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Abstract: Human pose estimation (HPE) is a procedure for determining
the structure of the body pose and it is considered a challenging issue in
the computer vision (CV) communities. HPE finds its applications in several
fields namely activity recognition and human-computer interface. Despite the
benefits of HPE, it is still a challenging process due to the variations in visual
appearances, lighting, occlusions, dimensionality, etc. To resolve these issues,
this paper presents a squirrel search optimization with a deep convolutional
neural network for HPE (SSDCNN-HPE) technique. The major intention of
the SSDCNN-HPE technique is to identify the human pose accurately and
efficiently. Primarily, the video frame conversion process is performed and
pre-processing takes place via bilateral filtering-based noise removal process.
Then, the EfficientNet model is applied to identify the body points of a
person with no problem constraints. Besides, the hyperparameter tuning of
the EfficientNet model takes place by the use of the squirrel search algorithm
(SSA). In the final stage, the multiclass support vector machine (M-SVM)
technique was utilized for the identification and classification of human poses.
The design of bilateral filtering followed by SSA based EfficientNet model for
HPE depicts the novelty of the work. To demonstrate the enhanced outcomes
of the SSDCNN-HPE approach, a series of simulations are executed. The
experimental results reported the betterment of the SSDCNN-HPE system
over the recent existing techniques in terms of different measures.

Keywords: Parameter tuning; human pose estimation; deep learning; squirrel
search algorithm; activity recognition

1 Introduction

The human pose estimation task that is established for years, and aims to attain the posture of
the human body from sensor input. The vision-based approach is frequently utilized for providing
a solution with the help of cameras [1]. Also, HPE accomplishes rapid development by using deep
learning techniques. The major development includes a well-developed network with rich datasets for
feeding networks, further practical exploration of the body, and model greater estimation capability.
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Even though there are several researchers have worked in HPE, it still, lacks a study to review the
current Deep Learning (DL)-based achievement [2]. As the basic computer vision task, HPE is a
significant study area and is employed in different applications like activity or action/recognition,
human tracking, action detection, Virtual reality, Movies, and animation, Video surveillance, Human-
computer communication, Self-driving, Sports motion analysis, medical assistance, and so on [3,4].
The aim is to automatically discover the human body parts from videos or images. Even though
considerable development has been accomplished over the last decade, building a fast, efficient, and
accurate scheme for the detection of action in unseen videos remain a challenge because of some
difficulties, for example, change in occlusions, camera viewpoint, speed of motion, background, and
so on [5].

To resolve the issue of HPE, various techniques were introduced in the survey. The handcrafted
features were utilized in earlier studies [6]. This handcrafted feature includes Edgelet and HOG
(Histogram of Oriented Gradient) are inadequate in defining the precise location of body parts. On
the other hand, the DL-based method can extract adequate features from metadata. This method
has produced outstanding results and outperformed the non-deep advanced method [7] by a big
margin. Even though the usage of DL in the HPE field is comparatively new, many remarkable studies
have been carried out. Implementing human activity recognition with deep learning by replicating
human neural networks. But it is recognized that human visual recognition doesn’t emphasize the
whole scene [8]. Humans sequentially emphasize distinct portions of the scene to extract relevant
information. Mostly, the present computer vision algorithm doesn’t utilize an attention model and
aren’t actively investigated in different areas of video or image [9,10]. With the current increase in
Deep Neural Networks (DNN5s), the attention-based model has been proven to accomplish promising
outcomes in several challenging tasks including machine translation, games, and subtitle generation.
Several models use Convolutional Neural Network (CNN)-based Long Short Term Memory (LSTM)
and show better outcomes in the training sequence. The visual attention mechanism is categorized
into soft and hard attention models [11]. This study introduces a squirrel search optimization with
a deep convolutional neural network for HPE (SSDCNN-HPE) technique to identify the human
pose accurately and efficiently. Primarily, the video frame conversion process is performed and pre-
processing takes place via bilateral filtering-based noise removal process. Then, the EfficientNet
model is applied to identify the body points of a person with no problem constraints. Besides,
the hyperparameter tuning of the EfficientNet model takes place by the use of SSA. In the final
stage, the multiclass support vector machine (M-SVM) model is employed for the identification
and classification of human poses. To demonstrate the improved outcomes of the SSDCNN-HPE
algorithm, a series of simulations are implemented.

