evaluated candidate harmony are correlated with the least HM vector. This process
is repeated to satisfy the ending criteria. The parameters of the HS optimization approach are as
follows (i) Pitch Adjusting Rate (PAR) (ii) the size of the HM (iii) distance bandwidth (BW) (iv) HM
Consideration Rate (HMCR), and (v) the number of iterations or improvisations (NI). It is crucial to
configure the HM module (HMS Vector). Assume that xi = {xi(1), xi(2), . . . xi(n)} characterizes an
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arbitrarily-evaluated HM vector: xi(k) = Xl(k)+(Xu(k) − Xl(k))∗rand (0, 1) for k = 1, 2, . . . , nandi =
1, 2, . . . , HMS i.e., the length of the HM. Hence, the upper and the lower bounds of the searching space
are characterized by Xl(k) and Xu(k), respectively. The HM matrix for every component is a harmony
vector.

HM =

⎡
⎢⎢⎣

x1

x2

...
xHMS

⎤
⎥⎥⎦ (1)

In HM matrix, i.e., xnew, a harmony vector is created by three functions such as (i) the pitch
adjustment (ii) memory consideration and (iii) an arbitrary re-initialization. Initially, a decision value
xnew(1) is arbitrarily chosen in the harmony i.e., {x1(1), x2(1) . . . xHMS(1)}. To select xnew(1), an arbitrary
number r1 is used in the range of 0 and 1. Once an arbitrary number is selected within the HMCR,
xnew(1) is generated by considering the memory. Else xnew(1) is captured within the searching range
[Xl(k), Xu(k)]. Likewise, the values are elected for the series, xnew(2), xnew (3) , . . . , xnew(n). The two
functions, such as (i) an arbitrary re-initialization and (ii) the memory consideration, are defined using
the following equation.

xnew(k) =

⎧⎪⎨
⎪⎩

xi ∈ {x1(k) · · · · · · · · · · · · .xHMS(k)}
Xl(k) + (Xu(k) − Xl(k)) ∗ rand (0, 1)

with probability of 1−HMCR

(2)

The newly-generated xnew value is inspected while, on the other hand, the required value is
either pitch-adjusted or not. To address these problems, a PAR entity is proposed by combining the
Bandwidth Factor (BF) and the frequency. These two factors are adjusted to get a novel xnew value
for the selected HM solution during the local search process. The pitch-adapted novel solution xnew is
calculated as xnew(k) + / − rand (0, 1). BW with a probability of PAR. This PAR is mostly similar to
the mutation process from the evolutionary bio-inspired technique. The range of the PAR is limited
to [Xl(k), Xu(k)] .

At last, xnew, i.e., the newly-generated harmony vector, is upgraded or estimated as a novel com-
ponent to fit itself between the xnew value and the worst harmony vector xw in the HM. Consequently,
xw is altered by xnew, whereas the established part of the HM is identified to maximize the objective
function (inter-class variance) for which the HSA is employed.

Either harmony or the solution employs a k element to decide the optimization system. The
threshold value thk is applied upon a multi-level segmentation process as formulated herewith.

HM = [x1, x2 · · · ., x1HMS]T , xi = [th1, th2 · · · · · · thk] (3)

Here, T characterizes the transpose of the matrix, and the maximum size of the HM is denoted by
the HMS technique. Each element from the HM is denoted by xi which lies in the range of [0, k]. The
HSAFS method derives a Fitness Function (FF) to handle the trade-off between the chosen feature
count and the classification accuracy with the help of the selected features. FF is determined as given
below.

Fitness = αγR (D) + β
|R|
|C| (4)

Here, γR (D) represents the error rate of the presented classifier. |R| indicates the selected subset
and |C| denotes the total feature count and α and β correspond to the constants.
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2.2 Design of CAE Classification Model

In this stage, the CAE technique is used to recognize and classify intrusions in the SDN-enabled
IoT environment. Autoencoder is a self-supervised learning mechanism that exploits the Neural
Network (NN) for representative learning [19]. Representative learning is a method in which a scheme
learns how to encode the input dataset. The Autoencoder (AE) approach maps the input datasets to
a compressed domain demonstration or a low-dimension space. In the current study, a bottleneck is
proposed in which an algorithm is enforced to learn how to demonstrate the compressed domains of
the input dataset. In general, the AE approach encompasses four elements such as the Reconstruction
Loss, Encoder Network (EN), Bottleneck Layer and Decoder Network (DN). Encoder Network is a
NN system that encodes the input dataset to a compressed domain. The bottleneck layer is the final
layer of the Encoder Network, and its output is called the encoded input data.

