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Abstract: The main aim of future mobile networks is to provide secure,
reliable, intelligent, and seamless connectivity. It also enables mobile net-
work operators to ensure their customer’s a better quality of service (QoS).
Nowadays, Unmanned Aerial Vehicles (UAVs) are a significant part of the
mobile network due to their continuously growing use in various applications.
For better coverage, cost-effective, and seamless service connectivity and
provisioning, UAVs have emerged as the best choice for telco operators. UAVs
can be used as flying base stations, edge servers, and relay nodes in mobile
networks. On the other side, Multi-access Edge Computing (MEC) technology
also emerged in the 5G network to provide a better quality of experience
(QoE) to users with different QoS requirements. However, UAVs in a mobile
network for coverage enhancement and better QoS face several challenges
such as trajectory designing, path planning, optimization, QoS assurance,
mobility management, etc. The efficient and proactive path planning and opti-
mization in a highly dynamic environment containing buildings and obstacles
are challenging. So, an automated Artificial Intelligence (AI) enabled QoS-
aware solution is needed for trajectory planning and optimization. Therefore,
this work introduces a well-designed AI and MEC-enabled architecture for
a UAVs-assisted future network. It has an efficient Deep Reinforcement
Learning (DRL) algorithm for real-time and proactive trajectory planning
and optimization. It also fulfills QoS-aware service provisioning. A greedy-
policy approach is used to maximize the long-term reward for serving more
users with QoS. Simulation results reveal the superiority of the proposed DRL
mechanism for energy-efficient and QoS-aware trajectory planning over the
existing models.
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1 Introduction

Due to the continuously increasing growth of smart devices such as smart sensors, smartphones,
and wearable smart devices, many intelligent and smart applications such as gaming, artificial and vir-
tual reality (AR-VR), and computer vision applications have emerged on edge [1]. Multi-access Edge
Computing (MEC) emerged as an innovative technology for accommodating the need of constrained
devices and assuring the quality of service (QoS) to the customers. MEC enhances the network edge’s
computing capacity and allows the deployment of cutting-edge applications and services efficiently
and flexibly for large-scale smart devices [2,3]. By deploying the MEC, the smart devices can move
their computationally demanding tasks to the nearest powerful edge servers, conserving energy and
lowering latency. Moreover, network function virtualization (NFV) and software-defined networking
(SDN) enhanced the MEC capabilities by enabling the deployment of virtual network functions
(VNF) on edge [4–6], for example, pilot and control functions of UAVs. Recent research on MEC has
focused on mobile edge servers rather than fixed servers because they can offer cost-effective, highly
flexible, and efficient computation services in a challenging environment. Although, MEC is being
developed to increase the computation capabilities of smart devices to carry out high computation
and latency-critical jobs. But it still confronts other challenges, including computation improvement,
energy conservation, and latency assurance. Numerous initiatives have been made to investigate these
problems in MEC systems [7–10].

Several recent works have proposed using UAVs to increase connection to the ground users
(GUs) and provide services to them, such as mobile and Internet of Things (IoT) devices with low
computation power [11,12]. The use of UAVs in MEC gained much interest because of their advantages
in improving network capacity, performance, flexible deployment, and full mobility control [13]. UAV-
enabled MEC has numerous unique features that set it apart from the terrestrial servers. First, UAVs
can change their locations according to the real-time offloading strategies of users. Its trajectory can be
precisely planned for various objectives, including throughput improvement and energy conservation.
Additionally, UAVs often avoid the geography effect due to their high altitude, strengthening and
enhancing the coverage. Due to the high probability of line of sight (LoS) linkages with GUs, UAVs are
less impacted by channel limitations. With the help of these features, UAVs can contribute significantly
to MEC systems and overcomes terrestrial server deployment deficiencies [14–17]. UAV-enabled edge
computing is an obvious and viable option for future networks. Fig. 1 illustrates the advantage
of UAVs-enabled MEC over the fixed edge servers. UAVs-enabled edge provides seamless service
connectivity with low latency.