The structure of the work is presented: Section 2 provides a detailed literature survey.
Section 3 briefly explains Human Activity Recognition (HAR) and its usage in diverse settings. Section
4 analyses the results. At long last Section 5 comes to an end and poses a few outstanding issues for
further study.

2 Literature Review

Gao et al. [12] presented a multi-scales fusion architecture-based hourglass network for the pose
evaluation that could efficiently attain comprehensive data of distinct resolutions. In the procedure of
extracting distinct resolution features, the network continuously complements the higher resolution
feature. The entire network is arranged by sub-network. To apply in constrained memory space
better, we only utilize a 2-phase stacked network. Omran et al. [13] presented a technique called
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Neural Body Fitting (NBF) which incorporates a statistical body method within a CNN. It leveraged
robust top-down body model constraint and consistent bottom-up semantic body part segmentation.
Yang et al. [14] developed an online technique to learn the pose dynamics that are independent of pose
detection in existing fame, and therefore might serve a strong estimation even in difficult scenarios
comprising occlusion. It forecasts the equivalent poses in the frame for the tracklet and takes as
input the past pose tracklet. Zou et al. [15] proposed a Modulated Graph Convolutional Network
(GCN) for 3D HPE. It comprises two major elements: affinity and weight modulations. Weight
modulation learns distinct modulation vectors for distinct nodes thus the feature transformation of
distinct nodes is disentangled while maintaining a smaller model size. Zhang et al. [16] introduced
an effective architecture for HPE with two portions, an effective head, and backbone. By executing
a neural structure search technique, the study reduces computation cost with negligible accuracy
degradation and modifies the backbone network model for HPE. Choi et al. [17] presented a mobile-
friendly method, MobileHumanPose, for real-time three-dimensional HPE from single Red, Green,
Blue (RGB) images. This technique comprises a parametric activation function, the skip concatenation
stimulated by U-Net, and the adapted MobileNetV2 backbone. Particularly, the skip concatenation
infrastructure enhanced performance by propagating rich features with negligible computation power.
Zhang et al. [18] proposed AdaFuse, an adoptive multiview fusion model that could improve the
feature in occluded view by leveraging visible view. The mainstream of AdaFuse is for defining the
point-point correspondence among 2 views that are efficiently resolved by examining the sparsity of
heatmap illustration. Zhong et al. [19] present a lower computation-cost deep supervision pyramid
architecture named DSPNet. Next, presented a deep supervision pyramid network for improving
the multiscale gaining capacity of Multiset Regression Analysis (MSRA) Simple Baseline while not
bringing any surge in the number of parameters.

3 The Proposed Model

In this study, a novel squirrel search optimization with a deep convolutional neural network
for HPE (SSDCNN-HPE) system has been developed for effectual estimation of human poses. The
SSDCNN-HPE technique majorly focused on the detection and classification of human poses. The
SSDCNN-HPE technique encompasses a series of processes namely pre-processing, EfficientNet-
based feature extraction, SSA-based hyperparameter tuning, and Modified SVM (M-SVM) based
classification. Fig. | demonstrates the block diagram of the SSDCNN-HPE technique.
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Feature Extraction
Extracted Features [+— using
EfficientNet Model
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Input: Training Images
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Classification Process Parameter Tuning
using —> Performance Evaluation using
Multi-class SVM Algorithm Squirrel Search Algorithm

Figure 1: Block diagram of SSDCNN-HPE technique
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3.1 Pre-processing

