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Abstract: Medical image steganography aims to increase data security by
concealing patient-personal information as well as diagnostic and therapeutic
data in the spatial or frequency domain of radiological images. On the other
hand, the discipline of image steganalysis generally provides a classification
based on whether an image has hidden data or not. Inspired by previous
studies on image steganalysis, this study proposes a deep ensemble learning
model for medical image steganalysis to detect malicious hidden data in
medical images and develop medical image steganography methods aimed
at securing personal information. With this purpose in mind, a dataset con-
taining brain Magnetic Resonance (MR) images of healthy individuals and
epileptic patients was built. Spatial Version of the Universal Wavelet Relative
Distortion (S-UNIWARD), Highly Undetectable Stego (HUGO), and Mini-
mizing the Power of Optimal Detector (MIPOD) techniques used in spatial
image steganalysis were adapted to the problem, and various payloads of
confidential data were hidden in medical images. The architectures of medical
image steganalysis networks were transferred separately from eleven Dense
Convolutional Network (DenseNet), Residual Neural Network (ResNet), and
Inception-based models. The steganalysis outputs of these networks were
determined by assembling models separately for each spatial embedding
method with different payload ratios. The study demonstrated the success
of pre-trained ResNet, DenseNet, and Inception models in the cover-stego
mismatch scenario for each hiding technique with different payloads. Due to
the high detection accuracy achieved, the proposed model has the potential
to lead to the development of novel medical image steganography algorithms
that existing deep learning-based steganalysis methods cannot detect. The
experiments and the evaluations clearly proved this attempt.
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1 Introduction

Image steganography involves embedding a hidden message into a cover image, with the resulting
stego image transmitted to the receiver through a communication channel without third parties notic-
ing [1]. Although the first steganography techniques were mainly aimed at providing imperceptibility,
recent studies focus on developing models that will increase imperceptibility, capacity, and robustness
against steganalysis attacks [2,3]. Image steganalysis aims to detect the hidden data in a cover image
by performing passive or active attacks [4,5]. A passive attack is used to determine the evidence
of the hidden data in a cover image, while an active attack decrypts the steganography scheme.
In this context, the clairvoyant scenario and the cover-stego mismatch scenario are implemented
in steganalysis studies. In the case of the clairvoyant scenario, the steganalyst is assumed to know
the embedding algorithm, the payload of the hidden data, the image sizes, and the image database
employed. In addition, it is assumed that the same stego key is used in all images [6]. In the mismatch
scenario, on the other hand, there is no information at hand about the steganography scheme or the
payload of the hidden data to help decide whether an image is a cover or a stego.

Image steganalysis is a binary classification problem. Traditional steganalysis techniques solve this
problem using machine learning (ML) or statistical approaches. Earlier steganalysis studies proposed
statistical approaches to detect the hidden data embedded with the least significant bit (LSB) method.
Essentially there are three techniques to achieve this: chi-square, regular singular (RS), and sample
pair analysis (SPA). In the chi-square technique, the image is segmented, and the presence of the
message is traced based on the statistical change in the chi-square coefficients of each segmented block.
RS steganalysis analyzes the images using spatial correlation. To detect the stego-signal, the pixels in
the image are divided into three groups with reference to their neighborhood: regular, singular, and
unusable [7]. Finally, in the SPA technique, images (or blocks) are evaluated in pairs using high-order
statistical calculations to determine the length of messages embedded with LSB [8]. When RS and
SPA procedures are not optimized properly, they cannot be successful in the steganalysis of the LSB
technique, which entails random data insertion into a cover image [9].

In recent years, ML techniques have been increasingly applied in image steganalysis. ML is
comprised of two stages: feature extraction and classification. Feature analysis seeks and identifies the
special features related to the distortion caused by the steganography method. Features are obtained
by complex analyzes such as subtractive pixel adjacency matrix (SPAM), spatial-domain rich model
(SRM), and max spatial-domain rich model (maxSRM), which are high-dimensional [5,7,10]. The
second step involves classification using a decision tree, k-nearest neighbor (kNN), support vector
machines (SVM) [9], artificial neural networks (ANN) [9,11–13], or fisher linear discriminants (FLD)
[7] with an ensemble classifier and random forest. The performance of the ML classifiers is highly
dependent on the selected features. Yet, the features that are more effective remain unknown in
classification [5].

