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Abstract: Osteosarcoma is one of the rare bone cancers that affect the indi-
viduals aged between 10 and 30 and it incurs high death rate. Early diagnosis
of osteosarcoma is essential to improve the survivability rate and treatment
protocols. Traditional physical examination procedure is not only a time-
consuming process, but it also primarily relies upon the expert’s knowledge.
In this background, the recently developed Deep Learning (DL) models can
be applied to perform decision making. At the same time, hyperparameter
optimization of DL models also plays an important role in influencing overall
classification performance. The current study introduces a novel Symbiotic
Organisms Search with Deep Learning-driven Osteosarcoma Detection and
Classification (SOSDL-ODC) model. The presented SOSDL-ODC technique
primarily focuses on recognition and classification of osteosarcoma using
histopathological images. In order to achieve this, the presented SOSDL-ODC
technique initially applies image pre-processing approach to enhance the qual-
ity of image. Also, MobileNetv2 model is applied to generate a suitable group
of feature vectors whereas hyperparameter tuning of MobileNetv2 model
is performed using SOS algorithm. At last, Gated Recurrent Unit (GRU)
technique is applied as a classification model to determine proper class labels.
In order to validate the enhanced osteosarcoma classification performance of
the proposed SOSDL-ODC technique, a comprehensive comparative analysis
was conducted. The obtained outcomes confirmed the betterment of SOSDL-
ODC approach than the existing approaches as the former achieved a maxi-
mum accuracy of 97.73%.
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1 Introduction

Osteosarcoma or Osteogenic Sarcoma is a type of bone cancer that commonly starts developing
from long bones of arms and legs [1]. Though its growth can be observed in any of the bone cells within
bones, it rarely affects the soft tissues adjacent to bones. Though it has been prevalently diagnosed
among teenage or young people, it also affects other age categories. Multiple reasons are cited behind
the occurrence of osteosarcoma. Alike other cancer types, it occurs due to genetic disorder and is not
mostly connected to familial traits [2]. However, in one of the studies conducted earlier, osteosarcoma
was found to have association with familial retinoblastoma cases i.e., family history is concerned with
adolescent cancer in eye [3]. The symptoms of osteosarcoma disease include aches from the affected
bone in the beginning while as time goes by, the low level of pain occurs and the patient’s agony
increases. Bone fracture is another important symptom since the affected bones become weak owing
to infection and lose its strength [4]. Magnetic Resonance Imaging (MRI), X-rays and histological
biopsy test are necessary for diagnosis of osteosarcoma. In recent times, the prognosis of osteosarcoma
demands a comprehensive history of the patient and their physical checks [5]. The common indications
include constant gnawing pain and swelling at the site of infection, deep-seated, etc., ache in many parts
which might portend skeletal metastasis; thus, these symptoms must be properly examined [6].

Earlier, the histopathological images are scrutinized physically or through image processing
technologies to find the clusters of nuclei, osteoblasts, development plates, fibrous tissue, blood vessels,
nuclei sizes, calcified bone sections, adipocytes, cartilage, marrow cells and osteoid. This is not only
a time-consuming process, but also tend to err [7]. At present, advanced Artificial Intelligence (AI)
techniques can be applied for cancer cell recognition using simple datasets. The features can be
identified automatically within a limited period of time. Additionally, the utilization of AI offers good
support for patients as well as doctors by prognosing the symptoms [8]. Besides, the utilization of AI
in histopathology domain helps in achieving superior prognosis, categorization, and identification
of distinct forms of cancer [9]. At present, Computer-Aided Detection (CAD) algorithms have
been developed by researchers to diagnose osteosarcoma through medical images. These techniques
particularly make use of Computed Tomography (CT) and MRI scan images. But the outcomes from
such systems are confined owing to constraints found in CT and MRI scans [10].

The authors in the literature [11] executed a pipeline for automatic segmentation of Region of
Interest (ROI). In this study, a nomogram was utilized combining MRI-based radiomics’ score and
medicinal variables so as to predict the responses for Neo-Adjuvant Chemotherapy (NAC) among
osteosarcoma patients. After normalization, ROIs is segmented by DL segmentation method to
preoperative MRI and is trained with nnU-Net using two independent manual segmentation labels.
Radiomics feature is employed to automatically extract the segmented ROIs. In literature [12], the
authors presented an automatic recognition model named Integrated Features-Feature Selection
Model for Classification (IF-FSM-C) which diagnoses osteosarcoma in high-resolution Whole Slide
Images (WSIs). In order to perform FS, two binary variations were used for the newly-presented
Arithmetic Optimization Algorithm (AOA) such as BAOA-S and BAOA-V. The chosen features were
then provided for classification during when the WSI is classified as Non-Tumor (NT), Viable Tumor
(VT), and Non-Viable Tumor (NVT).

In literature [13], a new and more important structure W-net++ was presented based on two
cascaded U-Nets and dense skip links so as to realize automatic and correct segmentation of
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osteosarcoma lesion from CT scan image. In this network, multiscale input was used to structure the
missing spatial details, due to several encoders and encoding subsamples. In the study conducted earlier
[14], Transfer Learning (TL) approaches like pre-trained Convolutional Neural Network (CNN)
were altered in public data set on osteosarcoma histological image to detect the necrotic image in
non-necrotic and healthy tissues. At that time, TL techniques that contain Visual Geometry Group
(VGG19) and Inception V3 were utilized and trained on WSIs without patches so as to enhance the
accuracy of output. The authors in literature [15] presented CNN as a tool to enhance the efficacy and
precision of osteosarcoma tumor classification under tumor classes (VT, necrosis) and non-tumor
classes.