Deep Reinforcement Learning (DRL) is a recent advancement in the Machine Learning (ML)
field, which is a combination of Deep Neural Networks (DNNs) and Reinforcement Learning (RL).
In DRL, an agent interacts with the unknown environment to find the best policy through exploration.
By utilizing the strength of DNNs, DRL enables more stable approximation and convergence for
calculating the associated functions compared to traditional RL approaches [18–21]. DRL is widely
adopted in the network research area for solving complex problems such as resource management,
energy-saving, power allocation, efficient routing, traffic management, etc. More specifically, from
the recent literature [8,17] on UAVs-enabled MEC, DRL has been used for trajectory planning,
energy management, user scheduling, resource management, resource provisioning, bit allocation, and
throughput maximization. However, the efficient and optimal path planning in UAVs to accommodate
the processing and communication in a large variety of devices is still a crucial and challenging
problem.
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Figure 1: Comparison of UAVs-enabled MEC with a fixed edge computing environment

This paper introduces intelligent MEC and UAVs-enabled network architecture, which provides
optimized service on edge and cloud. It contains Artificial intelligence (AI) enabled network service
and analytics module, which includes multiple AI algorithms for efficient service provisioning to
the end-users. The use of AI technologies in the network ensures proactive management of network
resources and fulfills service level agreement (SLA). The AI algorithms can predict user behavior,
traffic volume, efficient resource usage prediction, UAVs path planning, path optimization, mobility
management, and many more. It provides intelligent services to UAVs, including trajectory planning,
mobility management, and placement decision. Moreover, MEC provides extreme edge capabilities
to the GUs, that can be achieved cost-effectively through UAVs. As flying MEC servers, UAVs are
the best option in disaster or emergency scenarios or to enhance network coverage in highly dense
areas. Fig. 2 illustrates several scenarios of the UAVs-enabled MEC in the real-time environment. More
specifically, Deep Q Network (DQN) based RL mechanism is implemented for handling significant
challenges such as energy-efficient trajectory planning in a multi-UAV environment and QoS assurance
for GUs. The problem is formulated as a Markov Decision Process (MDP), where the objective
is to maximize the total system reward while considering the UAVs’ limited energy and GUs QoS
constraints. For maximizing the reward, the proposed work uses the greedy-policy approach. With
the help of DQN, the UAVs plan their trajectories dynamically by fulfilling the service demands from
the GUs. Simulation results reveal that our DQN model outperformed conventional RL algorithms
regarding QoS assurance to GUs and convergence rate. It also serves more GUs by optimizing the
trajectory.
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Figure 2: Architecture of proposed DRL-based UAVs-enabled MEC trajectory planning mechanism

The paper is structured as follows. Section 2 explains the related work about AI and DRL
approaches for UAVs trajectory planning and service provisioning. The architectural details of the
proposed DRL-based system for UAVs trajectory planning are presented in Section 3. Section 4
explains the simulation setup and results achieved through our system. The final section presents the
conclusion and future work of the implemented system.

2 Related Work

UAV navigation aims to direct UAVs to the desired destinations on conflict-free efficient routes
without human intervention [22]. UAVs are being used by the research community in many applica-
tions such as medical [23], agriculture [24,25], food [26], and forestry [27]. It plays an essential role
in automated operations under challenging environments. The UAV navigation problem has shown
some promise for recent emerging DRL methods [28]. However, most of these approaches do not
converge. Guo et al. [29] have developed a DRL framework for UAV automated navigation in a highly
dynamic and complex environment. They have specially designed a distributed DRL framework that
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decomposes the UAV navigation function into two simple sub-functions. Each sub-task is solved by a
DRL network based on long short-term memory (LSTM) created with only a fraction of the interactive
data. In addition, they proposed a clipped DRL loss feature that would unite the two sub-solutions to
the UAV navigation problem into a single component. The simulation results show that the proposed
method is better than the innovative DRL method in terms of convergence and efficiency. The sharing
of observation data between multiple UAVs increases the detection range of each UAV. Therefore, this
type of research is significant for improving overall mobility further.