Deep learning (DL) architectures have been used recently in image steganalysis because they
perform feature analysis within convolutional blocks. In studies employing such architectures, data
at different bpp (bit per pixel) ratios were hidden into the images on the break our steganographic
system base (BOSSBase) dataset by spatial domain embedding methods such as highly undetectable
stego (HUGO), wavelet obtained weights (WOW), and spatial version of the universal wavelet relative
distortion (S-UNIWARD).
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2 Related Works

Tan et al. [14] proposed the first convolutional neural network (CNN) for image steganalysis in
2014, obtaining a 48% detection error for the HUGO approach with a 0.4 bpp payload. Qian et al. [15]
used a 5 × 5 high-pass filter (HPF) in the input layer of the CNN. HPF strengthened the low stego-
noise signal caused by data hiding in the cover image and ensured that this information was not
forgotten in the deep network. Gaussian activation function after convolution layers followed by
average pooling was also introduced in the feature extraction layers of CNN. However, these achieved
lower accuracy than that of the SRM technique. In another study [16], CNN architectures were
first trained to detect different payload rates of a data hiding method. The network weights trained
using cover images and stego images with high bpp rates were transferred downstream to the DL
architectures for the same embedding method with lower bpp rates. The obtained results showed that
transfer learning improves network performance as expected.

To capture the stego-noise signal in the feature layers of the DL architecture, subsequent studies
investigated the effects of specific layers, kernel sizes, and activation function types on steganalysis
performance. The model proposed by Xu et al. [17] calculated the absolute values of the features in the
first convolution layer and then applied the batch normalization (BN) and tangent hyperbolic (tanH)
activation functions. In the deeper convolution layers, a 1 × 1 kernel size was used to obtain the stego-
signal. The performance results obtained for the high-pass, low-pass, and low-pass (HILL) and S-
UNIWARD techniques competed with those of the SRM classifier. Ye et al. [18] adapted the HPFs set
used to calculate residual maps in the SRM classifier technique to the input layer of the CNN model.
They used the truncated linear unit (TLU) activation function to capture the stego signal in the deep
feature layers. The detection error rates of the model were relatively high compared to those achieved
with the SRM classifier technique. These studies [17,18] show that using specific building blocks to
learn the features of the stego-signal in the initial convolution layers improves the performance of
the deepening network architecture. Therefore, in later studies, it was possible to develop deeper DL
architectures using big data.

In the DL architecture [6], augmented BOSSBase and LIRMMBase datasets subjected to crop-
ping were analyzed for clairvoyant and cover-source mismatch scenarios. Qian et al. [15,16] presented
the images after HPF preprocessing to the CNN model and then used the rectified linear unit
(ReLU) activation function in the feature layers. As stated in [19], pooling layers were not used
because the down-sampling process has a denoising effect on the feature maps. In the study, the
model’s classification accuracy increased by 8% when the pooling layer was omitted. However, this
modification resulted in a higher number of trainable network parameters.

The increasing number of layers in deep models causes catastrophic forgetting. The proposed
residual neural network (ResNet) model was also used in image steganalysis to overcome this problem.
In this model, which differs from the typical CNN architecture essentially with the cascade layer
structure, residual blocks are used, and the inputs of these blocks are directly connected to their outputs
in a second way. The literature analyzed the hypothesis that residual learning can distinguish a low
stego signal from the image content. Wu et al. [20] used bottleneck and non-bottleneck building blocks
to provide learning and increase size after applying HPF to images. In the study, the detection error
decreased as the number of convolution layers increased. In another DL architecture [21], RestegNet,
connection-based sharpening and smoothing blocks enabled the stego signal detection and the feature
maps’ subsampling to decompose the stego signal, respectively. Boroumand et al. [22] designed a
residual-learning model with four different feature extraction blocks for noise detection. The first
two layers lacked residual connections and pooling, whereas the subsequent seven layers contained
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residual connections without pooling. The four layers to follow applied residual connections and
average pooling. The final layer of features consisted of a global average pooling layer. Even though
the model was primarily designed for joint photographic experts group (JPEG) steganalysis, the
spatial steganalysis performance levels of the S-UNIWARD, HILL, and WOW methods were high.
The Zhu-NET architecture proposed by Zhang et al. [23] used trainable filters with 3 × 3 kernels
instead of fixed filters in the preprocessing layer. Feature layers of the model with single residual
links had separable convolutions and spatial pyramid pooling instead of global average pooling in
the last layer. Reinel et al. [24] used depthwise and separable convolutional layers and two residual
connections in their proposed GBRAS-Net model. Another study [25] proposed the SFRNET model
with re-parameterization Visual Geometry Group architecture (RepVGG) and squeeze-and-excitation
blocks in feature extraction layers. In summary, extracting features without losing low stego-noise is
challenging, and using blocks with residual links improves performance.

