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Abstract: Mobile communication and the Internet of Things (IoT) technolo-
gies have recently been established to collect data from human beings and
the environment. The data collected can be leveraged to provide intelligent
services through different applications. It is an extreme challenge to moni-
tor disabled people from remote locations. It is because day-to-day events
like falls heavily result in accidents. For a person with disabilities, a fall
event is an important cause of mortality and post-traumatic complications.
Therefore, detecting the fall events of disabled persons in smart homes at
early stages is essential to provide the necessary support and increase their
survival rate. The current study introduces a Whale Optimization Algorithm
Deep Transfer Learning-Driven Automated Fall Detection (WOADTL-AFD)
technique to improve the Quality of Life for persons with disabilities. The
primary aim of the presented WOADTL-AFD technique is to identify and
classify the fall events to help disabled individuals. To attain this, the proposed
WOADTL-AFD model initially uses a modified SqueezeNet feature extractor
which proficiently extracts the feature vectors. In addition, the WOADTL-
AFD technique classifies the fall events using an extreme Gradient Boosting
(XGBoost) classifier. In the presented WOADTL-AFD technique, the WOA
approach is used to fine-tune the hyperparameters involved in the modified
SqueezeNet model. The proposed WOADTL-AFD technique was experimen-
tally validated using the benchmark datasets, and the results confirmed the
superior performance of the proposed WOADTL-AFD method compared to
other recent approaches.
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1 Introduction

Internet of Things (IoT) is a networking phenomenon of smart devices connected via the Internet
and transmitting information amongst themselves, excluding computers [1]. The IoT-based services
empower disabled persons to function autonomously, especially in their day-to-day activities. Fur-
ther, it also reduces certain requirements for human accommodations or intermediaries. Nowadays,
advanced IoT devices and their services can be easily accessed by disabled persons; some IoT
techniques are specially developed for disabled people, whereas a few other techniques are re-processed
for disabled individuals [2]. The IoT and the associated information collection result in availability-
based developments ranging from smart home devices to self-driving cars [3]. The data collected from
disabled persons are used in the IoT services whereas the devices might offer perceptions, opportunities
and challenges. Such perceptions are utilized in optimizing the existing IoT products or developing a
new product [4].

The Human Fall Detection (FD) techniques observe and classify the day-to-day life activities
of disabled people to differentiate them from unintended fall events for which different techniques
and sensors are utilized [5,6]. The researchers have categorized the FD systems into three categories:
ambient sensors, cameras and wearable devices. Amongst the wearable devices, an accelerometer is a
most commonly used device to realize a fall event. It exploits the acceleration measure to categorize
the FD techniques [7]. Clifford et al. patented a human-body FD method with a wireless transmitter,
accelerometer and a processor. The processor uses the measurements from the accelerometer to find
whether an individual, who is wearing the device, has fallen or not based on the data recorded after a
fall event due to no movements of the individual. Then, the generated response signal is transmitted
remotely to a wireless transmission device [8]. To reduce the adverse effects of the human fall events, it is
important to detect the fall events rapidly and provide an appropriate warning to the healthcare service
provider [9]. Though it is not possible to avoid the falls completely, it can be prevented to a certain
extent with the help of technological solutions and the physical exercises. The usage of the IoT devices
can promote the application of the FD solutions by allowing remote and continuous monitoring of
the context and its environment [10]. The wearable IoT devices can help the elderly people in terms
of generating the walking profiles of the users, distinguishing the fall events from day-to-day activities
and prediction of the falls on a real-time basis.

The authors in the literature [11] developed a Field-Programmable Gate Array (FPGA)-based FD
technique with a threshold-based analytical model to reduce the false positive rate. Various researchers
involved the non-fall events too, when assessing the general information. The suggested method was
capable of differentiating the fall events from the non-fall events efficiently, excluding the falls and the
fast-lying actions that may end up in sitting positions. The authors [12] focused on the energy efficiency
of the wearable sensor nodes in the IoT-based FD technique. In this study, the authors developed an
energy-efficient, tiny, lightweight and a flexible wearable device. The study assessed the impact of
dissimilar characteristics (such as the transmission bus interface, sampling rate, communication rate
and the communication protocol) upon the energy utilization of the wearable devices. Furthermore,
the study also examined the energy usage of the wearables under different operating conditions and
dissimilar configurations. In literature [13], the researchers developed an intelligent walking stick and
a smart, effective technique based on wearable smart glasses for disabled persons. The study aimed to
achieve the outcomes similar to the FD technique and avoid aerial obstacles. The suggested technique
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encompassed a smart walking stick, wearable smart glasses, a cloud-based information management
platform and mobile devices. Disabled people can wear wearable smart glasses and hold smart walking
sticks so that their fall events and aerial obstacles on the roads can be predicted earlier.