Automated management of undefined environments remains a challenge for small UAVs.
Recently, several neural network-based technologies have been proposed to solve this problem.
However, the trained network is vague, unintelligent, and challenging to understand by humans,
limiting its practical application [30]. The study by He et al. [31] discusses the problem of automated
flight design of UAVs using DRL. Unlike other studies, the proposed network was trained in the
simulation to determine the path of the UAV. They proposed a new way of describing models based
on different features to better understand the trained model. Shapley values are used to come up with
an explanation method. Textual responses are created using these values, which support the agent’s
response toward the goal. If the UAV experiences an object in the environment, a textual response
is created by Convolutional neural network (CNN) in accordance with that action. This method is
then applied to the real-world environment, and a description of the action of UAV was obtained
successfully. After an actual flight test is performed, it is concluded that the approach was strong
enough to be applied directly to the real environment. However, the model can be improved based on
providing more descriptions of the action of the UAV.

By using the powerful MEC servers, computation offloading facilitates the execution of demand-
ing computational workloads. As a result, the quality of computing, such as execution delay enhanced
significantly [32]. In work by Khan et al. [33], they proposed an integer linear optimization-based
efficient computation offloading technique. For each mobile device, the algorithm offers the options
of local execution, offloading execution, and task dropping as the execution modes. The system is
based on an enhanced computing method that uses less energy. Lu et al. [34] suggested two secure
transmission techniques for multi-UAV-assisted MEC based on single-agent and multi-agent RL. They
proposed an approach that starts by optimizing the deployment of UAVs, which covers all users with
the fewest possible UAVs, using the spiral placement algorithm. Then, RL is applied to enhance system
utility by taking into account various user tasks with varying preferences for processing time and
residual energy of computer hardware, which minimized the risk of information eavesdropping by a
flying eavesdropper.

In the cases of extensive machine-type communications, UAV-based communication is thought to
be a potential remedy for data traffic explosions. The best QoS in UAV-enabled cellular networks is a
topic covered in the article by Zhu et al. [35]. An integrated design of access point selection and UAV
trajectory planning was proposed to maximize the usability of UAVs. They provided an algorithm
that directs the UAV to choose a location with a good channel condition. A game theory-based access
point selection algorithm is also implanted, enabling users to select the ideal access point according to
a cost function. The algorithm instructs the users to choose an access point automatically because the
sub-problem for access point selection is NP-hard. They achieved the best channel quality by using
an in-depth strengthening learning DRL approach to enable UAVs to take the best possible action at
each location to provide an optimal path for the UAV. According to the simulation results, this method
significantly lowers the typical cost to the users. The path design scheme for UAVs can produce a route
with a minimum average channel path loss compared to other methods. However, sending more UAVs
to larger areas is possible using a multi-agent reinforcement learning framework.
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The energy-efficient fair communication trajectory design and frequency band allocation (EEFC-
TDBA) algorithm were proposed in the article by Ding et al. [36]. They worked on the path design
and frequency band separation of UAVs in a 3D plan to offer fair and energy-efficient communication
services. The power consumption model for quad-rotor UAV is presented based on the UAV’s 3D
motion. The EEFC-TBDA algorithm is implemented based on DRL in which a deep deterministic
policy gradient is applied. EEFC-TDBA allows adjusting flight speed and direction to increase energy
efficiency and reach the destination before energy depletion. The proposed algorithm also allocates
frequency bands and provides a fair communication service. Simulation results were presented to
show that EEFC-TDBA performs better in terms of throughput. Within limited energy availability,
this approach keeps the balance between the fairness of GUs and throughput. However, the path
design and allocation of multiple resources using multiple UAVs must be tested to offer reliable
communication to the GU.

Path design for UAVs remains challenging in dynamic environments with potential threats. In
the article by Yan et al. [37], they proposed a DRL approach to designing UAV routes based on
information in the global context. All the important attributes are selected, such as the location of the
UAV, location of goal, and enemy. STAGE Scenario software was also selected to provide a simulation
environment for developing quality assessment models that consider the enemy’s radar detection and
the UAV’s viability in a missile attack [37]. A dual depth Q network (D3QN) algorithm is used with a
set of quality maps as input to estimate the Q values that fit all candidate behaviors. They combine the
greedy and heuristic approach for selecting actions. Furthermore, simulation results are given to show
the performance of the proposed approach in static and dynamic work settings, given the information
related to the situation. The information related to the situation is not easily available in a real-time
scenario. Multiple UAVs can share information related to the global situation for better performance
of this approach.