The proposed CNN models for the steganalysis of spatial or JPEG embedding techniques with 0.1
and 0.2 bpp payloads did not achieve a high level of performance. To overcome this problem, transfer
learning has been utilized. Ozcan et al. [26] sequentially down-transferred the weights of the ResNet50
networks trained with cover and stego images containing hidden data with different payloads for the
HUGO and WOW methods to find that transfer learning (TFL) increased the performance of stego-
signal detection compared to conventional training. Similarly, pre-trained deep models were used for
spatial and JPEG image steganalysis to show that TFL improved performance [27]. Another way
to improve detection performance in image steganalysis is to ensemble the classifiers. Xu et al. [28]
achieved better performance than traditional SVM in steganalysis of three different JPEG hiding
techniques with the proposed ensemble model. In the MixNet model proposed by Amrutha et al. [29],
the features obtained separately from six distinct CNN architectures were concatenated. Then these
features are classified with the SVM classifier. The ensemble CNN model produced high detection
accuracy for HUGO, S-UNIWARD, and WOW methods.

The aim of the present study is to perform medical image steganalysis with pre-trained DL models,
based on the existing literature on image steganalysis. For this reason, an original dataset containing
brain magnetic resonance imaging (MRI) images were prepared for medical image steganalysis. For
the cover-source mismatch scenario, random data in the range of 1.0–0.1 bpp payloads were hidden
into the cover images using the HUGO, minimizing the power of optimal detector (MIPOD), and
S-UNIWARD embedding methods. In the deep DL architecture, the low stego-signal was amplified
by first applying HPF to the images. The architectures of medical image steganalysis networks with
payload were transferred separately from the dense convolutional network (DenseNet), ResNet,
and Inception models. The steganalysis outputs of these networks were determined by assembling
TFL models separately for each spatial embedding method with different payload ratios. The actual
performances of the networks were compared against the predicted levels using metrics such as
detection error, precision, recall, accuracy, and F1-score.

The study set out to achieve the following as contributions to the literature:

(1) Developing an ensemble-based DL framework for medical image steganalysis for the first time
in literature.

(2) Detecting whether a medical image contains hidden data that can be used for malicious
purposes in open networks.

(3) Adaptation of difficult-to-detect image steganalysis techniques to medical image steganalysis.
(4) Determining the role of pre-trained DL models to detect medical image steganalysis.
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(5) Contributing to developing new medical image steganography methods against the DL-based
steganalysis model.

3 Medical Image Steganalysis Framework

The deep ensemble model proposed for medical image steganalysis comprises three stages: pre-
processing, classification, and assembling the TFL-based CNN models, as shown in Fig. 1.

Figure 1: The flowchart of the medical image steganalysis framework

In the study, datasets containing ten different cover-stego image pairs with payloads in the 0.1–
1.0 bpp range were prepared for each HUGO, MIPOD, and S-UNIWARD embedding technique.
In addition, a base-training dataset was created by hiding 1.0 bpp payload data on cover medical
images using the LSB steganography technique. The pre-processing stage involved amplifying the
low-stego signal by applying the HPF to distinguish it from the image content, as detailed below
[15–18,30]. Secondly, TFL-based CNN models were trained separately using the prepared datasets
to detect ten different payload rates carried by three distinct embedding techniques. In the study,
feature layers of CNN architectures were transferred from eleven TFL-based models, including
three DenseNet models (DenseNet121, DenseNet169, and DenseNet201) [31], six ResNet models



4654 CMC, 2023, vol.74, no.3

(ResNet50, ResNet101, ResNet152, ResNet50V2, ResNet101V2, and ResNet152V2) [32], and two
Inception models (InceptionV3, and InceptionResNetV2) [33].

The training strategy for these pre-trained CNN models is as follows:

(1) Each model was trained separately using the LSB base training set.
(2) Next, the CNN models to classify the 1.0 bpp ratio of the three embedding methods were

trained by initializing with the weights of these pre-trained models.
(3) For each hiding method, the model weights are sequentially transferred to CNN models that

will classify different payloads starting from 1.0 bpp down to 0.1 bpp.

Finally, the classification performance of each embedding technique with a different payload was
determined by assembling the results of the eleven models using the test dataset. The obtained outputs
of all models and the real outputs were compared using the accuracy, detection error (DE), recall,
precision, correlation coefficient (R), and F1-score performance metrics.

