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Abstract: Metaheuristic algorithms are one of the most widely used stochastic
approaches in solving optimization problems. In this paper, a new metaheuris-
tic algorithm entitled Billiards Optimization Algorithm (BOA) is proposed
and designed to be used in optimization applications. The fundamental inspi-
ration in BOA design is the behavior of the players and the rules of the
billiards game. Various steps of BOA are described and then its mathemat-
ical model is thoroughly explained. The efficiency of BOA in dealing with
optimization problems is evaluated through optimizing twenty-three standard
benchmark functions of different types including unimodal, high-dimensional
multimodal, and fixed-dimensional multimodal functions. In order to analyze
the quality of the results obtained by BOA, the performance of the proposed
approach is compared with ten well-known algorithms. The simulation results
show that BOA, with its high exploration and exploitation abilities, achieves
an impressive performance in providing solutions to objective functions and is
superior and far more competitive compared to the ten competitor algorithms.

Keywords: Optimization; game-based; billiards game; exploration;
exploitation; metaheuristic algorithm

1 Introduction

Optimization is the process of finding the best solution among all feasible solutions for a problem.
In fact, a problem that has more than one “feasible solution” is known as an optimization problem.
With advances in science and technology, scientists encounter newer optimization applications that
must be addressed using effective optimization methods. Deterministic and stochastic approaches
are considered as effective tools for optimization problems. Deterministic approaches perform well
in solving linear, convex, continuous, and derivative optimization problems. However, most real-
world optimization applications have features such as nonlinear, non-convex, non-derivative, discrete
search space, and high dimensions. The weakness of deterministic approaches to handle optimization
problems with such features has led to the emergence of stochastic approaches as well as metaheuristic
algorithms [1].
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Metaheuristic algorithms are stochastic-based approaches that are able to provide optimal
solutions to optimization problems through utilizing random search, random operators, and trial and
error processes [2]. Due to the random search process of optimization algorithms, there is no guarantee
that the solution achieved by these methods is exactly the global optimum [3]. However, these are
acceptable candidate solutions known as quasi-optimal solutions [4]. The optimization process in
metaheuristic algorithms begins with the production of a number of random candidate solutions.
Then, during the iterations of the algorithm, the candidate solutions are improved so that at the end of
the algorithm implementation, the best candidate solution is identified as the solution to the problem
[5]. Exploration with the concept of global search and exploitation with the concept of local search
are two key factors in the optimization process accomplished by metaheuristic algorithms. Balancing
these two capabilities during the iterations of the algorithm plays an important role in the algorithm
success to achieve the optimal solution.

Metaheuristic algorithms have been used in many scientific applications, including prediction of
linear dynamical systems [6], solving systems of singular boundary value problems [7], solutions of
Troesch’s and Bratu’s problems [8], deep learning algorithms [9–11], energy carriers [12,13], electrical
engineering [14–19], protection [20], and energy management [21–24]. The design of metaheuristic
algorithms is inspired by various natural phenomena, animal behavior in nature, physical laws,
biological sciences, rules of games, and so on [25]. Particle Swarm Optimization (PSO) is a nature-
inspired approach that is modeled based on the search behavior and strategy of fishes and birds for
food [26]. Genetic Algorithm (GA) is a well-known metaheuristic algorithm based on mathematical
modeling of biological sciences [27]. Gravitational Search Algorithm (GSA) is a metaheuristic
algorithm designed based on modeling the laws of physics and the force of gravity [28]. Teaching-
Learning Based Optimization (TLBO) is an optimization approach introduced based on the simulation
of human activities [29]. Volleyball Premier League (VPL) is an optimization approach developed on
the basis of modeling the rules and conditions governing volleyball league competitions [30].

The main research question is that considering various metaheuristic algorithms that have been
investigated so far, is there still a need to introduce newer metaheuristic algorithms? In response to
this question, No Free Lunch (NFL) theorem [31] explains that there is no guarantee for the same
performance of a metaheuristic algorithm in all optimization problems. Based on the NFL theorem,
a metaheuristic algorithm may provide very favorable results for a set of objective functions, but it
may fail to address some other optimization problems. Hence, based on the NFL theorem, there is no
assumption about the success or failure of implementing a metaheuristic algorithm on an optimization
problem. The NFL theorem motivates researchers to provide suitable solutions for optimization
problems through designing new metaheuristic algorithms.

The innovation and novelty of this paper is the design of a new game-based metaheuristic
algorithm called Billiards Optimization Algorithm (BOA) to deal with optimization applications in
different fields of science and technology. The contribution of this article is as follows. The basic idea
of BOA is the rules of the billiards game and the strategy of the players during this game. Different
steps of BOA implementation are described and mathematically modeled. The effectiveness of BOA in
solving optimization problems is tested for twenty-three standard benchmark functions of unimodal
and multimodal types. The results obtained by BOA are compared with the solutions achieved by ten
well-known metaheuristic algorithms.

The rest of the article is as follows: In Section 2, literature review is provided. The proposed BOA is
introduced in Section 3. Simulation studies and results are presented in Section 4. Finally, conclusions
and some suggestions for future investigations are provided in Section 5.
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2 Lecture Review

Metaheuristic algorithms can be divided into five groups based on the source of inspiration in their
design: swarm-based, evolutionary-based, physics-based, game-based, and human-based algorithms.