Xei+1 = fej

(
WV T

ej
Xei + bej

)
∀i = 0, 1, 2, . . . , N (5)

In Eq. (5), Xei corresponds to the input for the ith layer, X denotes the output of the ith layer of EN,
WVei shows the weight vector for the ith layer, bei indicates the bias for the ith layer, and fei indicates the
activation function for the ith layer.

Xdi+1 = fdi

(
1WTdi Xdi + bdi

) ∀i = 0, 1, 2, . . . , N (6)

In Eq. (6), Xdi denotes the input for the ith layer of the DN method, Xdi + 1 signifies the output
of the ith layer, wdi shows the weight vector for the ith layer, bdi refers to the bias of the ith layer, and
fdi illustrates the activation function for the ith layer. The variance between the original dataset X O

and the reconstructed dataset X R is called the Reconstructed Loss. On the other hand, the Binary
Cross-Entropy (BCE) and the Mean Squared Error (MSE) Loss are the two commonly-applied loss
functions in the calculation of Reconstructed Loss. Here, D indicates the count of the instances in a
dataset in which the AE is employed.

MSE
(
X O, X R

) = 1
D

∑D

j=1

(
X O

j − X R
j

)2
(7)

BCE
(
X O, X R

) = − 1
D

∑D

j=1
X O

j · logX R
j + (

1 − X O
j

) · log
(
1 − X R

j

)
(8)

2.3 Algorithmic Process of AFSA Based Hyperparameter Tuning

Finally, the AFSA hyperparameter tuning process is performed to boost the intrusion detection
performance of the CAE model. The AFSA model is a kind of swarm intelligence technique that
is simulated from the behaviour of the animals [20]. In this method, the fish’s clustering, collision
and foraging behaviours are simulated along with its collective support in a fish swarm to realize
the optimum global point. In this Artificial Fish (AF) technique, the maximum distance that passes
through is referred to as Step. The apparent distance that passes over the AF is referred to as Visual.

Further, the retry quantity is characterized by Try − Number. The crowd quantity factor is char-
acterized by η. The place of a particular AF is referred to as the resultant vector, X = (X1, X2, . . . , Xn)

and the distance between i and j i.e., AF is determined using dij = ∣∣Xi − Xj

∣∣. The performance function
of the AF is described in the following order i.e., prey, random, follow and swarm.
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Given that a fish observes the food via its eyes, the existing position is denoted by Xi along with
an arbitrarily-chosen position i.e., Xj within a perceptive range as given below.

Xj = Xi + Visual × rand (0 ∼ 1) (9)

In Eq. (9), rand (0-1) characterizes an arbitrary value between [0, 1]. If Yi > Yj, the fish moves
in the direction. Then, the technique arbitrarily chooses a novel position Xj to check whether it fulfils
the motion condition as follows.

X t+1
i = X t

i + Xj − X t
i

‖Xj − X t
i ‖

× Step × rand (0 ∼ 1) (10)

If it does not fulfil the motion condition Try−Number times, an arbitrary motion is created as
given below.

X t+1
i = X t

i + Visual × rand (0 ∼ 1) (11)

In order to avoid the over-crowding issues, an artificial existing location Xi is set. Followed by, the
fish amount in the nf company and Xc center in the area (dij < Visual) are determined. If Yc/nf < η×Yi,
the companion’s location is characterized by the optimal food count and low-crowding. Consequently,
the fish moves towards the companion area i.e., centre of the location.

X t+1
i = X t

i + Xc − X t
i

‖Xc − X t
i ‖

× Step × rand (0 ∼ 1) (12)

Then, it begins to follow the prey’s behaviour.

The existing place of the AF swarm is referred to as Xi. The swarm describes the company Yj as
Xj in the area (dij < Visual). If Yj/nf < η × Yi, then the location of the company embodies an optimal
food count with a less crowd.