The authors [14] developed a wearable device named ‘TTXFD-based MPU6050’ to gather
information on tri-axial acceleration signals. The study further developed a two-step FD technique
combining the Threshold-Based Method (TBM) and the Machine Learning (ML) techniques. The
proposed TTXFD used the TBM phase with a low computation difficulty for selection and the
transmission of the suspicious fall information, i.e., tri-axial acceleration signals. During the machine
learning phase, a two-stage approach was followed in which the data from the server was encoded as
an image at first. Then, the FD technique was employed based on the Convolutional Neural Network
(CNN) model to identify a fall event, according to the image. In literature [15], the authors identified
the fall events in a realistic apartment measuring 40 square meters, using a Deep Neural Network
(DNN) method and three ultra-wideband radars. In this method, the DNN method had a CNN
method stacked with Long Short Term Memory (LSTM) and a Fully Connected Network (FCN) for
the fall detection process. In other terms, the issue tackled in the study was the binary classification
type that distinguishes the fall activities from the non-fall ones.

The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-Driven
Automated Fall Detection (WOADTL-AFD) technique to improve the Quality of life for disabled
persons. The presented WOADTL-AFD technique aims to identify and classify the fall events to help
disabled individuals. To attain this, the WOADTL-AFD model initially uses the modified SqueezeNet
feature extractor which proficiently derives the feature vectors. In addition, the WOADTL-AFD
technique classifies the fall events using an Extreme Gradient Boosting (XGBoost) classifier. In
the presented WOADTL-AFD technique, the hyperparameters of the modified SqueezeNet model
are fine-tuned with the help of the WOA approach. The proposed WOADTL-AFD technique was
experimentally validated using a benchmark dataset.

2 The Proposed Model

This study developed a novel WOADTL-AFD model for automatic fall detection to help disabled
persons. The presented WOADTL-AFD technique majorly concentrates on identifying and classifying
fall events to assist disabled persons.

2.1 Feature Extraction: Modified SqueezeNet Model

The WOADTL-AFD model initially uses a modified SqueezeNet feature extractor in this study.
The suggested structure is motivated by the SqueezeNet model, a depth-wise separable convolution
layer, and an encoder-decoder approach, established in the SegNet approach [16]. The SqueezeNet
structure is considered due to its unique fire module. In this work, the fire module is substituted by
a ‘spark’ module which is a smaller version of the original one. The SqueezeNet model is utilized
with spark modules in an encoder-decoder structure. Fig. 1 demonstrates the architecture of the fire
module.

In this architecture, the encoder has four encoding blocks. The initial encoding block has a
Rectified Linear Unit (ReLU) activation layer, a convolution layer and an average pooling layer. The 2nd

and the 3rd blocks are comparable and include two spark modules and an average pooling layer. The last
block contains four spark modules. The decoder architecture includes the SegNet model with the help
of the max-unspooling layer with the forwarded pooling indices. Though this phenomenon reduces
the computation complexity, it still results in the loss of accuracy. In the current study, the transposed
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depth-wise separable convolutions are used. A depth-wise separable convolution layer is applied for
a standard convolution layer. This method with the transposed convolution, allows the features to
be easily up-sampled when using a few parameters. In the decoding process, the initial decoder block
employs a transposed depth-wise separable convolutional layer as the output of the absolute encoder.
In the output segmentation mask, every pixel number corresponds to a class while a specific pixel
has the maximum probability value. The final output is up-sampled to match the original input size.
Instead of the whole set of features, the passing indices reduce the requirement for high memory. But,
this phenomenon results in the loss of accuracy. In this model, the encoded feature map is passed onto
the decoder. The observation proves that the number of parameters for this model is considerably lesser
than the SegNet model. However, the accuracy is either comparable or better across different types
of data sets. The projected architecture accomplishes a reasonable trade-off between computational
complexity and the accuracy.