3.1 Medical Image Dataset

In this study, axial, coronal, and sagittal slices of T1, T2, and fluid-attenuated inversion recovery
(FLAIR) weighted MRI images, which are in two different data sets, were combined for medical
image steganalysis. The first dataset contains images of 15 epilepsy patients and 15 healthy individuals
obtained from Gazi University Faculty of Medicine, Department of Neurology [1]. The second dataset
contains brain images of 30 patients with focal epilepsy obtained from the Department of Neurology
and Radiology at Cumhuriyet University [34]. The dataset combining 5961 images was divided into
training and validation sets, which contained 90% and 10% of all images, respectively. As the study
adopted a cover-stego mismatch scenario, a different dataset containing 3064 T1-weighted brain MR
images was used as a testing set [35]. The “.dcm” images of different sizes in the training and test set
were resized to 224 × 224.

S-UNIWARD, HUGO, and MIPOD techniques (http://dde.binghamton.edu/download/) were
used to prepare the stego images. These techniques cause low levels of distortion on the image and
are difficult to statistical distribution steganalysis. Ten different datasets were created for each data
hiding technique with payloads in the range 1.0 to 0.1 bpp. Fig. 2 shows cover and stego image pairs
and the difference images obtained between them. Data hiding was found to cause 1-pixel increases
or decreases in image sizes potentially. Therefore, as the amount of payload decreases, the distortion
caused by the stego signal in the images decreases, as seen in Fig. 2.

3.2 Pre-Processing Module

The input information to be presented to the network is prepared in the pre-processing image
layer. In this layer, filtering is performed using a fixed high-pass filter (KHPF) with a 5 × 5 kernel size, for
the high-frequency stego-noise added to the cover image is a weak signal that is significantly affected
by the image content. Because of the high-frequency filtering, the weak stego signal is amplified to
distinguish it from the content, resulting in an image expressed as a residual image (IR), as given in
Eq. (1) [15,16].

IR = KHPF ∗ Iinput

http://dde.binghamton.edu/download/
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Figure 2: Cover, stego, and difference images for 0.2, 0.4, and 1.0 bpp payloads, a) HUGO method, b)
MIPOD method, c) S-UNIWARD method

3.3 Transfer Learning Based Deep Learning Models

CNN is a DL method that automates feature extraction in a classification problem, unlike other
machine learning (ML) techniques. While the filters used for feature extraction in ML are obtained
manually or by optimization techniques, CNN learns its filters without any prior knowledge or human
dependency. CNN comprises multiple building blocks such as convolutional layers, pooling layers, and
fully connected layers (FCLs). Randomly initialized filter values in convolutional layers are updated
by error back-propagation. The features of the input image are learned by preserving the relationships
between the pixels. In the CNN, the feature value zl

i,j,k at the (i, j) position of the kth feature map and
the lth layer is calculated through Eq. (2) [36–39].

zl
i,j,k=wlT

k xl
i,j + bl

k (2)

where wl
k and bl

k represent the weight vector and bias vector for the kth filter and lth layer, respectively.
xl

i,j represents the input at position (i, j) in the lth layer. The feature values (zl
i,j,k) obtained by

convolution in CNN are made nonlinear
(
a

(
zl

i,j,k

))
by means of an activation function such as sigmoid,

tanh, or ReLU [36–39]. In the pooling layer, subsampling ((yl
i,j,k= pool (a (.)) is performed to reduce

the size of feature maps and the number of trainable parameters of the network.
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After the last convolution or pooling layer of feature extraction layers in the CNN, FCLs are
used to flatten the feature maps into a one-dimensional vector. Each neuron of the FCL multiplies
its inputs by a weight vector and adds a bias vector. The net information is then processed by an
activation function such as ReLU. The outputs of FCL are connected to all inputs of the subsequent
fully connected layer [36–39].

The classification layer, which is the final layer, often uses the softmax function to calculate
the probabilities of the network’s outputs. The learnable parameters of the CNN (θ = {W , B},
W : weights, B: biases) are updated iteratively using an objective function that minimizes the difference
between the actual and calculated outputs of the network, as shown in Eq. (3).

L = 1
N

∑N

n=1
l
(
θ ; y(n), o(n)

)
(3)

where y(n) and o(n) represent the nth real output and the predicted output of the CNN, respectively [39].