Swarm-based algorithms are inspired by nature, and the swarming behaviors of animals, birds,
and other living things. PSO is one of the most popular and one of the first optimization methods,
which was developed based on modeling the movement of birds and fishes in search of food. The
ability of ants to discover the shortest path between food sources and nests has been a central idea
in Ant Colony Optimization (ACO) design [32]. The strategy of grey wolves in hunting and attacking
prey is employed in the Grey Wolf Optimizer (GWO) design [33]. The humpback whale net-bubble
hunting strategy has been a major source of inspiration in Whale Optimization Algorithm (WOA)
[34]. The strategy of pelicans in hunting and trapping prey has been the main inspiration of Pelican
Optimization Algorithm (POA) [35]. Some other swarm-based algorithms proposed so far are: Fennec
Fox Optimization (FFO) [36], Reptile Search Algorithm (RSA) [37], Cat and Mouse based Optimizer
(CMBO) [38], Good Bad Ugly Optimizer (GBUO) [39], Marine Predator Algorithm (MPA) [40],
Tasmanian Devil Optimization (TDO) [41], Mutated Leader Algorithm (MLA) [42], Tunicate Search
Algorithm (TSA) [43], Northern Goshawk Optimization (NGO) [44], Donkey Theorem Optimizer
(DTO) [45], Rat Swarm Optimization (RSO) [46], All Members Based Optimizer (AMBO) [47], Red
Fox Optimization (RFO) [48], Mixed Best Members Based Optimizer (MBMBO) [49], and Mixed
Leader Based Optimizer (MLBO) [50].

Evolutionary-based algorithms are inspired by the concepts of natural selection, biology, and
genetics. GA and Differential Evolution (DE) [51] are among the most widely used and well-known
evolutionary algorithms, inspired by the process of reproduction, Darwin’s theory of evolution, and
random operators such as selection, crossover, and mutation. Some other evolutionary-based algo-
rithms can be listed as: Average and Subtraction-Based Optimizer (ASBO) [52], Genetic Programming
(GP) [53], Search Step Adjustment Based Algorithm (SSABA) [54], Evolutionary Programming (EP)
[55], Selecting Some Variables to Update-Based Algorithm (SSVUBA) [56], and Artificial Immune
System (AIS) technique [57].

Physics-based algorithms are arisen from simulating processes, laws, and concepts in physics.
Simulated Annealing (SA) is one of the most famous optimization algorithms that is inspired by
the physical process of melting and cooling metals known as annealing [58]. Simulation of the law
of curvature and spring force was the main idea for designing Spring Search Algorithm (SSA) [59],
simulation of momentum and collision of objects has been the main inspiration of Momentum
Search Algorithm (MSA) [60], simulation of gravitational force and laws of motion between objects
at different distances has been the main inspiration of GSA. Some other physics-based algorithms
are: Multi-Verse Optimizer (MVO) [61], Binary Spring Search Algorithm (BSSA) [62], Equilibrium
Optimizer (EO) [63], and Henry Gas Solubility Optimization (HGSO) [64].

Game-based algorithms are inspired by modeling the rules of various individual and team
games, the behavior of players, coaches, and referees, as well as holding competitions. Simulating the
organization of the football league as well as the behavior of the players, and the interactions of the
clubs with each other has been the main idea in the design of Football Game Based Optimization
(FGBO) [65]. The players’ effort to put the puzzle pieces together has been the major inspiration
in Puzzle Optimization Algorithm (POA) design [66]. Hide Object Game Optimizer (HOGO) is an
optimization approach developed based on modeling players’ behavior to find a hidden object in
the hide object game [67]. Some other game-based algorithms are: VPL, Darts Game Optimizer
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(DGO) [68], Binary Orientation Search algorithm (BOSA) [69], Shell Game Optimization (SGO) [70],
Orientation Search algorithm (OSA) [71], and Ring Toss Game Based Optimizer (RTGBO) [72].

Human-based algorithms are inspired by human behaviors, the interactions of people in a
community with each other, and the relationships between humans. TLBO is one of the most
widely used optimization techniques that is designed based on modeling the space of a classroom
with the presence of a teacher and a number of students in two phases of teaching and learning.
Interactions between doctor and patients for examination, prevention, and treatment have been the
main inspiration of Doctor and Patient Optimization (DPO) [73]. Modeling and following the people
of a society by the leader in order to develop that society has been the source of inspiration in designing
Following Optimization Algorithm (FOA) [74]. Some other human-based algorithms are: Teamwork
Optimization Algorithm (TOA) [75], Group Optimization (GO) [76], Archery Algorithm (AA) [77],
Poor and Rich Optimization (PRO) technique [78], and Skill Optimization Algorithm (SOA) [79].

Based on the best knowledge gained from the above literature review, the behavior of players in the
game of billiards has not been used in the design of any metaheuristic algorithm so far. While billiards
players try to place balls in pockets is an intelligence process that has a good potential to design an
optimizer. In order to address this research gap, in this study, based on the mathematical modeling of
this process, a new metaheuristic algorithm has been designed, which is discussed in the next section.

3 Billiards Optimization Algorithm

In this section, theory of Billiards Optimization Algorithm (BOA) is described and then its
mathematical modeling for use in optimization applications is presented.