Figure 1: Architecture of the fire module

2.2 Hyperparameter Tuning: WOA

In the presented WOADTL-AFD technique, the hyperparameters of the modified SqueezeNet
model are fine-tuned with the help of WOA. The searching procedure of the WOA method is inspired
by the mathematical model of the bubble-net feeding approach, followed by the humpback whales
[17]. The humpback whales express a form of cooperative behaviour when hunting prey. This distinct
hunting approach is otherwise named as the bubble-net feeding approach. The humpback whales
implement the bubble-net feeding approach by diving under a shoal of fishes. In this process, it
instantaneously blows the bubbles and moves in a spherical shape towards the surface of the water.
Here, the prey is enclosed by a spherical path of bubbles that inspire the prey to swim toward the
surface.

Exploitation Process

In this exploitation phase, every solution candidate implements a neighbourhood search and is
directed towards the location of the recent global optimal solution.
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After gaining each solution, a fitness value is calculated, and the position of each solution in the
population is upgraded in terms of optimal global location.
−→
D =

∣∣∣−→
c · −→

X ∗ (t) − −→
X (t)

∣∣∣ (1)
−→
X (t + 1) = −→

X ∗ (t) − −→
A · −→

D , (2)

Now
−→
X (t) and

−→
X ∗ (t) denote the candidate and the recent optimal solutions during iteration t,

correspondingly,
−→
A and

−→
C represent the coefficient vectors, and the symbol · is a component-wise

multiplication operator.
−→
A = 2

−→
a .

−→
r −−→

a (3)
−→
C = 2 · −→

r . (4)

Here, r denotes a uniformly-distributed pseudo-random number in the range of 0 and 1 and
−→
a

denotes a vector in the fundamental WOA application that gets linearly decreased from 2 to 0 at the
time of implementation.

As per the Eqs. (1)–(4), a solution candidate
−→
X in every iteration is directed towards the rest of

the positions within the neighbourhood of the existing optimal solution
−→
X ∗. This is accomplished by

altering the values of
−→
A and

−→
C coefficient vectors using a pseudo-random vector,

−→
r .

The shrinking-encircling method and the spiral-shaped path mathematical modelling are utilized
to emulate the bubble-net attack model.

The shrinking-encircling method is modelled and formulated as given herewith through a linear
reduction of the vector α from 2 to 0 during each iteration.

−→
a = 2 − t

2
max Iter

, (5)

In Eq. (5), t and max Iter denote the present and the maximal iteration counts correspondingly.

In this study, the researcher suggests that the value of
−→
A must be adjusted in the range of [1, 1].

Now, the updated position of the existing solution is set somewhere between the present location and
the location of the global optimum solution. Fig. 2 illustrates the flowchart of WOA.

The next model that guides the exploitation procedure (a spiral-shaped path) is implemented

herewith. At first, the distance between the current solution
(−→

X (t)
)

and the global best solution(−→
X ∗ (t)

)
, during the iteration t, is evaluated. Then, a new (upgraded) location of the solution candidate(−→

X (t + 1)
)

is determined as follows.

−→
X (t + 1) = −→

D′ · ebl · cos (2π l) + −→
X ∗ (t) , (6)
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Figure 2: Flowchart of WOA

In Eq. (6),
−→
D denotes the distance between the i−th solution candidate and the optimal global

solution and is formulated as
−→
D =

∣∣∣−→
X ∗ (t) − −→

X (t)
∣∣∣. Here, b signifies a constant that determines the

shape of a logarithmic spiral, whereas l signifies a pseudo-random value in the range of [−l, 1]. The
statistic, in which a humpback whale’s spiral-shaped path moves near the prey along the shrinking
circles and the spiral-shaped paths, is imitated by the selection of the shrinking-encircling method
during all the iterations with p equivalent probability.

−→
X (t + 1) =

{−→
X ∗ (t) − −→

A · −→
D , if p < 0.5

−→
D′ · ebl · cos (2π l) + −→

X ∗(t), if p ≥ 0.5
(7)

During all the iterations, the p probability is derived from an arbitrary distribution number within
[0, 1].