Deep networks designed to achieve high-performance values in medical steganalysis need to
overcome two main challenges. The first of these is to extract features without losing low stego-noise
information, and the second is the vanishing gradient problem. To overcome these problems, residual
connections have been proposed [31,32]. In traditional CNN architecture, x�, which is the output of the
lth layer, is the input of the following (� + 1) th layer. This transition between layers is expressed by the
formula x� = H� (x�−1). Nonlinear transformation H� (·) includes convolution, pooling, BN, ReLU,
etc. In the ResNet network, a transition link is added to nonlinear transformation (H� (·)) with an
identity function, which transfers the gradients between the layers, as illustrated in Eq. (4) and Fig. 3
[31,32].

x� = H� (x�−1) + x�−1 (4)

Figure 3: The representation of ResNet, DenseNet, Inception V3, and Inception ResNet blocks
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Combining the identity function and the output of H� (·) by summarizing each layer causes the
information flow problem. In DenseNet architecture, each layer is directly connected with other
subsequent layers to solve this problem [31]. The lth layer in the network with inputs x0, . . . , x�−1

receives the features of the previous layers, as shown in Eq. (5) and Fig. 3.

x� = H� ([x0, x1, . . . , x�−1]) (5)

In deep networks, the vanishing gradient problem is accompanied by the computational cost issue
as well. As a solution, inception modules, which enable parallel network extension, have been proposed
[33]. In a basic inception module, convolution with 1 × 1, 3 × 3, and 5 × 5 filter kernels and maximum
pooling are performed in parallel. Nonetheless, there is still a computational cost in this parallel
expansion. The network’s size and convergence speed were proved by adding 1 × 1 convolution layers
to the beginning of the inception modules [33]. In the Inception-ResNet model, a mix of inception
modules and residual connections is used, as shown in Fig. 3.

In the MI-STEG model proposed in this study, ResNet, DenseNet, and Inception architectures
were trained separately for three hiding techniques with each payload, and the results of the TFL-based
models for each method were assembled using an average layer.

3.4 Experiment Setup

The proposed MI-STEG model was implemented using the Tensorflow-based Keras library in
Python. Experiments were performed on a computer equipped with an NVIDIA Tesla K80 24 gigabyte
(GB) graphics processing unit (GPU), an Intel Xeon ES-2680 V4 @ 2.40 gigahertz (GHz) central
processing unit (CPU), and 128 GB random access memory (RAM). The trainable parameters of
the CNNs were optimized with the stochastic gradient descent (SGD) optimization technique. The
momentum, learning rate, and weight decay were respectively set to 0.99, 0.0001, and 0.00001. Dropout
and Ridge regression (L2) regularization were implemented to prevent the overfitting problem in
training CNNs. In addition, the weights of non-overfitting networks with the best validation accuracy
were recorded, and CNN models were tested using these weights. The training epoch and batch size
are 20 and 32, respectively. Five-fold cross-validation was used to repeat training for each CNN.

3.5 Evaluation Methods

In the study, MI-STEG’s performance in detecting hidden messages in medical images was
measured using the specificity, accuracy, DE (1-accuracy), precision, recall, F1-score, and R values.
The confusion matrix is used to evaluate the classification performance in the ML, and it calculates
true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values that indicate
true positive, false positive, true negative, and false negative, respectively. Specificity indicates the ratio
at which a classifier predicts true negative samples (Specificity = TN/(TN+FP)). The accuracy shows
the percentage of the inputs predicted correctly (Accuracy = (TP + TN)/(TP + TN + FP + FN)).

Precision indicates how many medical images in stego class are correctly predicted, as illustrated
in Eq. (6).

Precision = TP/(TP + FP) (6)

Recall shows the ratio of positives correctly categorized, as given in Eq. (7).

Recall = TP/(TP + FN) (7)
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F1-score indicates the harmonic average of precision and recall values, as represented in Eq. (8).

F1 = 2
Precision . Recall

Precision + Recall
= 2

TP
2TP + FP + FN

(8)

R calculates the relationship between the real outputs (x) and predicted outputs (y) using Eq. (9).

R =
∑

(x − x) (y − y)√∑
(x − x)

2
√∑

(y − y)
2

(9)

where x is the mean of real outputs and y is the mean of predicted outputs.

4 Results and Discussion

This section presents the performance results from the three TFL-based models and the proposed
MI-STEG model. The results were compared to previous DL-based image steganalysis studies in the
literature.