3.1 Inspiration of BOA

Billiards is a fascinating sport that has become a favorite of many people. However, different games
are based on the rules and conditions of billiards. In general, in this game, players try to place the balls
inside the pockets of the billiards table. The players’ strategy to perform this activity is an intelligence
behavior that has a potential to be designed as an optimizer. BOA is based on the simulation of players’
behavior in this game, which is discussed below.

3.2 Initialization of BOA

The BOA approach is a population-based metaheuristic algorithm whose members are billiards
balls. Each BOA member is a candidate solution that assigns values to problem variables based on its
position in the search space. BOA members can be mathematically modeled using a matrix according
to Eq. (1). BOA members are randomly initialized at the beginning of the algorithm implementation
using Eq. (2).

X =

⎡
⎢⎢⎢⎢⎢⎣

X1

...
Xi

...
XN

⎤
⎥⎥⎥⎥⎥⎦

N×m

=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,d · · · x1,m

...
. . .

...
. . .

...
xi,1 · · · xi,d · · · xi,m

...
. . .

...
. . .

...
xN,1 · · · xN,d · · · xN,m

⎤
⎥⎥⎥⎥⎥⎦

N×m

, (1)

Xi : xi,d = lbd + r × (ubd − lbd), (2)
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Here, X is the population matrix of BOA, Xi indicates ith candidate solution, xi,d represents the
value of dth variable proposed by ith population member, N is the number of BOA’s members, m
denotes the number of variables, r is a random number in interval [0 − 1], lbd and ubd are the lower
bound and upper bound of dth variable, respectively.

Given that each member of the population is a candidate solution to the problem, a value for
the objective function is calculated for each member of the population. The values obtained for the
objective function can be represented mathematically using a vector according to Eq. (3).

F =

⎡
⎢⎢⎢⎢⎢⎣

F1

...
Fi

...
FN

⎤
⎥⎥⎥⎥⎥⎦

N×1

=

⎡
⎢⎢⎢⎢⎢⎣

F(X1)
...

F(Xi)
...

F(XN)

⎤
⎥⎥⎥⎥⎥⎦

N×1

, (3)

Here, F is the vector of objective function values and Fi represents the obtained value for the
objective function based on ith population member.

Considering the values obtained for the objective function, the best value identifies the best
member of the population. Given that in each iteration, the positions of the population members are
updated and new values are evaluated for the objective function, the best member of the population
must be updated in each iteration.

3.3 Mathematical Model of BOA

In BOA, members of the population are updated based on the players’ behavior in placing balls
in the pockets of the game table. Since the billiards table has 8 pockets, in each repetition, among the
members of the population, 8 better members are considered as the pockets. The rest of the population
is considered as balls that have to be moved towards these pockets. The player selects one of these
pockets to hit each ball. The BOA design assumes that the pocket is chosen at random. In order to
simulate this process, a proposed random position is first calculated according to Eq. (4) for each
member of the population. Then, if the value of the objective function is improved in the new position,
it replaces the previous position of that member according to Eq. (5).

X new
i : xnew

i,d = xi,d + r × (Pi,d − I × xi,d) (4)

Xi =
{

X new
i , Fnew

i < Fi

Xi, else,
(5)

Here, X new
i is the new calculated status of ith population member, xnew

i,d indicates its dth dimension,
Fnew

i represents its corresponding objective function value, Pi is the selected pocket for ith population
member, Pi,d denotes its dth dimension, r is a random number in interval [0 − 1], and I is a random
number, which is selected randomly from set of {1, 2}.

3.4 Repetition Process, Pseudocode, and Flowchart of BOA

After updating all members of the population, the first iteration of the BOA is completed. The
algorithm then enters the next iteration based on the new positions obtained for the population
members. The process of updating members of the BOA population is repeated until the end of the
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algorithm implementation according to Eqs. (4) and (5). After complete implementation of the BOA,
the best candidate solution obtained during the algorithm iterations is the output, which is the solution
to the problem. The BOA implementation steps are shown through a flowchart in Fig. 1 and the
corresponding pseudo-code is presented in Algorithm 1.

Algorithm 1: Pseudo-code of Billiards Optimization Algorithm (BOA)
Start BOA.
1. Input the optimization problem information.
2. Set T (number of iterations) and N (number of population members).
3. Generate the initial position of the BOA members using Eq. (2). xi,d ← lbd + r × (ubd − lbd).
4. Evaluate the objective function.
5. for t = 1 to T do
7. Determine the position of the pockets based on eight better members.
8. for i = 1 to N do
9. Select the target pocket at random among eight pockets.
10. Calculate new status of ith candidate solution using Eq. (4). xnew

i,d ← xi,d + r × (Pi,d − I × xi,d);

11. Update ith candidate solution using Eq. (5). Xi ←
{

X new
i , Fnew

i < Fi

Xi, else;
12. end for
13. Save the best candidate solution so far.
14. end for
15. Output the best obtained solution.
End BOA.

3.5 Computational Complexity

In this subsection, the computational complexity of the BOA is analyzed. BOA initialization has
a computational complexity of O(Nm), where N is the BOA population size and m is the number of
problem variables. The process of updating the algorithm population has a computational complexity
equal to O(NmT), where T is the number of algorithm iterations. Accordingly, the total computational
complexity of BOA is equal to O(Nm(1 + T)).

