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Abstract: In this paper, we proposed a combined PCA-LPP algorithm to
improve 3D face reconstruction performance. Principal component analysis
(PCA) is commonly used to compress images and extract features. One
disadvantage of PCA is local feature loss. To address this, various studies have
proposed combining a PCA-LPP-based algorithm with a locality preserving
projection (LPP). However, the existing PCA-LPP method is unsuitable for
3D face reconstruction because it focuses on data classification and clustering.
In the existing PCA-LPP, the adjacency graph, which primarily shows the con-
nection relationships between data, is composed of the e-or k-nearest neighbor
techniques. By contrast, in this study, complex and detailed parts, such as
wrinkles around the eyes and mouth, can be reconstructed by composing the
topology of the 3D face model as an adjacency graph and extracting local
features from the connection relationship between the 3D model vertices.
Experiments verified the effectiveness of the proposed method. When the
proposed method was applied to the 3D face reconstruction evaluation set,
a performance improvement of 10% to 20% was observed compared with the
existing PCA-based method.

Keywords: Principal component analysis; locality preserving project; 3DMM;
face reconstruction; face modeling

1 Introduction

Facial modeling has a wide range of applications in visual and graphic computing, including facial
tracking, emotion recognition, and interactive image and video-editing tasks related to multimedia.
A three-stage development process has been implemented for face modeling: face modeling using
parametric surfaces, face reconstruction using 3D data interpolation, and linear hybrid-face modeling
[1]. In general, a person’s face significantly defines the identity that distinguishes a person. If the face
is even slightly deformed, it appears as a different identity. Therefore, the challenge of face modeling
is to perform precise and accurate modeling. Currently, data for 3D face reconstruction are obtained
with RGB [2–8] or RGBD [9–12] cameras. The most widely used methods for face modeling are the

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.035344
https://www.techscience.com/doi/10.32604/cmc.2023.035344
mailto:kimsk@jejunu.ac.kr


6214 CMC, 2023, vol.74, no.3

3D face reconstruction method based on the 3D morphable model (3DMM) face model database
[2–5] and end-to-end 3D face reconstruction method [6]. In [7,8], researchers proposed a method for
directly mapping image pixels to 3D facial structures using a convolutional neural network (CNN).
The 3D face reconstruction method based on the 3DMM face model database is advantageous because
it requires few calculations. However, the 3DMM face model database was trained using 3D face
scans of 2D face images, and the model was represented by two sets of principal component analysis
(PCA) basis functions. Because of the type and quantity of training data and the linear basis, the
representation ability of the 3DMM is limited [13–15].

The PCA [16] technique compresses information of 3D face models by projecting them onto
feature vectors. When reconstructing a 3D face, the PCA feature vectors are controlled by coefficients
to provide face information suitable for the target face. Therefore, when using 3DMM techniques,
accurately determining the coefficient values that control the PCA feature vector is important to
create a reconstruction as close as possible to the target. Studies are being conducted in various fields
to determine these coefficients, ranging from statistical numerical analysis [2,17] to deep learning
[18]. However, we focused on feature vectors instead of determining coefficients for efficient and
accurate reconstruction. Although PCA algorithms are effective in representing the global information
of datasets, local information in the data is lost when representing datasets composed of complex
structures, such as nonlinear manifolds, making effective representation of the data difficult. To
address this regional information loss problem, another dimensionality reduction algorithm, locality
preserving project (LPP) [19], has been developed. The LPP preserves adjacencies between the data in
the dataset and can project them onto the basis vector to effectively represent complex forms of data
(e.g., nonlinear manifolds). The LPP is effective for local data representation; however, it struggles
to grasp the global structure of the data. This can be directly confirmed from the results of 3D face
reconstruction using only a few vectors, for both PCA and LPP. Despite the limited number of vectors,
PCA has confirmed that the overall shape could be similarly reconstructed; however, several parts
(e.g., eyes and mouth) were omitted. In the case of LPP, if only a small number of vectors are used,
each vector only handles local information. Hence, determining whether it has been reconstructed
is difficult with the naked eye. However, when all LPP vectors are used, all the local information is
gathered to effectively reconstruct the human face. We intended to extract improved feature vectors by
combining PCA and LPP, inspired by research using a combination of two methods to address these
shortcomings [20–22].