X t+1
i = X t

i + Xj − X t
i

‖Xj − X t
i ‖

× Step × rand (0 ∼ 1) (13)

It allows the AF to accomplish the company as well as the food over a large region. The location
is chosen in a random manner based on which the AF moves towards them.

Using the search region of D dimension, the extremely-possible distance between the two AFs is
applied to vigorously limit the Visual & Step of the AF as given below.

MaxD = √
(xmax − xmin)2 × D (14)

In Eq. (14), xmin and xmax signify the lower and the upper limits. D denotes the dimension of the
searching region.

3 Results and Discussion

The performance of the proposed HSAFS-OCAE model was experimentally validated using a
dataset with 84,792 samples under six class labels as tabulated in Table 1.
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Table 1: Dataset details

Label Class No. of instances

C-1 Benign 69654
C-2 Bot 2977
C-3 Brute force-FTP 3066
C-4 DDoS-Loic-UDP 3015
C-5 DDoS-Hoic 3037
C-6 Infiltration 3043
Total number of instances 84792

The classification results accomplished by the proposed HSAFS-OCAE model are portrayed as
confusion matrices in Fig. 3. The figure reports that the proposed HSAFS-OCAE model effectually
recognized and classified all the input data under six class labels.

Figure 3: (Continued)
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Figure 3: Confusion matrices of the HSAFS-OCAE approach (a) 80% of TR data, (b) 20% of TS data,
(c) 70% of TR data, and (d) 30% of TS data

Table 2 and Fig. 4 highlight the classification outcomes achieved by the proposed HSAFS-
OCAE model on 80% of the TR data. The results imply that the proposed HSAFS-OCAE model
accomplished effectual outcomes under each class. For instance, on 80% of the TR data, the HSAFS-
OCAE model gained an accuy of 98.75%, precn of 99.35%, recal of 99.13%, Fscore of 99.24% and an MCC
of 95.76%. Then, when using 80% of the TR data, the presented HSAFS-OCAE method obtained an
accuy of 99.31%, precn of 90.96%, recal of 89.77%, Fscore of 90.36% and an MCC of 90%. When using
80% of the TR data, the proposed HSAFS-OCAE model attained an accuy of 99.38%, precn of 87.85%,
recal of 96%, Fscore of 91.74% and an MCC of 91.52%.

Table 2: Analytical results of the HSAFS-OCAE approach on 80% of the TR dataset and 20% of the
TS dataset

Labels Accuracy Precision Recall F-Score MCC

Training set (80%)

C-1 98.75 99.35 99.13 99.24 95.76
C-2 99.23 85.73 93.68 89.53 89.23
C-3 99.31 90.96 89.77 90.36 90.00
C-4 99.42 95.43 87.58 91.33 91.12
C-5 99.22 90.95 87.39 89.14 88.75
C-6 99.38 87.85 96.00 91.74 91.52
Average 99.22 91.71 92.26 91.89 91.06

(Continued)
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Table 2: Continued
Labels Accuracy Precision Recall F-Score MCC

Testing set (20%)

C-1 98.63 99.37 98.95 99.16 95.36
C-2 99.16 84.35 93.71 88.78 88.48
C-3 99.17 87.92 89.22 88.56 88.14
C-4 99.29 93.83 86.55 90.04 89.75
C-5 99.19 91.28 83.66 87.30 86.97
C-6 99.26 85.37 96.28 90.49 90.29
Average 99.12 90.35 91.39 90.72 89.83

Figure 4: Analytical results of the HSAFS-OCAE approach on 80% of the TR data

Fig. 5 signifies the classification outcomes attained by the proposed HSAFS-OCAE technique
on 20% of the TS data. The results denote that the HSAFS-OCAE method accomplished effectual
outcomes under each class. For example, on 20% of the TS data, the HSAFS-OCAE model gained
an accuy of 98.63%, precn of 99.37%, recal of 98.95%, Fscore of 99.16% and an MCC of 95.36%. Also,
on 20% of the TS data, the proposed HSAFS-OCAE technique gained an accuy of 99.17%, precn of
87.92%, recal of 89.22%, Fscore of 88.56% and an MCC of 88.14%. Conversely, on 20% of the TS data,
the proposed HSAFS-OCAE model gained an accuy of 99.26%, precn of 85.37%, recal of 96.28%, Fscore

of 90.49% and an MCC of 90.29%.