Exploration Process

In this stage, every solution candidate in the population is upgraded based on the location of the
arbitrarily-selected solution rather than the optimal global solution.

For the exploration stage, a coefficient vector
−→
A is applied. Once an arbitrary value

−→
A is produced

either more than or equivalent to one (|A| ≥ 1), then the position of the solution candidate is updated
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towards the arbitrarily-selected solution. Then, the global searching process is implemented as given
below.
−→
X (t + 1) = −→

X (t) − −→
A · −→

D , (8)

In Eq. (8),
−→
D denotes the distance between the i−th solution candidate and the arbitrary solution

rnd from the population during t iteration and is formulated as
−→
D =

∣∣∣−→
C · −→

Xrnd (t) − −→
X (t)

∣∣∣ .

2.3 Fall Detection: XGBoost Model

For fall detection and classification processes, the XGBoost classification model is exploited.
XGBoost is a Decision Tree (DT)-based ensemble learning method that is applied to resolve regression
and classification issues [18]. XGBoost is a boosting algorithm, since it enhances the predictive strength
of a model by training a set of weak learners and progressively transforming it into stronger ones.
XGBoost is a widely-applied DT-based supervised learning method. Assume a data, D = {(xi, yi)}
which becomes |D| = n, xi ∈ R

m and yj ∈ R
n have n examples and m features. The output of the

boosting model with T trees is determined with the help of Eq. (9):

ŷ =
∑T

t=1
fk (xi) , ft ∈ F (9)

Now, F = {
f (x) = ω∐ (x)

}
refers to a set of trees that are constructed to resolve a classification

method. Every ft splits a tree into two parts, such as the structure part (
∐

) and a leaf-weight part
(ω). ft is learned by minimizing the following objective function.

O =
∑

i
�
(
ŷi, yi

) +
∑

t
� (ft) . (10)

In Eq. (12), � represents a training loss function that measures the distance between ŷ and yi

i.e., the object and the prediction correspondingly. Ω signifies the penalty of model complexity. The
conventional optimization methods cannot enhance a boosting model using the objective functions
formulated in Eq. (12) in Euclidean space. In the Gradient Boosting approach, the objective functions
and the prediction of the k−th iteration are determined using the following equation.

ŷ(k)ŷ(k−1) + fk (x) (11)

O(k) =
∑n

i=1
�
(
yi,ŷ(k−1)

i + fk (xi)
) + � (fk) . (12)

XGBoost exploits a second-order Taylor expansion for approximation. The last objective function
is formulated as given below.

O(k) ∼= Õ(k) =
∑n

i=1

[
�
(
yi,ŷ(k−1)

i

)+}ifk (xi) + ‖i(fk (xi))
2

2

]
+ � (fk) (13)

In Eq. (13), }j and ‖i denote the first- and second-order gradient statistics.

� (f ) = γ L + 1
2
λ‖ω‖2 (14)

Now, L denotes the number of leaves in a tree. Consider Tj = {
i :

∐
(xi) = j

}
as a set of instances.

Õ =
∑L

j=1

[(∑
i∈Ti

}i

)
ωj + 1

2

(∑
i∈Ti

‖i + λ
)

ω2
j

]
+ γ L. (15)
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For a tree model, the solution weight ω∗
j of a leaf j is attained herewith.

ω∗
j = − 	i∈Ti}i

	i∈Ti‖i + λ
. (16)

When the Eqs. (15) and (16) are merged, and the following result is attained.

Õ
(∐ )

= −1
2

∑L

j=1

(	i∈Tj}i)
2

	i∈Tj ||i + λ
+ γ L. (17)

The above equation is applied to evaluate a tree
∐

(x) and find the optimum tree structure. It
progressively begins from the branches of a tree, followed by a single leaf after every iteration. The
grown structure is formulated using Eq. (18).

Osplit = 1
2

[
(	i∈Tl

}i)
2

	i∈Tl
||i + λ

+ (	i∈Tr}i)
2

	i∈Tr ||i + λ
+ (	i∈T}i)

2

	i∈T‖i + λ

]
− γ (18)

Now T = Tl ∪ Tr, and Tl and Tr denote the instances of left and right nodes, correspondingly.
Based on the objective function, a node split in the tree is considered in terms of change in the model’s
performance. Once the performance is enhanced, a relative split is adapted or ended. Moreover, the
XGBoost approach generally encounters less overfitting to optimise the objective function than the
rest of the boosting approaches.