4 Simulation Studies and Results

In this section, the performance of BOA in solving optimization problems is evaluated. To
this end, BOA has been implemented on twenty-three standard objective functions of unimodal,
high-dimensional multimodal, and fixed-dimensional multimodal types. Comprehensive information
of these test functions including the mathematical model, dimensions, constraints, optimal value
of the objective function, and other details has been presented in [80]. The capability of BOA in
providing solutions to these functions has been compared with the performance of ten well-known
metaheuristic algorithms including GA, WOA, RSA, PSO, GWO, MPA, MVO, GSA, TLBO, and
TSA. The proposed BOA approach and ten competitor algorithms are each implemented on F1 to F23
functions in twenty independent implementations, while each implementation contains 1000 iterations.
The optimization results are presented using six statistical indicators of mean, best, worst, standard
deviation (std), median, and rank.
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Input information of the optimization problem.

Set parameters N and T.

Create initial population using Eq. (2).

Calculate objective function.

Start BOA.

Identify the eight best members of the population as table pockets.

Select the target pocket ( ) at random for .

Update position of ith member ( ) using Eq. (5).

i == N ?

Save the best candidate solution so far.

Output the best solution of the objective function found by BOA.

t == T ?

End BOA.

No

No

Yes

Yes

i= i+1

t=t+1

i = 1

Calculate new suggested position for ith member ( ) using Eq. (4).

Figure 1: Flowchart of Billiards Optimization Algorithm (BOA)

4.1 Evaluation of Unimodal Functions

Unimodal functions F1 to F7 are suitable for testing local search capability or the exploitation
of metaheuristic algorithms since they have only one optimal solution. The results of optimization
of F1 to F7 functions using BOA and the mentioned competitor algorithms are reported in Table 1.
The results show that BOA has provided the global optimum for F1 to F6 functions. Also, in solving
F7, the BOA approach is the first best optimizer for this function. Based on the presented simulation
results, it is clear that BOA has a high capability to solve unimodal problems and its performance is
superior to competitor algorithms.

Table 1: Evaluation results for unimodal functions
GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA BOA

F1 mean 34.5437 0.011351 9.92E-17 4.15E-75 8.45E-59 0.141392 6.1E-150 1.26E-47 1.88E-49 6.46E-84 0
best 21.8428 2.18E-05 5.36E-17 1.46E-76 5.78E-61 0.085887 1.1E-172 1.9E-50 2.3E-52 9.43E-93 0
worst 48.27454 0.097758 2.23E-16 2.18E-74 6.53E-58 0.229047 1.2E-148 9.02E-47 1.75E-48 1.19E-82 0
std 8.103596 0.021904 4.27E-17 5.75E-75 1.47E-58 0.035688 2.7E-149 2.43E-47 4.01E-49 2.64E-83 0
median 33.39374 0.004052 8.44E-17 1.9E-75 4.14E-59 0.134685 2.2E-160 7.09E-49 1.92E-50 3.69E-88 0
rank 11 9 8 4 5 10 2 7 6 3 1

F2 mean 2.893674 1.469507 5.21E-08 3.96E-39 9.56E-35 0.256823 4.8E-104 1.05E-28 5.4E-28 6.78E-46 0

(Continued)
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Table 1: Continued
GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA BOA

best 1.771522 0.129615 3.14E-08 8.03E-40 1.9E-36 0.162297 3.4E-117 1.05E-30 1.58E-29 4.79E-49 0
worst 4.187515 10.91586 7.28E-08 1.2E-38 2.83E-34 0.393994 9.4E-103 6.38E-28 2.66E-27 5.43E-45 0
std 0.688131 2.427296 1.18E-08 3.01E-39 8.16E-35 0.061766 2.1E-103 1.6E-28 7.3E-28 1.51E-45 0
median 2.928265 0.819186 4.9E-08 2.99E-39 7.25E-35 0.25831 8.9E-108 3.99E-29 2.14E-28 3.56E-47 0
rank 11 10 8 4 5 9 2 6 7 3 1

F3 mean 2151.287 874.6891 474.5464 1.19E-24 6.36E-15 13.69546 19397.34 1.96E-12 2.7E-12 4.76E-58 0
best 1306.053 38.39523 191.6011 8.36E-29 7.31E-19 6.427129 1155.268 2.74E-17 1.58E-21 1.19E-69 0
worst 3690.226 5365.03 1028.324 1.56E-23 5.42E-14 23.71885 46521.37 2.32E-11 2.68E-11 5.35E-57 0
std 651.9863 1532.811 210.8921 3.52E-24 1.38E-14 5.422219 11275.71 5.22E-12 7.22E-12 1.3E-57 0
median 2013.684 279.0787 413.2552 3.35E-26 1.58E-16 12.17659 22075.51 9.99E-14 1.21E-13 1.49E-61 0
rank 10 9 8 3 4 7 11 5 6 2 1

F4 mean 3.182379 6.409232 1.347784 4.73E-30 1.34E-14 0.575497 45.73347 0.006311 3.38E-19 1.34E-35 0
best 2.460207 2.625176 1.93E-08 8.45E-32 7.64E-16 0.203873 0.047089 6.36E-06 3.7E-20 3.83E-40 0
worst 4.320177 9.826729 3.852453 2.31E-29 1.1E-13 0.98408 88.30133 0.074488 8.65E-19 1.66E-34 0
std 0.440358 2.122281 1.08719 5.62E-30 2.5E-14 0.180899 32.22163 0.016314 2.17E-19 3.82E-35 0
median 3.158793 6.156931 1.060589 2.21E-30 4.31E-15 0.59779 42.59176 0.001452 2.94E-19 2.7E-37 0
rank 9 10 8 3 5 7 11 6 4 2 1