The problem of trajectory planning and resource allocation (TPRA) in multiple drone cells (DCs)
is investigated by Shi et al. [38]. The paper considered a large-scale radio access network where
multiple base stations are deployed, and the mobility of users in the environment is higher. The authors
considered the energy consumption from the UAV to the user and energy consumption from the UAV
to the base station. The problem is formulated as MDP, in which the throughput is increased over a
huge area. Hierarchical deep reinforcement learning based trajectory and resource allocation (HDRL-
TPRA) approach is proposed for DCs in which the high complexity of the environment is solved by
dividing the problem into two sub-problems of global trajectory planning (GTP). One subproblem is
higher-level GTP, and the other subproblem is low-level GTP. The GTP subproblems aim to do the
trajectory planning for multi DCs and increase the number of users covered in a given environment.
The GTP is solving the route design over a long period. To solve the sub-problem, they proposed
a multi-agent DRL based GTP algorithm to solve the unstable space situation by the environment
in which the multi DCs is deployed. Subsequently, every DC independently solves the TPRA sub-
issue to control the power distribution, motion, and transmission based on real-time changes in user
traffic. Also, the TPRA sub-problem is solved using the heuristic policy gradient algorithm named
deep deterministic policy gradient-based lower-level local trajectory planning and resource allocation
(DEP-LTPRA). The article concluded with a 40 percent increase in the throughput of the network
compared to the existing non-learning-based approach. The high dynamicity of users required a
frequent change in the position of drones, leading to high power consumption.

The path planning of UAVs is a compulsory component of rescue operations because UAVs can
be used in different types of rescue missions. As UAVs operate in a dynamic, changing environment
and high task space, the traditional techniques cannot provide an optimal strategy of control in a
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3D environment [39]. Therefore, in the study by Li et al. [40], they proposed a UAV path design
system based on DRL that allows UAVs to navigate in a 3D space. The authors assumed a fixed-wing
UAV, and a deterministic policy gradient (DDPG) algorithm is proposed in which the UAV takes the
decision automatically. In addition, the reward is formulated to navigate the UAV towards the goal
while considering its safety. They used a threat function in the reward, enabling the UAV to navigate
safely without collision. Simulation results are given, which show that the UAV can navigate safely
without collision with obstacles. However, the performance of this approach can be reduced when
there is no exact deterministic knowledge about the obstacle and target point.

MEC gathers computer capabilities from the network edge to perform compute-intensive tasks
for multiple IoT applications [41]. Meanwhile, UAVs have great flexibility to extend coverage and
improve network performance [42]. Therefore, the use of UAVs to provide terminal computing services
for large-scale IoT devices is very important. In the article by Peng et al. [43], they study the problem
of intelligent path design for UAV-enabled edge networks, considering the mobility of IoT devices.
The authors consider the movement of devices in a practical environment using the Gaussian Markov
random motion model. Considering the energy consumed during flight and the execution of UAVs,
they set up a path design problem to maximize the amount of data that is uploaded to UAVs by
the devices. They use the DRL method to build an online path design algorithm based on double
deep Q-learning network to handle dynamic changes in complex environments. Extensive simulation
results confirm that the proposed algorithm performed better in terms of convergence speed. The
data uploaded to the UAV is maximized, and the energy consumption is minimized. However, the
performance of the proposed algorithm can be affected when the mobility of the devices is considered.

In the article by Liu et al. [44], they study mobile-edged computer networks equipped with UAVs.
In work, UAV performs different computational operations on the data uploaded from the users called
terminal users (TUs). All TUs are deployed using a random Gauss-Markov model (GRMM). The
Path of the UAV is executed while considering the energy consumption of the UAV. This path design
problem is formulated as MDP. In this problem, user association and UAV path are considered for
optimization. The authors followed QOS based epsilon greed policy approach to fulfill the QoS and
increase the overall reward. The simulation results show better convergence speed as compared to
the RL approach. The approach maximizes the throughput and achieves better QoS. However, the
algorithm performance can be reduced with the increasing number of Users. Only a single UAV cannot
provide the target QoS in a dense environment.