In this study, a PCA algorithm that can effectively express global information and an LPP method
that can preserve local information were combined. The disadvantages of the two algorithms were
supplemented, and the PCA-LPP algorithm [21,22] was proposed. The PCA-LPP algorithm used
considerably few feature vectors for 3D face reconstruction and the local information loss was less
than that using only the existing PCA feature vectors, resulting in a high recovery rate. We presented
the advantages of human face reconstruction in our results. Compared to previous studies, our study
has the following characteristics:

1) PCA is considered only a global feature. The disadvantage of PCA is that it does not consider
regional features; thus, the reconstruction rate of regional features, such as lips, is fairly low.
To compensate for this, we also considered local features by combining PCA and LPP. Thus,
the reconstruction efficiency rate for the eyes and lips of the 3D face model improved.

2) A previous study used 68 landmarks, but the reconstruction rate of the nose was unnoticeable.
We improved the recovery rate using the 74 landmarks provided in the FacewareHouse
Database.
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2 Related Work

A high demand for face modeling technology exists in a wide range of multimedia applications.
The face modeling process is complex, difficult, and time consuming. To improve this face modeling
process, several studies have been conducted on techniques for reconstructing a 3D face model
from an image. Representative face reconstruction methods include 3DMM for parameterizing and
reconstructing face information and end-to-end face reconstruction techniques. The 3DMM method
was first proposed by Blanz and Vetter at the University of Basel in Switzerland in 1999 [2], and
subsequent improvements are typically based on their work. The 3DMM is based on the 3D facial
database, with facial shape and texture statistics as constraints. Considering the influence of facial
posture and illumination factors, the large-scale facial model (LSFM) [13] developed by researchers is
currently the largest 3DMM, and the generated facial 3D model has a high degree of accuracy. The
more commonly used facial models include Facewarehouse and LSFM. Yin [23] used demographic
information to construct a 3D face model that is robust against shape variation. However, the LSFM
does not contain facial expressions and cannot be used for user expression tracking. Facewarehouse
is a 3DMM face model database developed by Cao et al. [14]. They captured RGBD data of 150
individuals aged 7–80 from various ethnic backgrounds, including neutral expressions and 45 other
expressions, such as with open mouths, smiling, and kissing.

Among end-to-end 3D face reconstruction methods, the most famous are VRNet [4] and PRNet
[5]. They proposed a new method for 3D face representation using a volumetric representation based
on a simple CNN that performs a regression of the volumetric representation of the 3D facial geometry
from an image. Simultaneously, researchers at Michigan State University proposed a new framework
based on 3DMM and CNN in 2018 [24], which can train a nonlinear 3DMM model from a large set
of unconstrained face images without collecting 3D face scans.

3 PCA and LPP Method

Although PCA has the advantage of effectively representing global information, representing the
local information of complex data, such as multidimensional manifold structures, is difficult. However,
LPP can effectively represent the data of a multidimensional manifold structure. LPP is advantageous
in preserving local information by projecting data while preserving connected neighbor information
after identifying connections between the data. However, LPP has the disadvantage of requiring a large
number of eigenvectors to represent global information. The PCA-LPP combination algorithm can
be used to compensate for the shortcomings of these two methods. The existing PCA-LPP algorithm
was implemented for data classification or clustering; however, it did not obtain good results for use in
3D face reconstruction. This section introduces the PCA, LPP, and PCA-LPP methods and presents
the proposed method as a combined PCA-LPP algorithm.

3.1 PCA

PCA is the best-known dimensionality reduction technique for determining the basis vector
with the greatest variance when projecting data. These basis vectors are identical to the eigenvectors
of the data-covariance matrix. Therefore, easily extracting feature vectors from data is possible by
decomposing the covariance matrix of the data into singular value decomposition (SVD) [25]. Hence,
PCA is an algorithm that can express data easily and effectively, and most research reconstructing
facial models with coefficients extracts feature vectors for PCA. However, the most important aspect
of PCA is to significantly express the data variance and expressing the data effectively where the
connection relationship is important is difficult because the neighborhood relationship between the
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data is not considered. Consequently, PCA is limited in expressing face details, such as a mouth, with
a small amount of data in facial mesh reconstruction.