3 Performance Validation

The proposed WOADTL-AFD model was experimentally validated using two standard datasets,
the Multiple Cameras Fall (MCF) dataset and the UR Fall Detection (URFD) data. The details of
the datasets are shown in Table 1.

Table 1: Dataset details

Class No. of samples in each dataset

Multiple cameras fall (MCF) UR fall detection (URFD)

Fall 96 74
Non-fall 96 240
Total no. of samples 192 314

Fig. 3 depicts the confusion matrices generated by the proposed WOADTL-AFD method under
dissimilar runs on the MCF dataset. The figure claims that the WOADTL-AFD technique proficiently
recognized all the class labels. For instance, on run-1, the proposed WOADTL-AFD model classified
95 samples as Fall events and 96 as Non-Fall events. Along with that, on run-2, the presented
WOADTL-AFD model recognized 93 samples as Fall event and 96 samples as Non-Fall event. In
line with run-3, the proposed WOADTL-AFD model categorized 95 samples under Fall event and 96
samples under Non-Fall event.

Table 2 portrays the comparative analysis outcomes achieved by the WOADTL-AFD model on
the MCF dataset. Fig. 4 shows the performance of the proposed WOADTL-AFD model on the MFC
dataset in terms of accuy, recal and specy. The figure infers that the proposed WOADTL-AFD model
attained improved outcomes under all the runs. For example, on run-1, the WOADTL-AFD model
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offered average accuy, recal and specy values such as 99.48%, 99.48% and 99.48% correspondingly.
Furthermore, on run-2, the proposed WOADTL-AFD model achieved average accuy, recal and specy

values such as 98.44%, 98.44% and 98.44% correspondingly. Also, on run-3, the presented WOADTL-
AFD model accomplished average accuy, recal and specy values such as 99.48%, 99.48%, and 99.48%
correspondingly.

Figure 3: Confusion matrices of the WOADTL-AFD approach under MCF dataset (a) Run1, (b)
Run2, (c) Run3, (d) Run4, and (e) Run5

Fig. 5 portrays the performance of the proposed WOADTL-AFD model on the MFC dataset in
terms of Fscore and Gmeasure. The figure shows that the proposed WOADTL-AFD model accomplished
better outcomes under all the runs. For example, on run-1, the WOADTL-AFD model offered average
Fscore and Gmeasure values such as 99.48% and 99.48%, correspondingly. Furthermore, on run-2, the
presented WOADTL-AFD model accomplished average Fscore and Gmeasure values, such as 98.44% and
98.45%. Also, on run-3, the proposed WOADTL-AFD model achieved average Fscore and Gmeasure values
such as 99.48% and 99.48% correspondingly.
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Table 2: Analytical results of the WOADTL-AFD approach under distinct runs using the MCF dataset

Multiple cameras fall dataset
Labels Accuracy Recall Specificity F-Score G-Measure

Run-1
Fall 99.48 98.96 100.00 99.48 99.48
Non-fall 99.48 100.00 98.96 99.48 99.48
Average 99.48 99.48 99.48 99.48 99.48
Run-2
Fall 98.44 96.88 100.00 98.41 98.43
Non-fall 98.44 100.00 96.88 98.46 98.47
Average 98.44 98.44 98.44 98.44 98.45
Run-3
Fall 99.48 98.96 100.00 99.48 99.48
Non-Fall 99.48 100.00 98.96 99.48 99.48
Average 99.48 99.48 99.48 99.48 99.48
Run-4
Fall 98.96 97.92 100.00 98.95 98.95
Non-Fall 98.96 100.00 97.92 98.97 98.97
Average 98.96 98.96 98.96 98.96 98.96
Run-5
Fall 99.48 98.96 100.00 99.48 99.48
Non-Fall 99.48 100.00 98.96 99.48 99.48
Average 99.48 99.48 99.48 99.48 99.48

Figure 4: Average analysis results of the WOADTL-AFD approach on MCF dataset
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Figure 5: Fscore and Gmeasure analyses results of the WOADTL-AFD approach on MCF dataset

Both Training Accuracy (TRA) and Validation Accuracy (VLA) values, achieved by the proposed
WOADTL-AFD methodology on the MCF dataset, are depicted in Fig. 6. The experimental out-
comes infer that the proposed WOADTL-AFD method accomplished the maximal TRA and VLA
values. In contrast, the VLA values were higher than the TRA values.