4.1 Experiment Results

Table 1 shows the performance results of the DL models used in the study, detecting the HUGO
technique with 0.2 and 0.4 bpp payloads. While all models are successful in detecting 0.4 bpp, it can
be said that deeper DL networks are more successful in detecting 0.2 bpp payload. On the other hand,
the MI-STEG model achieved the highest performance values in detecting both payloads.

Table 1: Performance results of DL models for detecting HUGO with 0.2 and 0.4 bpp payloads

DL
models

0.2 bpp 0.4 bpp

PA
a Specb Prc Red F1 PA

a Specb Prc Red F1

DenseNet121 0.955 0.955 0.958 0.955 0.955 0.999 0.999 0.999 0.999 0.999
DenseNet169 0.975 0.975 0.976 0.975 0.975 0.999 0.999 0.999 0.999 0.999
DenseNet201 0.978 0.978 0.978 0.978 0.978 1.000 1.000 1.000 1.000 1.000
InceptionResNetV3 0.959 0.959 0.959 0.959 0.959 0.996 0.996 0.996 0.996 0.996
InceptionV2 0.946 0.946 0.949 0.946 0.946 0.996 0.996 0.996 0.996 0.996
ResNet50 0.950 0.950 0.950 0.950 0.950 0.997 0.997 0.997 0.997 0.997
ResNet101 0.976 0.976 0.976 0.976 0.976 0.999 0.999 0.999 0.999 0.999
ResNet152 0.960 0.960 0.962 0.960 0.960 1.000 1.000 1.000 1.000 1.000
ResNet50V2 0.974 0.974 0.975 0.974 0.974 1.000 1.000 1.000 1.000 1.000
ResNet101V2 0.970 0.970 0.971 0.970 0.970 1.000 1.000 1.000 1.000 1.000
ResNet152V2 0.982 0.982 0.982 0.982 0.982 0.999 0.999 0.999 0.999 0.999
MI-STEG 0.991 0.991 0.991 0.991 0.991 1.000 1.000 1.000 1.000 1.000
Note: a PA: Accuracy, b Spec: Specificity, c Pr: Precision, d Re: Recall

Fig. 4 shows the detection error and R values obtained by the DL models for detecting the HUGO
method at different loads. The detection errors of the models for 0.1 and 0.2 bpp range from 0.106 to
0.193 and 0.009 to 0.054, respectively. The R values of the CNNs for 0.1 and 0.2 bpp range from 0.616
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to 0.791 and 0.895 to 0.982, respectively. As expected, as the payload increased, the steganalysis error
values of the networks decreased, and the R values approached 1. On the other hand, the MI-STEG
method stood out with the lowest error and highest R values for all payloads.

(a)

(b)

Figure 4: Performance values of DL models for the HUGO method, a) detection errors, b) R values

Table 2 shows the detection performance results of DL models for the S-UNIWARD method with
0.2 and 0.4 bpp payloads. While all models were successful in 0.4 bpp detection, ResNet architectures
achieved slightly better results in detecting 0.2 bpp payloads. The MI-STEG model led to the highest
performance values in detecting both payloads.

Table 2: Performance results of DL models for the S-UNIWARD method with 0.2 and 0.4 bpp

DL
models

0.2 bpp 0.4 bpp

PA
a Specb Prc Red F1 PA

a Specb Prc Red F1

DenseNet121 0.935 0.935 0.939 0.938 0.938 0.999 0.999 0.999 0.999 0.999
DenseNet169 0.962 0.962 0.963 0.962 0.962 0.999 0.999 0.999 0.999 0.999
DenseNet201 0.957 0.957 0.959 0.957 0.957 0.999 0.999 0.999 0.999 0.999
InceptionResNetV3 0.927 0.927 0.929 0.927 0.927 0.996 0.996 0.996 0.996 0.996
InceptionV2 0.890 0.890 0.911 0.890 0.887 0.996 0.996 0.996 0.996 0.996
ResNet50 0.931 0.931 0.932 0.931 0.931 0.998 0.998 0.998 0.998 0.998
ResNet101 0.953 0.953 0.954 0.953 0.953 0.998 0.998 0.998 0.998 0.998

(Continued)
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Table 2: Continued
DL
models