3.2 LPP

LPP is a technique that preserves and projects neighboring relationships between data to reduce
dimensions, which can effectively represent regional characteristics. In the next section, we introduce
how to extract the feature vectors from the LPP.

3.2.1 Adjacency Graph

The adjacency graph [26] shows the relationship between data. There are two ways to define a
connection. First, ε − nighborhoods is a method in which the user sets the threshold ε when there
are arbitrary data xi and xj, and if ‖xi − xj‖2 < ε is satisfied, xi and xj are defined as a connected
relationship. Another method, k − nighborhoods, involves setting a threshold value k and defining k
pieces of data closest to any data point xi as a relationship connected to xi. An adjacency graph is
constructed by selecting one of these two methods and defining all connections for each dataset.

3.2.2 Weight Matrix

A weight matrix W [26] can be constructed by assigning a weight to each connection relation
between data using an adjacency graph. W is a sparse symmetric matrix of m × m, and there are
two ways to construct this weight matrix. If arbitrary data xi, xj are connected, there is a method of

assigning Wij = 1, and the heat kernel method is defined as Wij = e− ||xi−xj ||2
t by setting a random value t.

3.2.3 Eigenvector Extraction

We calculate eigenvectors and eigenvalues using Eq. (1) as follows:

XLX Ta = λXDX Ta , (1)

where matrix D is a diagonal matrix defined as Dii = ∑
j Wji. L is a Laplacian matrix defined as follows:

L = D − W.

However, LPP is not widely used for 3D face reconstruction. Because LPP preserves local
information well, it presents good results in reconstructing detailed geometric information; however,
this is because numerous feature vectors are required to reconstruct the overall silhouette.

3.3 PCA-LPP

The PCA-LPP is an algorithm that complements each method’s weaknesses by combining the
advantages of effectively containing the global information of the PCA and LPP, which can effectively
represent the local characteristics. The authors of [21,22] improved the performance by mixing PCA
and LPP algorithms. Researchers [21] have performed k-means clustering by extracting features from
raw data using PCA and PCA-LPP algorithms to improve the performance of DNA microarray
data clustering. The PCA-LPP implemented in this study sets threshold ε to 10−12 for noise removal
and extracts eigenvectors with eigenvalues greater than ε using PCA. The extracted eigenvectors are
collected to form a matrix V, and data matrix X is then transformed into T. We extracted features
using LPP from T using T = V TX . The k-means clustering accuracies of the data extracted with the
PCA-LPP method, data extracted with PCA, and raw data were 85%, 68%, and 57%, respectively.
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When using the PCA-LPP, the performance of k-means clustering significantly improved. In [22], the
PCA-LPP algorithm was applied to improve the accuracy of image retrieval and compared with PCA.

The PCA-LPP implementation used in [22] is as follows. The eigenvector of S is extracted using
PCA. The extracted eigenvectors are collected to form matrix A and converted into data matrix X.
Finally, an eigenvector is extracted from Y = AX using LPP. Using the PCA-LPP, PCA, and LPP
implemented in this manner, 36 images containing the same object were identified in the dataset from
a specific image. In the experiment using flower images, 30, 29, and 14 fit images were extracted for
PCA-LPP, PCA, and LPP, respectively. Based on these results, the PCA-LPP showed a similar or better
performance compared with PCA. In [21,22], when implementing PCA-LPP, PCA was first applied
to the dataset, followed by LPP. The methods in [21,22] were applied to feature vector extraction for
3D face reconstruction, but these methods did not yield the desired results. Therefore, we introduced a
method for modifying the PCA-LPP to fit 3D face reconstruction. Because the 3D face mesh contains
connection relationship between vertices, the topology of the 3D face mesh was used as an adjacency
graph and applied to LPP to analyze all faces in the dataset. Thereafter, we applied PCA to effectively
extract the feature vectors of the 3D faces.

4 Combined PCA-LPP Method

Fig. 1 shows a flowchart of the proposed system. All face models in the Facewarehouse database
have the same number of vertices and faces. Therefore, we constructed a feature vector using the
combined PCA-LPP that can compress the data dimension while preserving the local information
of the face models using the common structure of the face models.