F5 mean 512.3849 4685.587 26.4173 26.85637 26.80292 237.6288 27.19238 28.27683 23.63643 27.45887 0
best 227.6302 6.358709 25.84867 25.97881 25.29612 26.95008 26.45993 26.48034 22.44977 26.21217 0
worst 1904.539 90133.63 27.6268 28.55723 27.93213 1709.385 28.5018 28.86228 24.27026 28.59278 0
std 355.6761 20115.89 0.455677 0.70839 0.739022 398.9057 0.541389 0.706209 0.4456 0.72896 0
median 440.5026 81.59334 26.32633 26.69676 27.11089 63.20481 27.04987 28.63414 23.65578 27.18532 0
rank 10 11 3 5 4 9 6 8 2 7 1

F6 mean 34.86707 0.060897 1.25E-16 1.078098 0.705754 0.136757 0.077372 3.848483 1.86E-09 1.54416 0
best 16.97404 9.5E-06 4.71E-17 0.54459 1.77E-05 0.067418 0.009203 2.589849 1.03E-09 0.862897 0
worst 73.13031 0.835192 4.43E-16 1.595351 1.724524 0.237401 0.713129 4.796125 4.73E-09 2.393213 0
std 17.35489 0.184214 9.08E-17 0.298311 0.459725 0.03697 0.153834 0.592668 8.37E-10 0.399298 0
median 31.4086 0.009074 8.57E-17 1.088354 0.739962 0.14036 0.036663 4.050477 1.71E-09 1.639428 0
rank 11 4 2 8 7 6 5 10 3 9 1

F7 mean 0.010645 0.164599 0.061373 0.001623 0.000817 0.009972 0.001116 0.005855 0.000615 0.000401 3.56E-05
best 0.003995 0.095988 0.019791 0.000455 0.00012 0.0056 7.13E-05 0.00218 0.000215 2.99E-05 5.88E-07
worst 0.017568 0.285254 0.112113 0.003976 0.001565 0.018206 0.003835 0.013816 0.00151 0.000953 0.000105
std 0.004044 0.052236 0.023729 0.001106 0.000407 0.003234 0.001128 0.003043 0.000314 0.000307 3.34E-05
median 0.00971 0.153973 0.056558 0.001292 0.000774 0.009512 0.000817 0.004586 0.000571 0.000317 2.71E-05
rank 9 11 10 6 4 8 5 7 3 2 1

sum rank 71 64 47 33 34 56 42 49 31 28 7
mean rank 10.14286 9.142857 6.714286 4.714286 4.857143 8 6 7 4.428571 4 1

total rank 11 10 7 4 5 9 6 8 3 2 1

4.2 Evaluation of High-Dimensional Multimodal Functions

High-dimensional multimodal functions F8 to F13 are appropriate for testing global search
capability or exploration of metaheuristic algorithms due to having multiple local optimal solutions.
The results of BOA implementation and competitor algorithms on F8 to F13 functions are presented
in Table 2. The optimization results show that BOA has provided the global optimum for F9 and F11
functions. In solving the functions F8, F10, F12, and F13, the proposed approach is the first best
optimizer. Based on the simulation results, it is concluded that BOA has a high ability to solve high-
dimensional multimodal problems and its global search power and exploration capability is superior
than the considered competitor algorithms.
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Table 2: Evaluation results for high-dimensional multimodal functions

GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA BOA

F8 mean −8348.04 −7174.66 −2512.77 −5400.22 −6359.7 −7991.99 −10779.6 −5925.69 −9619.16 −7548.39 −12569.5
best −9571.05 −8778.83 −2969.06 −6984.4 −7834.43 −9028.56 −12569.5 −7583.05 −10355.8 −9259.4 −12569.5
worst −6569.32 −5206.21 −2015.67 −4465 −4357.11 −7097.08 −8026.53 −4728.78 −9025.09 −5383.42 −12569.5
std 757.8547 895.3058 260.3632 685.2514 877.8481 632.0867 1645.717 716.9043 417.5433 1154.307 1.87E-12
median −8603.98 −7160.36 −2498.05 −5345.39 −6523.61 −7972.62 −10889.5 −5954.46 −9629.9 −7805.26 −12569.5
rank 4 7 11 10 8 5 2 9 3 6 1

F9 mean 58.86846 65.44741 29.15228 0 0.980934 103.7514 0 160.3345 0 0 0
best 16.8933 27.85958 16.9143 0 0 80.65951 0 115.0893 0 0 0
worst 95.10693 126.4306 46.76302 0 9.129372 141.3836 0 231.9054 0 0 0
std 19.16566 23.37939 7.881373 0 2.70233 15.81913 0 31.28116 0 0 0
median 58.96616 62.19288 26.86388 0 0 102.5599 0 165.7714 0 0 0
rank 4 5 3 1 2 6 1 7 1 1 1