Initially, the input video is converted into frames and the bilateral filtering (BF) technique is
applied for noise removal. Consider F represents a multi-channel frame and W indicates a sliding
window of finite size n x n. Assume pixels W can be defined by Cartesian Coordinates, denoted as
i= (i, ) € Y?*location of a pixel F; in W where Y = {0, 1,..., n — 1}. The BF technique substitutes
the middle pixel of every filter window via a weighted average of the nearby color pixels [19,20]. The
weight function can be defined for smoothening the regions of identical colors by maintaining the
edges together by deeply weighting the pixels which are spatially close and photometrically comparable
to the intermediate pixel. Next, the weight W (Fi, Fj) corresponds to pixels F; based on F; is the
product of two elements namely spatial and photometrical, as given below.

W (F, F) =W, (F,, F)W, (F, F) (1)
where the spatial element W, (Fi , Fj) can be represented as follows.

13

W, (F,F)=e ™3 )

and photometrical element W, (F,, F;) can be defined using Eq. (3):

_AErap (Fifj)2

W, (F, F)=e > 3)

1
where AE,, = [(AL*)2 + (Aa*)’ + (Ab*)z] * signifies the perceptual color error from the L*a*b* color

space, and ,,0, > 0. The color vector outcome Fi of the filter can be determined by normalized weight
and is defined as follows.

ZFJEW W (Fi’ FJ) Fj
2pe W (FLF)

3.2 Feature Extraction Using EfficientNet Model

During the feature extraction process, the pre-processed frames are passed into the EfficientNet
model to derive feature vectors. The feature extracting is performed after the pre-processing stage
from the facial expression detection technique. It signifies the data retrieving in the image in a
lower dimension space. A DL-based method named deep convolution neural network (DCNN)
is deployed that comprises hidden, input, and output layers. The hidden layer is composed of a
group of neurons which comprises of fully connected layer, convolution layer, number of ReLU,
pooling layer, and normalization layer. A convolutional lay is an initial layer existing in the model
for extracting the feature in the image. It comprises a group of filters or kernels that is convolved
individually with the input image passing its results to the subsequent layer. The results of the
convolutional process produce convolved features in a reduction dimension than the input image.
EfficientNet is a family of Recurrent Neural Networks (RNNs) where the EfficientNet model scales
effectively in terms of layer width, input resolution, layer depth, and a grouping of this factor [21].
Fig. 2 illustrates the framework of EfficientNet. As well, the EfficientNet model utilizes an efficient
and simple compound scaling technique to scale the baseline ConvNet, while preserving efficacy.
Generally, the EfficientNet is efficient and more accurate when compared to the present CNN’s like
ImageNet, AlexNet, MobileNet, and GoogleNet. The major component of the network comprises of
MBConv along with excitation optimization and compression. The inverted bottleneck MBConv, the

F =

(4)
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major component for EfficientNet, comprises layers that extend and compress the channel, therefore
direct connection among bottlenecks is utilized for connecting fewer channels when compared to the

expanded layer.
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Figure 2: EfficientNet structure

In comparison with the conventional convolution layer, this structure has deeply separable
convolution that reduces the calculation by the factor of near k with traditional layers [22]. This
technique to determines the scaling factor, whereby a, B, y are constants defined by a grid search.
Likewise, the user-determined factor, {r, control the presented resource for model scaling, whereas a,
B, a v, B determines that the further resources are assigned for network resolution, width, and depth,
correspondingly. An EfficientNet-BO contains the subsequent stages: considering twice as several
available resources, executing the grid search with ¢ = 1 and the optimum values of «, 8, y.

depth: d = o (5)
width : w=B" (6)
resolution : r=7y" (7
a>1,p>1y>1 (®)

3.3 Squirrel Search Algorithm Based Hyperparameter Tuning

For optimal hyperparameter tuning of the EfficientNet model, the Squirrel Search Algorithm is
applied to it. SSA is presented by Marques et al. [23]. This technique inspires the dynamic foraging
performance of the southern squirrel. During the SSA, it can be considered that there is only one
hickory nuts tree (HNT), many oak trees (OT), and one of the normal trees (NT) from the forest, with
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all the trees maintaining a squirrel. In SSA, Eq. (9) has been utilized for generating a primary place
with uniform arbitrary distributions. During this order, the population was separated into 3 groups
such as optimum solution, suboptimal solution, and general solution.