In the cellular coupled UAV network, Li et al. [45] consider the problem of minimizing the
time cost and expected time of outage. A UAV navigation approach has been developed using the
variable mobility of UAVs to achieve the above optimization objectives. Current offline optimization
technology solves the inefficiency in performing UAV path navigation because it realistically considers
the distribution of objects, buildings, and placement of antennas directionally. The authors focused on
ground air channels and considered objects and buildings with antennas that transmit radiation in 3D.
An active solution called quantum-inspired experience reply (QIER), based on DRL is proposed to
enable the UAV to find the optimal flight direction. It is concluded that the proposed algorithm needs
fewer parameters and is very convenient for implementation. The efficiency and superiority of the
proposed solution were shown and validated by numerical results compared to some DRL-related
and unlearned solutions.

However, from the cited work, efficient trajectory planning in a multi-UAV environment by
preventing UAVs collision and detecting accurate service demand from the GUs is still challenging.
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So, the proposed DQN-based model can efficiently plan the trajectory in a multi-UAV environment
and assure the different QoS requirements for GUs.

3 Design and Architecture of Proposed DRL-Based UAVs-MEC Trajectory Planning Mechanism

The proposed DRL-based UAVs-enabled MEC framework are illustrated in Fig. 2, which intro-
duces the intelligence at the cloud and edge for efficient service provisioning and management
using UAVs networks. In the cloud, the efficient UAVs deployment decision can be made per the
requirements such as emergencies, disasters, and to enhance network coverage cases. The network
operators (NOs) can proactively manage and control the network resources using AI technologies.
These AI algorithms can perform network data analytics such as user behavior prediction, traffic
volume prediction, resource consumption, energy efficiency, path planning and optimization for
UAVs, mobility management, etc. On the other side, MEC offers cutting-edge capabilities to its
customers that are only possible with UAVs. But efficient trajectory planning in the muti-UAVs
environment and providing services to the GUs by considering energy efficiency is challenging. So,
the proposed model is implemented by using DRL-based mechanism that can efficiently plan the
multi-UAVs trajectory by considering the energy and QoS from the GUs. An in-depth discussion is
provided on the proposed environmental modeling and optimal trajectory planning in the forthcoming
subsections.

3.1 Environment Modeling for DRL-Based Mechanism

The proposed work considers two crucial aspects of MEC-enabled UAVs for planning their
trajectories by satisfying the QoS requirements of GUs. It also avoids the collision that occurs between
UAVs. Several GUs and UAVs are present in the environment. The UAVs efficiently plan their path
to accommodate the GUs demand. Consider each GU has an initial demand for UAVs to process,
and the demand can only be serviced when the UAVs are within the GUs’ service radius. Due to
restricted capabilities, UAVs cannot accurately detect demand signals at a significant distance. As a
result, Sa (Pi, γ) denotes the service area of a GU, Pi denotes the GU’s initial location, and gamma
denotes the radius. Fig. 3 shows the environment modeling for the DRL agent, which contains ten
GUs with two UAVs.

Figure 3: Simulation setup with UAVs and GUs’ distribution in a grid environment
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Moreover, a GU’s service is activated whenever a UAV enters its service area (green circle). The
remaining GUs needs will reduce steadily. It can be concluded that a GUs with a higher demand
requires more time to be served. So, the GU gets more service if the UAVs stay longer within its
service area. The correlation between UAV detected demand and GU demands is not linear. So,
the sigmoid demand detection function U

(
Dgu (t)

)
is used to accurately detect the GUs demand

for assuring better QoS [46]. Eq. (1) illustrates the sigmoid function U
(
Dgu (t)

)
for describing the

correlation between actual and detected demand, whereas η and β are the constant terms used for
controlling the U

(
Dgu (t)

)
.

U
(
Dgu (t)

) = 1 − exp
[
− Dgu (t)η

Dgu (t) + β

]
(1)

To improve QoS, U
(
Dgu (t)

)
can motivate a UAV to concentrate on GUs with higher unserved

demand and restrict it from serving any GU for a long period. U
(
Dgu (t)

)
increases rapidly as the

service demand increases and becomes slow whenever it is sufficient.

A reward function is implemented for UAVs to better learn and adapt in order to choose the
optimal Path. This reward function considers the distance and GU service demand. The reward
function also calculates the penalty or reward in time period t between two points on the map. The
reward function Rt+1 between two points Pi and Pf is defined in Eq. (2). The coefficient K is used as a
service demand that can accommodate the GUs demand as required.