F10 mean 3.546679 2.925435 8.19E-09 4.44E-15 1.58E-14 0.44077 3.2E-15 1.468278 4.09E-15 4.54E-13 8.88E-16
best 2.698017 1.897756 6.07E-09 4.44E-15 1.15E-14 0.087453 8.88E-16 7.99E-15 8.88E-16 8.88E-16 8.88E-16
worst 4.12547 4.878091 1.12E-08 4.44E-15 2.22E-14 2.141281 7.99E-15 3.546227 4.44E-15 9.03E-12 8.88E-16
std 0.430288 0.938045 1.35E-09 0 2.96E-15 0.611269 2.09E-15 1.672925 1.09E-15 2.02E-12 0
median 3.502708 2.817299 8.05E-09 4.44E-15 1.51E-14 0.133476 4.44E-15 2.22E-14 4.44E-15 8.88E-16 8.88E-16
rank 11 10 7 4 5 8 2 9 3 6 1

F11 mean 1.582293 0.320849 8.822246 0 0.005007 0.421495 0.009403 0.006064 0 0 0
best 1.214307 0.006832 3.255758 0 0 0.253372 0 0 0 0 0
worst 2.154375 2.005863 18.13903 0 0.047681 0.592456 0.081925 0.017241 0 0 0
std 0.243938 0.466655 4.109461 0 0.011945 0.079737 0.023873 0.006718 0 0 0
median 1.535265 0.099446 9.042558 0 0 0.423356 0 0.004493 0 0 0
rank 7 5 8 1 2 6 4 3 1 1 1

F12 mean 0.157037 1.423618 0.127676 0.072387 0.037371 0.960236 0.011252 6.958465 2.31E-10 0.069238 1.62E-32
best 0.035385 4.47E-05 3.7E-19 0.03343 0.006546 0.000691 0.001059 0.404251 7.31E-11 0.012096 1.57E-32
worst 0.359563 3.854956 0.635088 0.178688 0.073536 3.859424 0.083424 15.28632 5.8E-10 0.179779 2.54E-32
std 0.091936 1.221873 0.213301 0.030545 0.019632 0.990186 0.01782 4.73628 1.16E-10 0.039794 2.16E-33
median 0.147131 1.2003 1.07E-18 0.064612 0.036212 0.641166 0.00666 7.798794 1.93E-10 0.061529 1.57E-32
rank 8 10 7 6 4 9 3 11 2 5 1

F13 mean 2.614757 3.869959 0.100869 0.983304 0.633228 0.030971 0.261863 2.988147 0.001652 1.803955 7.65E-32
best 1.149958 0.263545 4.86E-18 0.58094 0.113218 0.016912 0.049589 2.280729 1.28E-09 1.051985 1.35E-32
worst 4.837813 17.42028 1.222664 1.450667 1.136582 0.066663 0.519796 5.169063 0.010987 2.793816 6.07E-31
std 1.063186 4.538492 0.28389 0.239798 0.282332 0.012548 0.141363 0.695106 0.004024 0.41072 1.61E-31
median 2.458018 1.703829 1.46E-17 0.929117 0.638573 0.028099 0.253052 2.728009 3.35E-09 1.694537 1.35E-32
rank 9 11 4 7 6 3 5 10 2 8 1

sum rank 43 48 40 29 27 37 17 49 12 27 6
mean rank 7.166667 8 6.666667 4.833333 4.5 6.166667 2.833333 8.166667 2 4.5 1

total rank 8 9 7 5 4 6 3 10 2 4 1

4.3 Evaluation of Fixed-Dimensional Multimodal Functions

Fixed-dimensional multimodal functions F14 to F23 are suitable for evaluating the ability
of metaheuristic algorithms to strike a balance between exploration and exploitation. The results
obtained for F14 to F23 functions using BOA and the mentioned competitor algorithms are released
in Table 3. BOA approach is the first best optimizer for F15 and F20 functions. Considering other
functions of this group, where BOA achieves values similar to some competitor algorithms for the
mean index, it provides better values for the std index. Analysis of the simulation results shows
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that BOA has a superior ability to balance exploration and exploitation characteristics compared to
competitor algorithms.

Table 3: Evaluation results for fixed-dimensional multimodal functions
GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA BOA

F14 mean 1.012829 3.645876 4.086478 1.196416 4.866265 0.998004 2.816492 8.893169 0.998004 4.823742 0.998004
best 0.998004 0.998004 1.019228 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
worst 1.194013 11.7187 9.831309 2.982105 12.67051 0.998004 10.76318 12.67051 0.998004 12.67051 0.998004
std 0.045865 3.732496 2.561839 0.610693 4.26894 3.16E-12 2.996068 4.787012 5.09E-17 3.851995 0
median 0.998006 1.992031 3.970242 0.998004 2.982105 0.998004 1.495018 12.67051 0.998004 3.96825 0.998004
rank 3 6 7 4 9 2 5 10 1 8 1

F15 mean 0.00603 0.001432 0.002131 0.000453 0.005459 0.004558 0.00063 0.008535 0.000311 0.005053 0.000307
best 0.000644 0.000307 0.001143 0.00031 0.000307 0.000308 0.000312 0.000308 0.000308 0.000307 0.000307
worst 0.023479 0.019276 0.004428 0.001241 0.020363 0.020363 0.002178 0.020942 0.000316 0.022553 0.000307
std 0.007244 0.00422 0.000696 0.0003 0.008834 0.008113 0.000457 0.009974 2.25E-06 0.008991 1.90E-19
median 0.004113 0.000307 0.00203 0.000315 0.000308 0.000627 0.000481 0.001072 0.000311 0.000653 0.000307
rank 10 5 6 3 9 7 4 11 2 8 1