0.2 bpp 0.4 bpp

PA
a Specb Prc Red F1 PA

a Specb Prc Red F1

ResNet152 0.921 0.921 0.931 0.921 0.919 0.998 0.998 0.998 0.998 0.998
ResNet50V2 0.963 0.963 0.963 0.963 0.963 0.998 0.998 0.998 0.998 0.998
ResNet101V2 0.959 0.959 0.960 0.959 0.959 0.997 0.997 0.997 0.997 0.997
ResNet152V2 0.960 0.960 0.961 0.960 0.960 0.999 0.999 0.999 0.999 0.999
MI-STEG 0.979 0.979 0.979 0.979 0.979 0.999 0.999 0.999 0.999 0.999

Note: a PA: Accuracy, b Spec: Specificity, c Pr: Precision, d Re: Recall

Fig. 5 shows the detection error and R values obtained by the DL models for detecting the S-
UNIWARD method at various payloads. The detection error-values of the models for 0.1 and 0.2 bpp
range from 0.193 to 0.366 and 0.021 to 0.214, respectively. The R values of the models for 0.1 and 0.2
bpp range from 0.456 to 0.634 and 0.800 to 0.958, respectively. The MI-STEG method achieved the
lowest error and highest R values for all payloads.

(a)

(b)

Figure 5: Performance values of DL models for the S-UNIWARD method, a) detection errors,
b) R values
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Table 3 shows the detection performance results of DL models for the steganalysis MIPOD
method with 0.2 and 0.4 bpp payloads. All models were successful in 0.4 bpp detection. ResNet
architectures achieved slightly better results in detecting 0.2 bpp payload, while Inception models had
the worst results. The MI-STEG model achieved the highest performance values.

Table 3: Performance results of DL models for the MIPOD method with 0.2 and 0.4 bpp payloads

DL
models

0.2 bpp 0.4 bpp

PA
a Specb Prc Red F1 PA

a Specb Prc Red F1

DenseNet121 0.963 0.963 0.965 0.942 0.942 0.999 0.999 0.999 0.999 0.999
DenseNet169 0.963 0.963 0.967 0.963 0.963 1.000 1.000 1.000 1.000 1.000
DenseNet201 0.976 0.976 0.976 0.976 0.976 0.999 0.999 0.999 0.999 0.999
InceptionResNetV3 0.963 0.963 0.963 0.963 0.963 0.998 0.998 0.998 0.998 0.998
InceptionV2 0.942 0.942 0.949 0.942 0.941 0.997 0.997 0.997 0.997 0.997
ResNet50 0.945 0.945 0.948 0.945 0.945 0.999 0.999 0.999 0.999 0.999
ResNet101 0.960 0.960 0.962 0.960 0.959 0.998 0.998 0.998 0.998 0.998
ResNet152 0.969 0.969 0.970 0.969 0.969 0.999 0.999 0.999 0.999 0.999
ResNet50V2 0.979 0.979 0.979 0.979 0.979 0.998 0.998 0.998 0.998 0.998
ResNet101V2 0.979 0.979 0.979 0.979 0.979 0.999 0.999 0.999 0.999 0.999
ResNet152V2 0.980 0.980 0.980 0.980 0.980 0.999 0.999 0.999 0.999 0.999
MI-STEG 0.991 0.991 0.991 0.991 0.991 1.000 1.000 1.000 1.000 1.000
Note: a PA: Accuracy, b Spec: Specificity, c Pr: Precision, d Re: Recall

Fig. 6 presents the detection error and R values obtained by the DL models for detecting the
MIPOD method at different payloads. The error values of the models for 0.1 and 0.2 bpp are in the
0.111 to 0.199 and 0.009 to 0.169 ranges, respectively. The R values of the models for 0.1 and 0.2
bpp range from 0.614 to 0.779 and 0.890 to 0.981, respectively. The MI-STEG method achieved the
lowest error and highest R values for all payloads. These results clearly show that the study is highly
innovative in the field of medical image steganography.

4.2 Literature Comparison and Discussion

The literature is rich in studies on medical image steganography. However, studies focusing
specifically on medical image steganalysis are rather rare. Ozcan et al. [40] developed an SVM classifier
for the steganalysis of the hidden message in radiological images using the sequential LSB method.
The inputs for SVM classification are obtained using the discrete cosine transform (DCT) proposed
by Liu [41] and include 216 features. Although the study’s accuracy rate is 0.993, the feature extraction
is quite costly. In another study [2], a CNN model with four convolution layers was developed for
the steganalysis of the sequential LSB technique. The model’s accuracy was found to be 0.964. Even
though these previous studies [2,40] have shown that medical image steganalysis can be performed
with ML techniques, steganalysis based on the sequential LSB method is not compelling. In addition,
as these studies employed the clairvoyant scenario, the images in the training and test datasets were
produced on the same MR device. In contrast, the BOSSBase dataset used for image steganalysis
includes images captured by seven different cameras.