Figure 1: System process

4.1 Combined PCA-LPP

LPP is an effective method for finding feature vectors when data are nonlinear manifolds.
However, when a feature vector is constructed using only LPP, most feature vectors must be used
for reconstruction because feature values are almost identical. As PCA considers only the overall
characteristics of the data, the reconstruction of detailed parts may be insufficient. Therefore, we
solved this problem by combining PCA and LPP. Additionally, traditional PCA-LPP combination
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methods [21,22] focus on obtaining a set of data through an appropriate data distribution, such
as classification or clustering. In some cases, this is unsuitable for data reconstruction as it can
severely damage the original data features and prevent the natural movement of the mesh during
reconstruction. When reconstructing a face, the mesh should change naturally, and the features
should be emphasized. In this case, the features must preserve local features, such as the connection
relationship between vertices, to preserve the details of the face model. We preserved the local feature
with LPP before using PCA. Hence, the LPP weight matrix is defined as an adjacency matrix composed
of connections between the vertices of the face mesh. Therefore, weights between connected vertices
are 1. Subsequently, the LPP problem is solved using the input as the transposed data matrix X T , and
the matrix L of the extracted feature vectors is extracted.

Data matrix X is transposed as the common connection relation of the data and used as the weight
matrix. After solving the LPP problem, data matrix T is constructed using T = XLT . The PCA problem
is solved based on the constructed data matrix T. The extracted vectors and values were used as the
feature vectors of the 3DMM. This can be expressed as follows in pseudocode.

Pseudocode of proposed algorithm
X = Data Matrix (vertex count ∗ model count)
F = Topology information in face model
A = Adjacency matrix created by connecting the vertices of the mesh in F
D = diag (A’s sum)
L = D−A
L, λ = (Eigen decomposition of XTLXv = λXTDXv)
T = XLT

S = T–T’ mean
v, λ= (Eigen decomposition of Sv = λv)
v = λ ∗ v

4.2 3D Face Reconstruction

To test the performance of our proposed PCA-LPP method, we modified it to fit the open-source
published Facewarehouse data [27]. A study [27] developed a program that can reconstruct a face from
a single image or video, does not require prior learning through deep learning, and is characterized by
directly estimating parameters using the error between facial landmarks and images.

Fig. 2 presents four steps, including reconstructing the face from a single image, detecting
landmarks on the detected face, and tracking rigid and non-rigid features. 3D face reconstruction
can be processed using the following four steps:

1) Detecting face in a single image

Face detection is performed using a multitask cascaded convolutional neural network (MTCNN)
[28]. The MTCNN method consists of three convolutional networks: P-Net, R-Net, and O-Net. As
it uses three convolutional network structures, it can detect all small faces in the image and shows
high accuracy. To use the MTCNN, all three convolutional networks must be trained. The Facenet-
Pytorch library [29,30] is advantageous because it can use a trained MTCNN quickly and easily. The
Facenet-Pytorch library was used in this study.
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Figure 2: Face reconstruction process

2) Detecting face landmarks on the detected face

Dlib [31] was used for face landmark detection. We used 74 landmarks instead of the 68 landmarks
in Facewarehouse. Because Facewarehouse is reconstructed using 74 landmarks from the RGBD raw
data, a higher reconstruction rate can be expected with the same number of landmarks. In addition, the
74-landmark system further details the nose range than the 68. Facewarehouse has its own pose image
files of 150 (people) × 20 pixels and uses them as input for learning. Facewarehouse’s landmarks have
increased the number of landmarks on the nose and eyebrows compared with the existing landmarks.

Fig. 3 shows the results of the detection of 74 landmarks from an image using dlib. As shown in
(a), landmarks can be effectively detected in the frontal image, and no problem occurs in detecting
landmarks even if they are not frontal and have facial expressions, as shown in (b).
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Figure 3: Dlib results. (a) Detects a landmark from an expressionless frontal image. (b) Landmark
detected from the lateral image with the mouth open. Both images detect 74 landmarks

3) Rigid tracking

Face reconstruction consists of two processes: rigid and non-rigid tracking. Rigid tracking is the
process of aligning a face in an image with the prepared template model. The template model is the
average face model of the Facewarehouse database, and when aligning the model and face in the image,
it is sorted based on the landmark of the face. The template model is rotated and translated until the
L2 norm between the landmark of the image acquired using dlib and the landmark of the projected
template model is minimized.