Table 3 and Fig. 6 highlight the classification outcomes of the proposed HSAFS-OCAE model
on 70% of the TR dataset. The results infer that the proposed HSAFS-OCAE method accomplished
effectual outcomes under each class. For example, on 70% of the TR dataset, the presented HSAFS-
OCAE model attained an accuy of 98.67%, precn of 99.49%, recal of 98.89%, Fscore of 99.19% and an
MCC of 95.52%. Also, on 70% of the TR dataset, the proposed HSAFS-OCAE model gained an
accuy of 99.54%, precn of 92.64%, recal of 94.78%, Fscore of 93.70% and an MCC of 93.47%. Conversely,
on 70% of the TR dataset, the proposed HSAFS-OCAE model reached an accuy of 99.50%, precn of
91.25%, recal of 95.11%, Fscore of 93.14% and an MCC of 92.90%.
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Figure 5: Analytical results of the HSAFS-OCAE approach on 20% of the TS data

Table 3: Analytical results of the HSAFS-OCAE approach on 80% of the TR dataset and 20% of the
TS dataset

Labels Accuracy Precision Recall F-Score MCC

Training set (70%)

C-1 98.67 99.49 98.89 99.19 95.52
C-2 98.96 79.87 93.33 86.08 85.82
C-3 99.54 92.64 94.78 93.70 93.47
C-4 99.25 92.14 86.34 89.15 88.81
C-5 99.42 92.96 90.69 91.81 91.52
C-6 99.50 91.25 95.11 93.14 92.90
Average 99.22 91.39 93.19 92.18 91.34

Testing set (30%)

C-1 98.76 99.54 98.94 99.24 95.85
C-2 99.02 82.16 93.28 87.37 87.05
C-3 99.52 93.06 94.05 93.55 93.30
C-4 99.25 91.60 86.31 88.88 88.53
C-5 99.48 93.03 92.32 92.67 92.40
C-6 99.50 90.89 95.75 93.26 93.03
Average 99.25 91.71 93.44 92.49 91.69
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Figure 6: Analytical results of the HSAFS-OCAE approach on 70% of the TR dataset

Fig. 7 highlights the classification outcomes achieved by the proposed HSAFS-OCAE model on
30% of the TS dataset. The results infer that the proposed HSAFS-OCAE model established effectual
outcomes under each class. For example, on 30% of the TS dataset, the HSAFS-OCAE algorithm
reached an accuy of 98.76%, precn of 99.54%, recal of 98.94%, Fscore of 99.24% and an MCC of 95.85%.
Then, on 30% of the TS data, the proposed HSAFS-OCAE model gained an accuy of 99.52%, precn of
93.06%, recal of 94.05%, Fscore of 93.55% and an MCC of 93.30%. When using 30% of the TS dataset,
the presented HSAFS-OCAE model obtained an accuy of 99.50%, precn of 90.89%, recal of 95.75%,
Fscore of 93.26% and an MCC of 93.03%.

Figure 7: Analytical results of the HSAFS-OCAE approach on 30% of the TS data

Both Training Accuracy (TA) and Validation Accuracy (VA) values, acquired by the proposed
HSAFS-OCAE method on test dataset, are shown in Fig. 8. The experimental outcomes imply that
the proposed HSAFS-OCAE technique gained the maximal TA and VA values while the VA values
were higher than the TA values.
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Figure 8: TA and VA analyses results of the HSAFS-OCAE methodology

Both Training Loss (TL) and Validation Loss (VL) values, attained by the HSAFS-OCAE
approach on test dataset, are displayed in Fig. 9. The experimental outcomes denote that the proposed
HSAFS-OCAE algorithm exhibited the least TL and VL values while the VL values were lower than
the TL values.

Figure 9: TL and VL analyses results of the HSAFS-OCAE methodology
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A clear precision-recall analysis was conducted upon the HSAFS-OCAE method using the test
dataset and the results are shown in Fig. 10. The figure represents that the proposed HSAFS-OCAE
method produced enhanced precision-recall values under all the classes.

Figure 10: Precision-recall curve analysis results of the HSAFS-OCAE methodology

A brief ROC analysis was conducted upon the HSAFS-OCAE method using the test dataset
and the results are depicted in Fig. 11. The results infer that the proposed HSAFS-OCAE technique
established its supremacy in categorizing the test dataset under distinct classes.