4662 CMC, 2023, vol.74, no.3

(a)

(b)

Figure 6: Performance values of DL models for the MIPOD method, a) detection errors, b) R values

The present study analyzed the LSB algorithm with a 1.0 bpp payload to create a base pre-
trained model for the CNN models. All models detected the LSB method with 100% accuracy. In my
previous work [10], the WOW technique, which is a difficult method of steganalysis, was adapted to
medical images. The steganalysis performance levels of the Inception and Efficient models other than
DenseNet, and ResNet, were examined. It was found that weight transfer between DL models for
steganalysis with different payloads improved the detection accuracy. The DenseNet model’s partially
maximum accuracy values for 0.2 and 0.4 bpp payloads were 0.876 and 0.992, respectively. However,
the steganalysis performances of the TFL-based DL models were very close, except for the Efficient
model. For this reason, this study evaluated the steganalysis of three distinct spatial embedding
techniques with different payloads with an ensemble model combining eleven CNNs, leading to high-
performance values for all three methods, as shown in Table 4.

Table 5 shows the performance values of the MI-STEG and the deep CNN models suggested for
the steganalysis of the S-UNIWARD method with 0.2 and 0.4 bpp payloads. These CNN models used
the BOSSBase dataset for training and testing CNNs [21–24,29]. Although the same data sets are
not used, the results given in Table 5 clearly show the steganalysis success of models using residual
connections. In addition, an ensemble of the features of CNN models improved the steganalysis
performance [29]. In this study, ResNet, DenseNet, and Inception models with residual connections
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were used. The results of these models were combined into an ensemble model to ensure that low-
level stego noise is separated from the image content in deep layers. The model developed here is
highly successful in medical image steganalysis with different payloads. However, while it is generally
challenging to detect payloads below 0.4 bpp in image steganalysis, it appears particularly difficult to
detect a 0.1 bpp payload in medical image steganalysis.

Table 4: Performance results of MI-STEG for detecting HUGO, S-UNIWARD, and MIPOD methods
with different payloads

Payload
(bpp)

HUGO S-UNIWARD MIPOD

PA∗ R F1 PA∗ R F1 PA∗ R F1

0.1 0.894 0.791 0.894 0.807 0.634 0.804 0.889 0.779 0.889
0.2 0.991 0.982 0.991 0.979 0.958 0.979 0.991 0.981 0.991
0.3 0.999 0.999 0.999 0.999 0.997 0.999 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.999 0.998 0.999 1.000 1.000 1.000
Note: ∗ PA = Accuracy

Table 5: Performance results of MI-STEG and deep CNN models with residual connections for
detecting S-UNIWARD methods with different payloads

CNN model 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp

RestegNet [21] 0.557 0.659 0.739 0.793
SRNET [22] - 0.674 - 0.816
Zhu-NET [23] - 0.715 - 0.847
SFRNET [25] - 0.725 - 0.896
GBRAS-Net [24] - 0.736 - 0.871
Mix-Net [29] 0.640 0.710 0.804 0.863
MI-STEG 0.807 0.979 0.999 0.999

5 Conclusion

In light of previous studies on image steganalysis, this study establishes the limits of medical image
steganalysis for the first time. In recent years, low stego noise in images has been detected using
DL models, avoiding the costly feature analysis required by ML techniques for image steganalysis.
In the literature, deep networks and ensemble models with residual links are recommended for the
steganalysis problem. Against this background, this study proposes an ensemble CNN model, MI-
STEG, which combines TFL-based ResNet, DenseNet, and Inception models for medical image
steganalysis. A dataset comprised of axial, coronal, and sagittal slices of T1, T2, and FLAIR-
weighted brain MR images obtained from three different centers were developed for the experiments.
Doing so introduced a range of diversity of images, which were taken by seven distinct cameras at
different angles and light settings as included in the BOSSBase dataset of medical images. Since the
cover-stego mismatch scenario was adopted in the study, pre-trained models were evaluated using a
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different MR dataset. The proposed MI-STEG model detected HUGO, S-UNIWARD, and MIPOD
embedding techniques with high accuracy, for each payload between 1.0 and 0.1 bpp. In this context,
it was demonstrated that data maliciously hidden in medical images could be detected with DL
models. Additionally, these DL models can contribute to developing new medical image steganography
techniques.
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