Loss = Wk ∗ Landmark loss.

Rigid tracking uses landmark loss with the L2 norm as a process to match the original image’s
size and orientation to the template model. Wk is the regularization weight of the landmark loss. The
landmark loss is expressed in Eq. (2) as follows:

Landmark loss =
∑n

k=1λk ·
(

yland
k − xland

k

M

)2

n
, (2)

where n denotes the number of landmarks and M denotes the image size. yland
k are the coordinates in

the image where the 3D landmark vertices in the model are projected, and xland
k are the 2D landmark

coordinates detected in the original image. We assigned more weight to the landmarks corresponding
to the eyes and nose for quick and accurate alignment and then proceeded with rigid tracking.

As shown in Fig. 4, the face model and face in the image were aligned through rigid tracking. Rigid
tracking is optimized with landmark loss and can be effectively aligned in both frontal (a) and side (b)
images. Even with the same expression as in (b), the template model without expression determines
the angle and position that minimizes landmark loss; therefore, alignment is not a problem.
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Figure 4: Rigid tracking results. (a) Frontal image, with the template model aligned in the front. (b)
Looking to the side, with the template model aligned at the same angle as the face in the image

4) Non-rigid tracking

Non-rigid tracking optimizes the aligned template model equally to the face in the image. In this
step, the identity, texture, and expression coefficients that determine the appearance of the model are
estimated using the L2 loss as follows:

Loss = λ1 ∗ Landmark loss + λ2 ∗ Photo loss + λ3 ∗
∑

id coeffs2 + λ4 ∗
∑

exp coeffs2

+ λ5 ∗
∑

tex coeffs2.

Here, λ1,λ2, . . . , λ5 are the regularization weights applied to each term. To prevent the parameter
from becoming excessively large or a local minimum in the process of estimating each parameter, we
included a regularization term that weights the error as follows:

Photo loss =
∑n

k=1

∑m

l=1Wk · ∣∣∣∣yk,l − xk,l

∣∣∣∣
2

255
.

where n and m denote the width and height of the image, respectively, yk, l denotes the RGB value of
the image pixel rendered by the model, and xk, l denotes the RGB value of the original image pixel. Wk

is a skin mask that checks whether the mesh is expressed as pixel coordinates, and only pixels with face
meshes are included in the loss calculation.

Fig. 5 shows the results of non-rigid tracking, which are reconstructed by estimating each
coefficient value. The two models (Fig. 5) were reconstructed to the same skin color as the photo
by estimating the texture coefficient. Non-rigid tracking is a process of reconstructing a face model by
optimizing the identity, expression, and texture coefficients by comparing images and models.
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Figure 5: Non-rigid tracking results. (a) and (b) perform non-rigid tracking using the feature vector
extracted using the proposed method

5 Experiment
5.1 Environment

This section introduces the experimental environment used to reconstruct a face from a single
image. The operating system performed deep learning and experimentation using MS Windows 10.
One Nvidia GeForce RTX 3080Ti GPU was used for deep learning, as well as Python 3.8. Pytorch3D
[32] was used for rendering and deep learning training. Pytorch3D is a library for deep-learning-based
3D computer vision research released in 2020. The Adam optimizer was used for deep learning, and
the learning rate was set to 1e−2. Image and landmark losses were weighted at 100 and 1.3, respectively.
For regularization, the identity, expression, and texture regularization were set to 0.2e−1, 0.8e−3, and
1.2e−2, respectively. We experimented with face models and textures for learning based on face data
from Facewarehouse. Facewarehouse contains information on facial models, images, and landmarks.
Additionally, Facewarehouse is suitable for evaluating the reconstruction rate because it creates a face
model based on a face image.

5.2 Evaluation

To evaluate the proposed method, face reconstruction was performed using an image provided by
Facewarehouse, and the reconstructed model was evaluated by comparing it to the original face model
provided by Facewarehouse. For comparisons between algorithms, the error of the reconstruction
results using the proposed method and those using the PCA or LPP algorithms alone were compared
with the original model. Landmark and photo losses acquired during tracking are the results to be
compared with the image input for reconstruction; therefore, they are unsuitable for the evaluation
and excluded from the evaluation process. We calculated the L2 norm between the vector and original
model using the face image in Facewarehouse as input.