Figure 11: ROC curve analysis results of the HSAFS-OCAE methodology
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To showcase the supremacy of the proposed HSAFS-OCAE model, a comparative study was
conducted, and the results are shown in Table 4 [11].

Table 4: Comparative analysis results of the proposed HSAFS-OCAE approach and other existing
algorithms

Methods Accuracy Precision Recall F-score

HSAFS-OCAE 99.25 91.71 93.44 92.49
Cu-DNNGRU + Cu-
BLSTM

99.11 90.27 91.99 90.11

CNN 97.75 86.53 87.28 87.28
GRU-RNN 95.91 87.42 87.55 86.97
LSTM-CNN 94.33 87.52 87.85 87.44
2L-ZED-IDS 96.94 86.75 87.48 87.14
ANN 95.29 87.73 87.34 86.90
Bi-LSTM 94.50 86.20 86.81 86.61

Fig. 12 demonstrates the comparison study results of the proposed HSAFS-OCAE model and
other existing models in terms of accuy. The figure infers that the LSTM-CNN model and the Bi-
LSTM model reported low accuy values such as 94.33% and 94.50%, respectively. In contrast, the CNN,
Gated Recurrent Unit (GRU)-Recurrent Neural Network (RNN), 2L-ZED-IDS and the ANN models
certainly produced increased accuy values such as 97.75%, 95.91%, 96.94% and 95.29% respectively.
On the other hand, the Cu-DNNGRU + Cu-BLSTM model obtained a near-optimal accuy of 99.11%.
But, the proposed HSAFS-OCAE model achieved the maximum classification performance with an
accuy of 99.25%.

Figure 12: Accuy analysis results of the HSAFS-OCAE approach and other existing methodologies

Fig. 13 illustrates the comparative analysis results accomplished by the proposed HSAFS-OCAE
model and other existing models in terms of precn. The figure infers that the LSTM-CNN model
and the Bi-LSTM model reported the least precn values such as 87.52% and 86.20%, respectively,
where as the CNN, GRU-RNN, 2L-ZED-IDS and the ANN models certainly produced enhanced
precn values such as 86.53%, 87.42%, 86.75% and 87.73% correspondingly. Meanwhile, a combination
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of Cu-DNNGRU + Cu-BLSTM models achieved a near-optimal precn of 90.27%. But, the proposed
HSAFS-OCAE model achieved the maximal classification performance with a precn of 91.71%.

Figure 13: Precn analysis results of the HSAFS-OCAE approach and other existing methodologies

Fig. 14 portrays the comparative analysis results achieved by the proposed HSAFS-OCAE
method and other existing models in terms of recal. The figure implies that the LSTM-CNN model and
the Bi-LSTM model produced the least recal values such as 87.85% and 86.81%, respectively, whereas
the CNN, GRU-RNN, 2L-ZED-IDS and the ANN models certainly achieved high recal values such
as 87.28%, 87.55%, 87.48% and 87.34% respectively. Further, a combination of Cu-DNNGRU + Cu-
BLSTM models achieved a near-optimal recal of 91.99%. But, the proposed HSAFS-OCAE method
accomplished the maximal classification performance with a recal of 93.44%. Based on these results
and the discussion, it can be inferred that the proposed HSAFS-OCAE model achieved the maximum
intrusion detection outcomes in the IoT-enabled SDN environment.

Figure 14: Recal analysis results of the HSAFS-OCAE approach and other existing methodologies

4 Conclusion

In this study, a new HSAFS-OCAE model has been devised to recognize intrusions in the
SDN-enabled IoT environment proficiently. The presented HSAFS-OCAE model follows a three-
stage process in which the HSAFS technique is exploited for feature selection. Next, the CAE
methodology is leveraged to recognise and classify intrusions in the SDN-enabled IoT environment.
Finally, the AFSA-based hyperparameter tuning process is performed to boost the intrusion detection
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performance of the CAE approach. The proposed HSAFS-OCAE methodology was experimentally
validated under several aspects. The comparison study outcomes established the improved outcomes
of the HSAFS-OCAE model over other techniques. In the future, the HSAFS-OCAE model’s
performance can be improved using hybrid metaheuristic approaches.
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