Figure 6: TRA and VLA analyses results of the WOADTL-AFD approach on MCF dataset

Both Training Loss (TRL) and Validation Loss (VLL) values, accomplished by the proposed
WOADTL-AFD approach on the MCF dataset, are shown in Fig. 7. The experimental results
illustrate that the WOADTL-AFD method obtained the minimal TRL and VLL values whereas the
VLL values were lower than the TRL values.
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Figure 7: TRL and VLL analyses results of the WOADTL-AFD approach on the MCF dataset

Fig. 8 shows the confusion matrices generated by the proposed WOADTL-AFD technique under
dissimilar runs using the URFD dataset. The figure shows that the proposed WOADTL-AFD
method proficiently recognized all the class labels. For example, on run-1, the WOADTL-AFD system
identified 73 samples as Fall event and 239 samples as Non-Fall event. Along with that, on run-2, the
proposed WOADTL-AFD model classified 74 samples as Fall event and 237 samples as Non-Fall
event. In line with run-3, the proposed WOADTL-AFD model categorized 72 samples under Fall
event and 238 samples under Non-Fall event.

Figure 8: (Continued)
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Figure 8: Confusion matrices of the WOADTL-AFD approach using the MCF dataset (a) Run1, (b)
Run2, (c) Run3, (d) Run4, and (e) Run5

Table 3 portrays the comparative analysis outcomes of the proposed WOADTL-AFD model
on the URCF dataset. Fig. 9 shows the performance of the WOADTL-AFD model on the URFD
dataset in terms of accuy, recal and specy. The figure shows that the proposed WOADTL-AFD model
attained improved outcomes under all the runs. For example, on run-1, the WOADTL-AFD model
offered average accuy, recal and specy values such as 99.36%, 99.12%, and 99.12% correspondingly.
Furthermore, on run-2, the presented WOADTL-AFD model accomplished average accuy, recal and
specy values such as 99.04%, 99.38%, and 98.69% correspondingly. Also, on run-3, the WOADTL-
AFD model offered average accuy, recal and specy values such as 98.73%, 98.23%, and 98.23%
correspondingly.

Table 3: Analytical results of the WOADTL-AFD approach under distinct runs using the URFD
dataset

UR fall detection
Labels Accuracy Recall Specificity F-Score G-Measure

Run-1
Fall 99.36 98.65 99.58 98.65 98.65
Non-Fall 99.36 99.58 98.65 99.58 99.58
Average 99.36 99.12 99.12 99.12 99.12
Run-2
Fall 99.04 100.00 98.75 98.01 98.03
Non-Fall 99.04 98.75 100.00 99.37 99.37
Average 99.04 99.38 99.38 98.69 98.70
Run-3
Fall 98.73 97.30 99.17 97.30 97.30
Non-Fall 98.73 99.17 97.30 99.17 99.17
Average 98.73 98.23 98.23 98.23 98.23

(Continued)
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Table 3: Continued
UR fall detection
Labels Accuracy Recall Specificity F-Score G-Measure

Run-4
Fall 99.04 100.00 98.75 98.01 98.03
Non-Fall 99.04 98.75 100.00 99.37 99.37
Average 99.04 99.38 99.38 98.69 98.70
Run-5
Fall 99.36 100.00 99.17 98.67 98.68
Non-Fall 99.36 99.17 100.00 99.58 99.58
Average 99.36 99.58 99.58 99.12 99.13

Figure 9: Average analysis results of the WOADTL-AFD approach on the URCF dataset

Fig. 10 illustrates the performance of the proposed WOADTL-AFD model on the URFD dataset
in terms of Fscore and Gmeasure. The figure demonstrates that the WOADTL-AFD model obtained better
outcomes under all the runs. For example, on run-1, the proposed WOADTL-AFD model offered
average Fscore and Gmeasure values such as 99.12% and 99.12% correspondingly. Furthermore, on run-2,
the proposed WOADTL-AFD model accomplished average Fscore and Gmeasure values such as 98.69%
and 98.70% correspondingly. Also, on run-3, the presented WOADTL-AFD model attained average
Fscore and Gmeasure values such as 98.23% and 98.23% correspondingly.