The evaluation method measures and compares the model loss, which is given by Eq. (3) as follows:

Model loss =
∑n

k=1 ||yk − xk||2

n
, (3)
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where n denotes the position of the vertices of the original model, yk denotes the position of the vertices
of the original model (Model Num = k), and xk denotes the position of the vertices of the reconstructed
model (Model Num = k). The model loss measured using Eq. (3) was normalized to 0–1. If the errors
of the models are normalized, the weight of each error can be reflected equally.

5.3 Result

Table 1 lists the average errors for the reconstructed results obtained using the three methods. The
face models were provided by Facewarehouse, and all models have the same vertices #5,282 and tris
#10,308. The reconstruction results in Table 1 indicate that the proposed method has less errors than
the PCA and LPP methods.

Table 1: Error comparison with model losses

Model number PCA LPP Proposed method

Model No. 6 1.44e−3 1.68e−3 0.96e−3
Model No. 16 2.73e−3 4.41e−3 2.24e−3
Model No. 17 3.21e−3 4.60e−3 2.04e−3
Model No. 48 1.90e−3 2.29e−3 1.05e−3
Model No. 95 1.93e−3 2.32e−3 16e−3
Model No. 107 2.22e−3 3.37e−3 2.16e−3
Model No. 117 1.50e−3 1.71e−3 1.25e−3
Model No. 142 2.50e−3 3.51e−3 2.18e−3
Model No. 150 1.99e−3 2.72e−3 1.52e−3

Fig. 6 shows the results of face reconstruction using images provided by Facewarehouse. The
four face models used 150 feature vectors, and the reconstruction results with a 3D face model are
shown. We compared the reconstructed face models using the PCA and LPP algorithms with the
proposed method. Evidently, the LPP method did not effectively reconstruct the face, whereas the
PCA and proposed method reconstructed the face effectively. In particular, when comparing the PCA
and proposed method, the overall reconstruction was similar, but differences are noticeable in the
detailed and complex parts, such as in the wrinkles of the eye and lip areas.

5.4 Discussion

We compared the reconstructed face models using the PCA and LPP algorithms with the proposed
method. The reconstruction results in Table 1 indicate that the proposed method has 10%–20% less
errors than the PCA and LPP methods. In Fig. 6, the LPP method did not effectively reconstruct
the face, whereas the PCA and proposed method reconstructed the face effectively. In particular, when
comparing the PCA and proposed method, the overall reconstruction was similar, but differences were
noticeable in the detailed and complex parts, such as in the wrinkles of the eye and lip areas.
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However, because the proposed method includes both global and local feature, it is easier to
get stuck in local minima problem than the PCA, which values global information. In addition, the
reconstruction performance is notably reduced in cases where the face direction exceeds 30 degrees in
a large pose or concealed part of the face. Thus, to obtain good results using the proposed method,
using input image that face the front and avoiding the local minima problem, such as regularization,
is important.
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Figure 6: Face reconstruction with proposed method

6 Conclusions

In this paper, we proposed a combined PCA-LPP algorithm that improves the existing feature
vector extraction method to improve the 3D face reconstruction performance. Unlike the existing
PCA-LPP method, the focus was on 3D face reconstruction, and the combined PCA-LPP algorithm
was implemented using the 3D face mesh as an adjacency graph. The combined PCA-LPP algorithm
exhibited a better reconstruction performance than the existing 3D face reconstruction methods
implemented with feature vectors extracted from PCA and LPP. In particular, the performance
improved by 10%–20% compared with the PCA algorithm, which is often used in the existing face
reconstruction field. Therefore, the combined PCA-LPP algorithm yielded better results than the
conventional method for 3D face reconstruction, as demonstrated by our results.

However, the proposed method was used only for 3D face reconstruction and is valid only for
extracting the parameters of the feature vectors without training on the Facewarehouse dataset. In
future work, we plan to compare the loss using feature vectors extracted from databases other than
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Facewarehouse. In this research, because the reconstruction rate of large pose face images was not
excellent, we intend to search for a landmark method that is good for large poses and increases the
face reconstruction rate by applying a neural network structure.
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