F16 mean −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03005 −1.03163 −0.99082 −1.03163
best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
worst −1.03161 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03163 −1 −1.03163 −0.21546 −1.03163
std 4.59E-06 1.35E-16 1.35E-16 1.59E-06 2.98E-09 3.18E-08 8.38E-11 0.007072 2.28E-16 0.1825 8.31E-17
median −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
rank 7 1 1 6 4 5 3 8 2 9 1

F17 mean 0.422023 0.65439 0.397887 0.403109 0.397898 0.397887 0.397888 0.397909 0.397887 0.397887 0.397887
best 0.397887 0.397887 0.397887 0.397893 0.397887 0.397887 0.397887 0.397888 0.397887 0.397887 0.397887
worst 0.832817 1.937365 0.397887 0.500697 0.3981 0.397888 0.39789 0.397946 0.397887 0.397887 0.397887
std 0.09697 0.526896 0 0.02297 4.74E-05 7.33E-08 7.31E-07 1.7E-05 0 8.97E-16 0
median 0.398304 0.397887 0.397887 0.397965 0.397888 0.397887 0.397887 0.397907 0.397887 0.397887 0.397887
rank 8 9 1 7 5 3 4 6 1 2 1

F18 mean 8.421245 3 3 3 7.050008 3 3.000018 14.20181 3 13.8 3
best 3 3 3 3 3.000001 3 3 3.000001 3 3 3
worst 30.31682 3 3 3.000002 84.00001 3.000001 3.000147 92.03579 3 84 3
std 11.11524 2.82E-15 2.79E-15 4.58E-07 18.11215 3.24E-07 3.46E-05 26.59322 1E-15 20.3563 2.88E-16
median 3.000586 3 3 3 3.000005 3 3.000005 3.000009 3 3 3
rank 8 2 3 5 7 4 6 10 1 9 1

F19 mean −3.86265 −3.82413 −3.86278 −3.86051 −3.8621 −3.86278 −3.86068 −3.86225 −3.86278 −3.74604 −3.86278
best −3.86278 −3.86278 −3.86278 −3.8627 −3.86278 −3.86278 −3.86276 −3.86278 −3.86278 −3.86278 −3.86278
worst −3.86161 −3.08976 −3.86278 −3.85474 −3.8549 −3.86278 −3.8549 −3.85501 −3.86278 −3.08976 −3.86274
std 0.000338 0.172852 1.92E-15 0.003385 0.002056 2.03E-07 0.002361 0.001753 2.28E-15 0.282864 9.02E-16
median −3.86278 −3.86278 −3.86278 −3.86238 −3.86277 −3.86278 −3.86162 −3.86273 −3.86278 −3.86278 −3.86278
rank 4 9 1 8 6 3 7 5 2 10 1

F20 mean −3.19843 −3.30089 −3.322 −3.27123 −3.25578 −3.26246 −3.25729 −3.25227 −3.322 −3.19517 −3.322
best −3.31774 −3.322 −3.322 −3.31452 −3.32199 −3.32199 −3.32181 −3.32165 −3.322 −3.322 −3.322
worst −3.02507 −3.13764 −3.322 −3.15712 −3.13762 −3.20273 −3.08687 −3.08336 −3.322 −1.9217 −3.322
std 0.081657 0.052988 3.67E-16 0.056572 0.06962 0.06108 0.091694 0.075807 3.81E-16 0.311345 1.41E-17
median −3.19362 −3.322 −3.322 −3.30495 −3.26241 −3.26254 −3.32111 −3.26131 −3.322 −3.322 −3.322
rank 9 3 1 4 7 5 6 8 2 10 1

F21 mean −4.05229 −6.6523 −6.21031 −6.63717 −9.6474 −8.12535 −9.89304 −5.79327 −10.1532 −8.78928 −10.1532
best −7.88766 −10.1532 −10.1532 −9.30299 −10.153 −10.1532 −10.1529 −10.1034 −10.1532 −10.1532 −10.1532
worst −2.294 −2.63047 −2.68286 −4.07333 −5.09985 −5.05516 −5.05519 −2.62401 −10.1532 −0.88199 −10.1532
std 2.072922 3.659234 3.702041 2.127264 1.555137 2.54809 1.138781 3.016364 2.41E-15 3.181731 2.07E-17

(Continued)
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Table 3: Continued
GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA BOA

median −2.62469 −7.62699 −4.18158 −6.69275 −10.1527 −10.1531 −10.1516 −4.95475 −10.1532 −10.1524 −10.1532
rank 11 7 9 8 4 6 3 10 2 5 1

F22 mean −6.76101 −8.1775 −9.6989 −8.06962 −10.4024 −8.04873 −8.69025 −7.01929 −10.4029 −8.05397 −10.4029
best −10.2388 −10.4029 −10.4029 −9.9566 −10.4029 −10.4029 −10.4029 −10.3661 −10.4029 −10.4029 −10.4029
worst −2.5174 −2.75193 −4.67391 −3.94552 −10.402 −2.76589 −2.76539 −2.68875 −10.4029 −0.90808 −10.4029
std 3.154309 3.169789 1.757215 1.582401 0.000256 3.030069 2.723616 3.582683 3.65E-15 3.599306 1.61E-16
median −7.94704 −10.4029 −10.4029 −8.43317 −10.4025 −10.4029 −10.4006 −9.45916 −10.4029 −10.3962 −10.4029
rank 11 6 4 7 3 9 5 10 2 8 1