Eq. (9), FS; implies the place of i squirrel that is n dimension vector, U (0, 1) refers the uniform
distribution across in zero and one, F'S, signifies the upper limit of squirrel searches and FS; represents
the lower limit.

Location update formula

During the iterative procedure, the place upgraded equation was separated into 3 kinds, likewise
as Egs. (10)—(12). One squirrel on oak is moved from the direction of HNT. The squirrels on ordinary
trees are separated into 2 batches oak and HNT.

Casel. The squirrel on OT heading nearby the HNT.

F5t+1 — FS:zt + dg X G(’ X (FSIIH - FS;U) R1 = Pdﬁ ) (10)
“ Random location otherwise
Case2. The squirrel on NT heading nearby the OT.
pget _ | FS.+d,x Gox (FS, ~FS) Rz P, 4D
" Randomlocation otherwise
Case3. The squirrel on NT heading nearby the HNT.
pget _ | FSu+dox Gox (FS, ~FS,) RizP, 12
" Randomlocation otherwise

In Egs. (2)—(4), P, implies the predator occurrence probability. R, R,, and R, represents the
arbitrary numbers zero and one. G, represents the gliding constant [24]. d, refers the gliding distance
of squirrels that jump amongst trees. For preventing excessive disturbance in being established as to
formula, the normal gliding distance has been scaled for obtaining a perturbation range of d, across
[0.5, 1.11]. In all the iterations, d, refers to the sliding change that greatly enhances the local search
capability of the technique. FS; , FS! , FS!, stands for the places in which a flying squirrel attains the

NT, HNT, and OT correspondingly, with ¢ being the count of iterations.
Seasonal constant

As squirrel mobility alters with seasons, seasonal monitored criteria are presented in this tech-
nique. These criteria are abandoned local optimum solutions in techniques to a particular extent.
Initially, it can compute the seasonal constant based on Eq. (13).

d
S = \/ > (FS. = FSi) (1=1,2,3) (13)
Afterward, to check the seasonal monitored criteria S! > S, , The computation of S, is as:
10E — 6
Smin (14)
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If the seasonal recognition states are fulfilled, the population of squirrels is transferred, and the
equation as:

FS™ = FS, + Levy (n) x (FS, — FS,) (15)

In Eq. (15), Levy (n) is computed as the subsequent equation:

r, X o

[ |77 (10

(T d+p)x sin (=2) v
°‘(r<@i>xﬂxz<%>) "

() =(x-1! (18)

where r,, r, are 2 normally distributed arbitrary numbers from zero and one, and g refers the constant
1.5.

Levy (x) = 0.01 x

3.4 M-SVM Based Classification

In the final stage, the M-SVM model is employed to determine the appropriate class labels. The M-
SVM has been applied to estimate the poses. The execution of M-SVM is complete both experimental
and conceptual. It implements the classifier by mapping the input vector to high dimension space and
structuring a hyperplane that separates the data from the high dimension space from an optimum
method. The M-SVM has been selected as it is a superior count of classes which is classification [25],
as related to SVM that is restricted to only 2 kinds of classes. During this procedure, the trained set is
utilized for training the M-SVM method and the testing set is utilized for testing the classifier accuracy
performance. The testing set was demonstrated in (19) as:

X = {0 }le where x; € R" and y; € {1,2,3, .c} (19)

4 Performance Validation
Parameter Settings

Training the model is a CPU-intensive exercise and cannot be performed in a normal server
without proper GPU kits. Once the model is trained, it can be saved along with the weight as an
h5 file and can be loaded into a client workstation.