Both TRA and VLA values, attained by the proposed WOADTL-AFD methodology on the
URCF dataset, are illustrated in Fig. 11. The experimental results infer that the WOADTL-AFD
method accomplished the maximal TRA and VLA values whereas the VLA values were higher than
the TRA values.

Both TRL and VLL values, accomplished by the proposed WOADTL-AFD methodology on
the URCF dataset, are portrayed in Fig. 12. The experimental outcomes imply that the proposed
WOADTL-AFD method obtained the minimal TRL and VLL values whereas the VLL values lower
than TRL values.
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Figure 10: Fscore and Gmeasure analyses results of the WOADTL-AFD approach on the URCF dataset

Figure 11: TRA and VLA analyses results of the WOADTL-AFD approach on the URCF dataset

Table 4 and Fig. 13 show the brief accuy inspection outcomes achieved by the proposed
WOADTL-AFD model and other recent models on the MCF dataset. The results imply that the 1D-
CNN model and the 2D-CNN method achieved the least accuy outcomes such as 94.53% and 95.63%
respectively. Then, the ResNet-50 model and the ResNet-101 model demonstrated slightly increased
accuy values such as 96.21% and 96.58% respectively. Though the Visual Geometry Group (VGG)-
19 model and the IoT-enabled Elderly Fall Detection model using Optimal Deep Convolutional
Neural Network (IMEFD-ODCNN) model achieved notable accuy values such as 98.12% and 99.26%
respectively, the proposed WOADTL-AFD model accomplished a maximum accuy of 99.48%. Thus,
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the WOADTL-AFD model can be employed in the future for the identification of fall events in the
IoT environment.

Figure 12: TRL and VLL analyses results of the WOADTL-AFD approach on the URCF dataset

Table 4: Comparative analysis results of the WOADTL-AFD approach and other existing algorithms
on the MCF dataset

Multiple cameras fall dataset

Methods Accuracy (%)

WOADTL-AFD 99.48
VGG-19 model 98.12
1D-CNN technique 94.53
2D-CNN technique 95.63
ResNet-50 algorithm 96.21
ResNet-101 algorithm 96.58
IMEFD-ODCNN 99.26

Table 5 offers a brief overview of the accuy inspection results achieved by the proposed WOADTL-
AFD model and other existing models on the URFD dataset. The results show that the 1D-CNN
model and the 2D-CNN model achieved the least accuy values such as 92.69% and 95.21% correspond-
ingly. Next, the ResNet-50 model and the ResNet-101 model demonstrated somewhat improved accuy

values such as 95.68% and 96.08% correspondingly. Though the VGG-19 model and the IMEFD-
ODCNN model achieved significant accuy values such as 98.39% and 99.27% correspondingly, the
proposed WOADTL-AFD model obtained a maximum accuy of 99.36%.
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Figure 13: Comparative analysis results of the WOADTL-AFD approach on the MCF dataset

Table 5: Comparative analysis results of the WOADTL-AFD approach and other existing algorithms
on the URCF dataset

UR fall detection dataset

Methods Accuracy (%)

WOADTL-AFD 99.36
VGG-19 model 98.39
1D-CNN technique 92.69
2D-CNN technique 95.21
ResNet-50 model 95.68
ResNet-101 model 96.08
IMEFD-ODCNN 99.27

4 Conclusion

In the current study, a novel WOADTL-AFD model has been developed to detect the fall
events automatically so as to help the disabled people. The presented WOADTL-AFD technique
majorly concentrates on identification and the classification of the fall events to assist the disabled
people. At the initial level, the proposed WOADTL-AFD model uses a modified SqueezeNet feature
extractor, which proficiently derives the feature vectors. In addition, the WOADTL-AFD technique
classifies the fall events using an XGBoost classifier. In the presented WOADTL-AFD technique, the
hyperparameters of the modified SqueezeNet model are adjusted with the help of WOA. The proposed
WOADTL-AFD technique was experimentally validated using two benchmark datasets and the results
inferred the superior performance of the proposed WOADTL-AFD technique compared to other
existing technologies.
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