F23 mean −8.18721 −5.6555 −10.5364 −8.03277 −10.536 −9.99793 −9.6541 −7.04655 −10.5364 −7.32853 −10.5364
best −10.3471 −10.5364 −10.5364 −9.58103 −10.5363 −10.5364 −10.5362 −10.5028 −10.5364 −10.5364 −10.5364
worst −2.66877 −2.42173 −10.5364 −3.95463 −10.5356 −5.12847 −3.83473 −2.41642 −10.5364 −1.85948 −10.5363
std 2.385851 3.382098 1.58E-15 1.775707 0.000194 1.657273 2.150189 3.807051 2.31E-15 4.034066 1.95E-16
median −8.74676 −3.83543 −10.5364 −8.62434 −10.536 −10.5363 −10.5346 −10.1711 −10.5364 −10.508 −10.5364
rank 6 10 1 7 3 4 5 9 2 8 1

sum rank 77 58 34 59 57 48 48 87 17 77 10
mean rank 7.7 5.8 3.4 5.9 5.7 4.8 4.8 8.7 1.7 7.7 1

total rank 8 6 3 7 5 4 4 9 2 8 1

The boxplot diagrams for the performance of BOA and competitor algorithms in optimizing
functions F1 to F23 are shown in Fig. 2.

Figure 2: (Continued)
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Figure 2: Boxplots of performances for Billiards Optimization Algorithm (BOA) and competitor
algorithms

4.4 Statistical Analysis

In this subsection, a statistical analysis is presented to evaluate the BOA performance against the
considered competitor algorithms. The Wilcoxon rank sum test [81], which is a non-parametric test,
is used to accomplish this analysis. In this test, using an index called p-value, it is shown whether there
is a significant difference between the mean of the two data samples.

The results of Wilcoxon rank sum test statistical analysis on the outputs of BOA and competitor
algorithms are reported in Table 4. It can be seen from the simulation results that in cases where the
p-value is less than 0.05, the proposed BOA has a significant statistical superiority over the corre-
sponding competitor algorithm. Considering the obtained p-values and since the value of this index
is less than 0.05 in all cases, it is concluded that BOA has a significant statistical superiority over all
ten competitor algorithms in optimizing all three types of objective functions including unimodal,
high-dimensional multimodal, and fixed-dimensional multimodal functions.
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Table 4: p-values obtained by Wilcoxon sum rank test

Compared Algorithms Unimodal High-Multimodal Fixed-Multimodal

BOA vs. GA 1.00E-24 1.95E-21 0.000691
BOA vs. PSO 1.00E-24 1.95E-21 1.93E-05
BOA vs. GSA 1.00E-24 1.95E-21 5.43E-11
BOA vs. TLBO 1.00E-24 6.91E-15 2.43E-05
BOA vs. GWO 1.00E-24 1.16E-16 2.11E-12
BOA vs. MPO 1.00E-24 1.95E-21 2.07E-18
BOA vs. WOA 1.00E-24 5.11E-14 6.38E-12
BOA vs. MPA 1.00E-24 8.64E-20 0.222474
BOA vs. TSA 1.00E-24 1.52E-14 1.43E-34
BOA vs. RSA 1.00E-24 5.12E-12 0.002713

5 Conclusions and Future Works

In this paper, a new game-based metaheuristic algorithm entitled Billiards Optimization Algo-
rithm (BOA) was introduced. The main inspiration in BOA design is the behavior of the players
in the billiards game to place the balls in the pockets of the game table. Different steps of BOA
were described and mathematically modeled. The performance of the proposed BOA approach was
evaluated in solving twenty-three standard benchmark functions of unimodal, high-dimensional
multimodal, and fixed-dimensional multimodal types. The optimization results showed that BOA has a
high ability in exploration, exploitation, and balancing these features during the optimization process.
The performance of BOA was compared with ten well-known metaheuristic algorithms. Analysis of
the simulation results showed that the proposed BOA approach has superior performance over the
competitor algorithms by providing better results.

The authors also offer some proposals for future research. Design and development of binary and
multi-objective versions of BOA is an attractive research topic. Application of BOA for optimization
problems in various fields of science and real-world issues is also another research proposal for future
investigations.
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[38] M. Dehghani, Š. Hubálovský and P. Trojovský, “Cat and mouse based optimizer: A new nature-inspired
optimization algorithm,” Sensors, vol. 21, no. 15, pp. 5214, 2021.

[39] H. Givi, M. Dehghani, Z. Montazeri, R. Morales-Menendez, R. A. Ramirez-Mendoza et al., “The good,
the bad, and the ugly optimizer,” Applied Sciences, vol. 11, no. 5, pp. 2042, 2021.

[40] A. Faramarzi, M. Heidarinejad, S. Mirjalili and A. H. Gandomi, “Marine predators algorithm: A nature-
inspired metaheuristic,” Expert Systems with Applications, vol. 152, no. 4, pp. 113377, 2020.
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