Rt+1 = U
(
Dgu (t)

) + D(m,n) (2)

The policy in the RL mechanism refers to the probability of selecting the action At as per the
current state St. So, the main aim is to find the optimal policy π∗ to maximize the system’s long-term
reward as defined in Eq. (3).

π∗ = argmax

∑t−1

t Rt+1

T
(3)

3.2 Proposed DQN for Optimal Trajectory Planning

This study uses the RL method to explore the dynamic and unknown environment. Each UAV in
the environment acts as an RL agent where the UAV takes actions to maximize the long-term rewards
by trying several actions. UAV agent keeps learning from the feedback and reinforces the actions until
the actions yield the optimal result. The agent in DRL constantly trains the DNN based on rewards to
optimize its action for a specific state in the environment. Several DRL algorithms proposed in recent
years are categorized into on-policy and off-policy [19–21]. Off-policy algorithms, like Q-learning,
update the policy by getting a reward for the action through the epsilon greedy technique. The two
most notable methods of off-policy models are DQN and Double Deep Q Network (DDQN) [19,21].
Instead of using the Q-table to learn from the rewards and choose the action, DQN employs the
two DNN models with the same layers but different parameters. These DNNs models help DQN to
learn large and dynamic environments efficiently. Additionally, the proposed work employs the DQN
method of the DRL to deal with the large state-action pairs evolved by GUs position and service
demand.

In the proposed DQN model, a three-layer DNN model is adopted, which is named as predicted
Qn

p network to estimate state-action pairs Q value at every iteration. Fig. 4 depicts the workflow of
the proposed DQN-based mechanism for efficient policy optimization during trajectory planning of
UAVs. The input of the Qn

p model is state information, and the output is the vector of estimated Q
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values for all actions of the observed state. The DNN model approximates the Q value using the
gradient-decent algorithm in training. The first and second hidden layers contain 128 and 64 neurons,
respectively, and Rectified Linear Unit (RELU) is used as an activation function. Moreover, the size of
neurons is the same as action space in the output layer, and Softmax is used as an activation function.
An additional target network Qn

t is used to overcome the policy-oscillation issue that occurs due to
little change in Q values. The target network Qn

t has the same settings as predicted network Qn
p but

different parameters. The target network Qn
t estimates the target Q values. In specific steps, the DQN

model shows more stable performance by freezing the parameters of target network Qn
t .

Algorithm 1: DQN-based policy optimization mechanism for UAVs trajectory planning.
1. Input: {Rm, Ne, ε, θ1, θ2, MAXs, Mins, S}
2. Rm = replay memory, MAXs = Maximum Rm size, Mins = Minimum Rm size, Ne = total number of
episodes, ε = exploration probability, θ1 = parameter of Qn

p, θ2 = parameter of Qn
t , S = Step

3. Define Qn
p with random weights: θ1

4. Define Qn
t with θ1 weights: θ2 = θ1

5. For E = 1 : Ne do
6. Select random action At with epsilon probability
7. Otherwise At = argmaxAQn

p (St, A, θ1)

8. Perform At obtain agent reward Rt and next state St+1

9. if Rm == MAXs then
10. Delete the oldest values from the memory
11. Store experience (St, At, Rt, St+1, Qt) into the memory
12. end if
13. if S > Mins then
14. Extract randomly mini batch samples from the Rm memory
15. end if
16. if TERMINATE == St+1

17. Qn
t gets Rt

18. else
19. Qn

t = Rt + γ maxAt+1
Qn

t (St+1, At+1)

20. end if
21. Update weights by performing Gradient Descent

(
Qn

t − Qn
p (St, At+1, θ1)

)2

22. Update θ2 to θ1 at every iteration
23. Update ε

24. end for
25. Output: Optimal policy

The agent observes the state St at every time step t and is the input of the predicted network Qn
p. The

agent executes an action At by using the epsilon greedy policy as per the output value Qt, as a result the
agent obtains the reward Rt and a new state St+1. This transition experience (St, At, Rt, St+1, Qt) is stored
in replay memory Rm. The maximum and minimum size of replay memory is represented as Maxs and
Mins, respectively. The oldest transition experiences have been deleted whenever Rm becomes full, the
latest transitions will be stored. The training process starts only when at least Mins values are in Rm

memory. To effectively train the Qn
p network, Gradient-descent is adopted to update the parameters θ1

by using random mini-batch samples from the Rm.
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Figure 4: Implemented DQN model structure and procedure for training