Server Configuration:

Processor—Intel 17-5930-6 core, 2.2 GHz. 15 MB Cache
RAM-64 GB DDR4

Hard Disk-500 GB

GPU-NVidia (16 GB V-RAM)

This section examines the experimental validation of the SSDCNN-HPE model on benchmark
datasets such as UCF-11 [26], NW-UCLA [27], and Penn Action [28] datasets.

Fig. 3 demonstrates the input images and the corresponding keypoints generated on each frame
on the UCF-Sports Action dataset. The first and third row represents the original video frames and
the key points generated at each frame are offered in the second and fourth rows.
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Figure 3: UCF-Sports Action Dataset (1** and 3 Row Images/2™ and 4™ Row Key Points)

Fig. 4 illustrates the few sample images on the NW-UCLA dataset. The results of the SSDCNN-
HPE model are examined and compared with existing techniques. UCF-11 is a Youtube Action data set
containing 11 activities like tennis, basketball shooting, walking diving, golf swing, horseback riding,
soccer, juggling, volleyball, trampoline, and cycling. The clip has a frame rate of 29.97 FPS (Frames
Per Second), and all videos have only one linked activity. It can be utilized 975 videos to train and 625
videos to test. The NW-UCLA data set is the most RGB-D-based dataset. It contains 1494 videos in
10 activity classes: pick up with one hand, pick up with 2 hands, throw away the trash, stand up, walk,
sit down, put on, take off, throw, and move. All the activities are executed 1-6 times per learning. The
data set is offered with RGB and depth corresponding to expected 3D skeleton sequences. The Penn
Action dataset contains 2326 videos containing 15 activities including baseball pitching, bench press,
and guitar striking.

The accuracy outcome analysis of the SSDCNN-HPE technique under the UCF-Sports Action
dataset is portrayed in Fig. 5. The results demonstrated that the SSDCNN-HPE approach has been
able to improve validation accuracy related to training accuracy. It is also observable that the accuracy
values get saturated with the count of epochs. The loss outcome analysis of the SSDCNN-HPE
technique under the UCF-Sports Action dataset is portrayed in Fig. 6. The figure revealed that the
SSDCNN-HPE system has denoted the lower validation loss on the training loss. It is additionally
noticed that the loss values get saturated with the count of epochs.
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Figure 4: Sample Images (NW-UCLA Dataset)

For showcasing the enhanced performance of the SSDCNN-HPE technique, a comparative
accuracy analysis of the UCF Sports Action dataset is made in Table | and Fig. 7. From the
experimental results, it could be noticed that the SVM and DT techniques have resulted in reduced
accuracy values of 0.780 and 0.780 correspondingly. At the same time, the CNN model has tried to
showcase slightly enhanced outcomes with an accuracy of 0.830. Followed by, the APAR-MMSHF
technique has resulted in a moderately increased accuracy of 0.890. However, the SSDCNN-HPE
model has accomplished higher performance with increased accuracy of 0.915.
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Accuracy Graph -(UCF Sports Action Dataset)
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Figure 5: Accuracy analysis of SSDCNN-HPE technique under UCF-Sports Action dataset

Loss Graph -(UCF Sports Action Dataset)
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Figure 6: Loss analysis of SSDCNN-HPE technique under UCF-Sports Action dataset

Table 1: Comparative analysis of SSDCNN-HPE technique with recent approaches on UCF Sports
Action dataset

Methods Accuracy

SVM Algorithm 0.780
(Continued)
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Table 1: Continued
Methods Accuracy

DT Algorithm 0.780
CNN Algorithm 0.830
APAR-MMSHF 0.890
SSDCNN-HPE 0.915

UCF Sports Action Dataset

0.950 - BB SVM Algorithm [ APAR-MMSHF
[ DT Algorithm [ SSDCNN-HPE
0.925 - [ CNN Algorithm
0.900 -
2
! 0.875 |
S
o 0.850 A
i
-]
S 0.825 -
g
0.800 -
0.775 4
0.750 <
1 2 3 4 5

Figure 7: Comparative analysis of SSDCNN-HPE technique on UCF Sports Action dataset

A brief Region of Curve (ROC) examination of the SSDCNN-HPE model with existing models
is made on the UCF Sports Action dataset in Fig. 8. The figure portrayed that the SVM approach
has obtained ineffective outcomes with a lesser ROC of 94.9908. In line with this, the CNN model has
significantly increased performance with an ROC of 95.1723. Next, the DT model has accomplished
slightly enhanced outcomes with a ROC of 95.1723. Though the APAR-MMSHF technique has
resulted in a reasonable ROC of 96.3978, the presented SSDCNN-HPE model has achieved better
results with a maximum ROC of 98.1736.

The accuracy outcome analysis of the SSDCNN-HPE technique under the NW-UCLA dataset
is portrayed in Fig. 9. The results demonstrated that the SSDCNN-HPE technique has capable of
improved validation accuracy compared to training accuracy. It is also observable that the accuracy
values get saturated with the count of epochs. The loss outcome analysis of the SSDCNN-HPE
technique under the NW-UCLA dataset is depicted in Fig. 10. The figure revealed that the SSDCNN-
HPE approach has denoted the minimum validation loss on the training loss. It is additionally noticed
that the loss values get saturated with the count of epochs.
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Figure 8: ROC analysis of SSDCNN-HPE technique under UCF-Sports Action dataset

Accuracy Graph - (NW-UCLA Dataset)
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Figure 9: Accuracy analysis of SSDCNN-HPE technique under NW-UCLA dataset

For showcasing the enhanced performance of the SSDCNN-HPE technique, a comparative accu-
racy analysis of the NW-UCLA dataset is made in Table 2 and Fig. 11 [29,30]. From the experimental
outcomes, it could be noticed that the ETESPT-HAR and PCSTA-HAR methods have resulted in
lesser accuracy values of 0.750 and 0.850 correspondingly. Besides, the BVA and BEP model has tried
to showcase somewhat enhanced outcomes with the accuracy of 0.875 and 0.880 correspondingly.
Similarly, the ARC-VAPS methodology has resulted in a moderately increased accuracy of 0.880. At
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last, the SSDCNN-HPE technique has accomplished superior performance with enhanced accuracy
of 0.912.

Loss Graph - (NW-UCLA Dataset)

——————__ —Training Loss
0.65- ><Validation Loss

Loss Per Epoch

0 200 400 600 800
Epochs

Figure 10: Loss analysis of SSDCNN-HPE technique under NW-UCLA dataset

Table 2: Comparative analysis of SSDCNN-HPE technique with recent approaches on NW-UCLA
dataset

Methods Accuracy

ETESPT-HAR  0.750
PCSTA-HAR 0.850

BVA 0.875
BEP 0.880
ARC-VAPS 0.880

SSDCNN-HPE  0.912

A detailed ROC examination of the SSDCNN-HPE approach with existing techniques is made on
the NW-UCLA dataset in Fig. 12. The figure portrayed that the ETESPT-HAR model has obtained
ineffective outcomes with a lower ROC of 87.1306. In addition, the PCSTA-HAR model has resulted
in somewhat enhanced performance with a ROC of 87.3779. Afterward, the BVA and BEP techniques
accomplished slightly enhanced outcomes with the ROC of 87.6185 and 88.0692. Moreover, the ARC-
VAPS technique has resulted in a reasonable ROC of 88.6639, the presented SSDCNN-HPE approach
has accomplished better results with a superior ROC of 89.1923. The accuracy outcome analysis
of the SSDCNN-HPE technique under the Penn action dataset is portrayed in Fig. 13. The results
demonstrated that the SSDCNN-HPE system has accomplished improved validation accuracy related
to training accuracy. It is also observable that the accuracy values get saturated with the count of
epochs. The loss outcome analysis of the SSDCNN-HPE technique under the Penn action dataset
is depicted in Fig. 14. The figure exposed that the SSDCNN-HPE methodology has denoted the
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decreased validation loss on the training loss. It can be additionally detected that the loss values get
saturated with the count of epochs.