In proposed mechanism the decreasing epsilon-greedy policy is adopted for action selection
during the training process. The agent acts randomly with epsilon exploration probability and selects
the action with maximum Q value having exploitation probability (1-epsilon). The epsilon value
decreases with the increased number of training episodes, meaning that the agent gradually shifts from
exploration to exploitation. The learning rate γ is set to 0.002. The parameters θ2 of the target network
Qn

t are frozen in the training phase and are updated from the predicted network Qn
p by copying θ1 to θ2 at

every iteration. Finally, the predicted network Qn
p approximates the action-value function satisfactorily,

and optimal policy is achieved by selecting the maximum output value in the current state. Algorithm
1 explains the working procedure of the proposed mechanism.

Algorithm 2: Pseudo code of UAV navigation and service provisioning.

1. while
(
sum

(
SumTarget

) = UAVnum

)
do

2. for i = 1 : UAVnum do
3. if

(
UAVpos − Target

) ≤ stepl × 10 then
4. SumTarget (i) = 1;
5. else
6. loop = loop + 1
7. if

(
UAVpos = Pathi

)
then

8. delete the first line
9. end if
10. tgoal = PATHi (1, 1:2) /N
11. dis = norm

(
tgoal − UAVpos

)
12. if dis > stepl then
13. UAVpos = UAVpos + (

tgoal − UAVpos

) × stepl/dis
14. else
15. UAVpos = tgoal

16. end if
17. for

(
k = size

(
GUinfo

))
18. if

(
GU (k,1)

k1 − UAVpos

)
<= ServiceR & GUk4 = 0) then

(Continued)
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Algorithm 2: Continued
19. f = max (0.00001, GUk3 − 1)

20. GUk3 = f
21. if GUk3 < 0.0001 then
22. GUk4 = 1
23. count (k) = loop
24. end if
25. end if
26. end for
27. end if
28. end for
29. end while

Algorithm 2 explains the pseudo code of UAV target servicing. It starts with initializing the
variables. The first while loop will continue until all UAVs arrive at the target stopping iterations. If
one UAV arrives at the target, no further planning is needed. If the first line has been visited, delete the
first line, and turn path from N ×N size to 1 ×1 size and calculate the distance from the UAV’s current
position to the next position. Then move one step toward the target goal direction; otherwise, move
to the target goal directly. Then update GUs demand matrix; the demand matrix removes all demand
from unserved GUs which are located within the service radius. The iteration ends after serving all
targets.

4 Experimental Setup and Results

For simulation and obtaining results, we set up MATLAB R2022A version 9.12. The system is
tested on Core i7-1160G7 intel 2.20 GHz processor with a windows operating system. Table 1 shows
the system requirements to implement test-bed environment for simulations.

Table 1: Test-bed implementation environment

System requirements Description

Central processing unit (CPU) Intel Core (TM) i7-1160
RAM 16 GB
Operating system Windows 10
Simulation tool MATLAB
Graph toolbox Version 1.4.0
IDE (Platform) MATLAB R2022a (V 9.12)

In experiment setup, N × N grid is used, which contains the GUs and UAVs association. The
notations and their values, along with their descriptions, are enlisted in Table 2. The UAVs parameters
are adjusted as per each UAV’s capabilities. Ten GUs are initialized at randomly distributed locations
with two UAVs. The service demand is randomly assigned within the range of [0:10]. Moreover, UAVs
hovering, and flying energy are set to 90 and 100 W, respectively. The efficient trajectory planning
process using DQN model with only five iterations is depicted in Fig. 5. Where black circle marks
represent two UAVs from different locations, red asterisk marks denote GUs, and the green circle
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presents the service demand of GUs with service radius. The black asterisk marks show the target
point of both the UAVs. Each mission requires both UAVs to fly to the target (asterisk) and provide
service to GUs positioned on the map. When GUs are served, the green circles get smaller, indicating a
reduction in service demand. The overlap area of service radius demonstrates that the service demands
are accumulative. Moreover, the results illustrate that the UAVs can select a low-risk route to service
each GU in a highly dynamic environment. It seems that GUs with higher demand is more appealing to
UAVs. Both UAVs will reroute to other places with high service demand once the initial service demand
has been completed. While planning trajectory by DQN agent, information sharing is beneficial in
preventing UAV collisions.