NW-UCLA Dataset

0.95 1 EEE ETESPT-HAR [ BEP
== PCSTA-HAR [N ARC-VAPS
= BVA [ SSDCNN-HPE
0.90 -
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Figure 11: Comparative analysis of SSDCNN-HPE technique on NW-UCLA dataset
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Figure 12: ROC analysis of SSDCNN-HPE technique under NW-UCLA dataset
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Accuracy Graph - (Penn Action Dataset)
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Figure 13: Accuracy analysis of SSDCNN-HPE technique under Penn action dataset

Loss Graph - (Penn Action Dataset)
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Figure 14: Loss analysis of SSDCNN-HPE technique under Penn action dataset

To demonstrate the enhanced performance of the SSDCNN-HPE model, a comparative accuracy
analysis of the Penn action dataset is made in Table 3 and Fig. 15 [31-35]. From the experimental
results, it could be noticed that the JAR-PSV and PAAP models have resulted in minimal accuracy
values of 0.860 and 0.790 correspondingly. Simultaneously, the BJG-3D Deep Conv. and BEP model
have tried to showcase slightly enhanced outcomes with the accuracy of 0.980 and 0.980 corre-
spondingly. Furthermore, the ARC-VAPS technique has resulted in a moderately improved accuracy
of 0.990. Finally, the SSDCNN-HPE methodology has accomplished maximum performance with
higher accuracy of 0.993.
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Table 3: Comparative analysis of SSDCNN-HPE technique with recent approaches on Penn action
dataset

Methods Accuracy
JAR-PSV 0.860
PAAP 0.790
BJG-3D Deep 0.980
Conv.

BEP 0.980
ARC-VAPS 0.990

SSDCNN-HPE  0.993

Penn Action Dataset

I JAR-PSV 8 BEP
= PAAP I ARC-VAPS
1.00 1 [ B)G-3D Deep Conv. [[] SSDCNN-HPE
0.95 4
w
]
2
S
> 0.90
v
£
=
g
< 085
0.80

1 2 3 4 5 6

Figure 15: Comparative analysis of SSDCNN-HPE technique on Penn action dataset

A brief ROC examination of the SSDCNN-HPE system with existing algorithms is made on the
Penn action dataset in Fig. 16. The figure demonstrated that the JAR-PSV technique has obtained
ineffective outcomes with a lower ROC of 92.0425. Likewise, the PAAP model has resulted in
somewhat increased performance with an ROC of 93.1237. Next to that, the BJG-3D Deep Conv.
and BEP methods have accomplished somewhat improved outcomes with the ROC of 93.8484 and
94.7399. In addition, the ARC-VAPS technique has resulted in a reasonable ROC of 94.3397, the
presented SSDCNN-HPE approach has accomplished better results with a higher ROC of 95.1543.

After examining the above-mentioned tables and figures, it can be obvious that the SSDCNN-
HPE technique has showcased effective capability in pose estimation. Therefore, the SSDCNN-HPE
model can be utilized as an effective approach for HPA.
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Figure 16: ROC analysis of SSDCNN-HPE technique under Penn action dataset

5 Conclusion

In this study, a novel SSDCNN-HPE approach has been developed for the effectual estimation
of human poses. The SSDCNN-HPE technique majorly focused on the detection and classification of
human poses. The SSDCNN-HPE technique encompasses a series of processes namely pre-processing,
EfficientNet-based feature extraction, SSA-based hyperparameter tuning, and M-SVM-based classi-
fication. The utilization of SSA helps to appropriately tune the hyperparameters of the EfficientNet
model and it results in improved pose estimation performance. To demonstrate the enhanced outcomes
of the SSDCNN-HPE system, a series of simulations are executed. The experimental results reported
the betterment of the SSDCNN-HPE algorithm on the recent existing techniques in terms of different
measures. Therefore, the SSDCNN-HPE technique was employed as an effectual tool for HPE. In the
future, hybrid DL models can be used for the classification process rather than the M-SVM model.
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