Table 2: Description and values of notations

Sr # Notation Description Value

1 N map into N × N grid 20
2 N2 map into N2 × N2 grid when calculating the weight matrix 50
3 β the parameter in the sigmoid service demand function 8
4 GUinfo GUs location matrix -
5 Sa (Pi, γ) radius within which a GU can be served 0.2
6 stepl UAV one-step length 0.02
8 K service demand coefficient 1
9 η the parameter in the sigmoid service demand function 2

Figure 5: Efficient UAV-enabled MEC trajectory planning by proposed DQN model with 10 iterations

Fig. 6 depicts the DQN trajectory planning process with fifty iterations showing the proposed
model’s effectiveness for serving GUs with their QoS requirements. Both UAVs planned their trajec-
tory to serve more GUs. Due to UAV collision avoidance capability, both UAVs planned different
paths by accommodating more users. As seen, UAV 1 serve four GUs, and UAV 2 serve two GUs by
planning their flight. So, the service demand decreases as the UAV provides service to a specific GU.
Whenever the UAVs enter the GU service radius, the service begins. As shown in Fig. 6, the green circle
representing service demand of GU adopts the shape of small green diamond after being served.
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Figure 6: Efficient UAV-enabled MEC trajectory planning by proposed DQN model with itera-
tions = 50

Fig. 7 illustrates trajectory planning procedure of the proposed RL model with 200 iterations
where both the UAVs reached at target point after serving all the GUs. All GU’s service demands have
served, and green circles become small diamonds. The mission accomplishment shows the effectiveness
of the proposed mechanism. An efficient trajectory planning is performed and the maximum number
of GUs are served with their QoS requirements. Both the UAVs follow the service demand detection
from GUs for the planning path.

Figure 7: Efficient UAV-enabled MEC trajectory planning by proposed DQN model with itera-
tions = 200

Fig. 8 illustrates the comparison between the proposed QoS aware greedy policy with the con-
ventional greedy policy approach for QoS satisfaction. It can be seen in the graph that the proposed
approach achieved almost 99% QoS fulfillments for ten GUs, and in the case of the conventional greedy
approach maximum of 50%, QoS is achieved. This evaluation shows the superiority of the proposed
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QoS-aware DQN model with simple conventional policy. It also shows the optimal reward shaping
and learning of the proposed DQN model.

Figure 8: QoS comparison of proposed DQN based QoS-aware greedy policy with conventional greedy
policy approach

The results show the superiority of our proposed DQN model for QoS assurance and adaptation
of a dynamic environment. Additionally, it shows effective performance in terms of stability and
mission completion. The viability and efficacy of the proposed method is obvious. Moreover, UAVs
also planned their flight by DQN agent within the energy constraints. So, the proposed mechanism is
an effective and optimized solution for energy-efficient UAVs trajectory planning and QoS fulfillment.

5 Conclusion

In this work, proactive trajectory planning and management issues are investigated for UAVs-
enabled MEC network while considering the QoS requirements of the GUs. A DRL-based DQN
model has been implemented for optimal trajectory planning that aims to fulfill the QoS demands from
GUs in an energy-efficient way. The GUs are randomly distributed, and UAVs are tasked to serve them
as per their QoS. DQN agents plan the trajectory according to the service demand detected from the
GUs. Finally, UAVs plan their trajectories by preventing the same path, collision and providing service
to the GUs. Simulation results validate the efficacy of the proposed mechanism in terms of mission
completion and stability in trajectory planning for multi-UAVs. This mechanism not only assures the
QoS for users but also completes their mission according to energy efficiency of each UAV. In the
future, we intend to enhance the proposed work by using advanced algorithms such as DDQN and
asynchronous-advantage actor-critic (A3C) models for optimal resource allocation in a UAV-enabled
MEC environment. Moreover, we will consider a more complex environment by considering a real
map and different weather conditions with real-time QoS demands from the users.
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