The current study introduces a novel Symbiotic Organisms Search with Deep Learning-driven
Osteosarcoma Detection and Classification (SOSDL-ODC) model. The presented SOSDL-ODC
technique applies image pre-processing approach to enhance the quality of image. In addition,
MobileNetv2 model is applied to generate a suitable group of feature vectors and the hyperparameter
tuning of MobileNetv2 model is performed using SOS algorithm. At last, Gated Recurrent Unit
(GRU) technique is applied as a classification model to determine suitable class labels. In order
to validate the enhanced osteosarcoma classification performance of the proposed SOSDL-ODC
technique, the authors conducted a comprehensive comparative analysis and the results were validated.

2 Materials and Methods

In this work, a new SOSDL-ODC approach has been developed for recognition and classification
of osteosarcoma using histopathological images. The presented SOSDL-ODC system initially applies
image pre-processing approach to enhance the quality of image. After image pre-processing, SOS-
MobileNetv2 model is applied to generate a suitable group of feature vectors. Finally, GRU method
is applied as a classification model to determine the appropriate class labels. Fig. 1 depicts the overall
block diagram of SOSDL-ODC technique.

Figure 1: Block diagram of SOSDL-ODC technique
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2.1 Image Pre-processing

The presented SOSDL-ODC technique initially applies image pre-processing approach to enhance
the quality of image. Wiener Filter (WF) is utilized in this study to filter noisy signals. This is achieved
by employing the spectral feature of the chosen signals whereas the noise present in the signals is
assumed to undergo stochastic procedures with linear properties.

Linear filter is executed with a co-efficient WK on the evaluated signals. An input signal, x(n)

contains noises as follows v(n),

x(n) = d(n) + v(n) (1)

The resultant signal y(n) is a close evaluation of (n). Therefore, the error signal e(n) is lesser. The
adaptive method attempts at correcting the weighted WK , and so the Mean Square Error (MSE) value
is minimized.

e = min(E(e (n)
2
)) (2)

whereas,

e (n) = y (n) − d(n) (3)

A k tap discrete WF utilizes the subsequent formula to determine the value of y (n)

y (n) =
N−1∑
k=0

Wk(d (n − k) ∗ v(n − k)) (4)

Wiener-Hopf formula that computes the optimum weight is one of the important features of WFs.

Ep−ι

l=0Wolrxx (k − 1) = rxd(−l) (5)

Here, W00, W01, · · · · · · · ·, Wop−1 denotes the optimal value of tap weighted filters and rxx signifies
the autocorrelation function of x(n) and rxd denotes the cross correlation function between x(n) and
d(n).

2.2 Feature Extraction: MobileNetv2 Model

After image pre-processing, MobileNetv2 technique is leveraged to generate a suitable set of
feature vectors [16]. MobileNetV1 is developed based on conventional VGG structure and is used
to construct a system by stacking the convolutional layers so as to enhance the performance. But,
gradient vanishing problem arises after stacking multiple convolution layers. The residual blocks
present in ResNet make it easy for the dataset to stream among the layers. This process gets rid
of the gradient exploring problems in backpropagation while the features are reused in forwarding
propagation. In addition to continuing with in-depth separable convolutional layers of MobileNetV1,
the MobileNetV2 technique draws on ResNet architecture too. In comparison with MobileNetV1, the
major development found in MobileNetV2 is that it comprises of two points such as the accomplish-
ment of inverted residual block and linear bottleneck in the networks. A certain conceptual framework
feature is attained from the expansion factor t in N to M networks with stride, s. This bottleneck
includes a 1 × 1 convolutional layer before depth-wise convolution layers and employs linear activation
instead of non-linear activation after point-wise convolution layers. Further, it determines the down-
sampling process by setting the variable, ‘s’ in depth-wise convolution layers.

In the entire architecture of MobileNetV2, conv2d refers to a typical convolution, avgpool
indicates the average pooling, c represents the amount of output networks and ‘n’ indicates the
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recurrent time. On the whole, the network comprises of 19 layers whereas the middle layer is used
for the extraction of features. Further, the final layer is utilized for classification. According to
transfer learning model, the current study initially employed ‘MobileNetV2 pre-trained model’, using
ImageNet, as a feature extractor and trained two layers which are later fine-tuned with a few layers
rather than each trainable layer.

2.3 Hyperparameter Optimization: SOS Algorithm

In this work, the hyperparameter involved [17–19] in MobileNetv2 model are fine-tuned using SOS
algorithm [20]. Being an advanced method, SOS algorithm is used to resolve the optimization problems
according to the interaction among organisms in nature. In general, organisms hardly live in isolation
because each organism is dependent upon another for both survival and nutrition. These relationships
mainly exist on the basis of trust. In other terms, this relationship is called symbiotic relationship.
SOS approach initiates in the presence of ecosystem with initial population. At first, a collection
of organisms is arbitrarily created. These arbitrarily-created organisms denote the solution for the
presented problem. SOS approach yields a novel solution based on stimulation of living relations
between two ecosystems. The pseudocode of the SOS algorithm includes parasitism, mutualism, and
commensalism of natural biological relations.

Mutualism

In this type of relationship, both the organisms benefit from each other. For instance, assume the
relationship between honeybees and flowers. The bees fly over flowers to collect the nectar needed for
honey production. On the other hand, it is advantageous for the flowers since bees smatter the pollen
and simplify the pollination process. During SOS process, Xi indicates the organism which is equivalent
to i-th individual. The Xj second organism is chosen arbitrarily and related to Xi. In conclusion, Xi
and Xj are upgraded in Mutualism stage as follows:

Xinew = Xi + rand(0, 1) × (Xbest − Mutua1−Vector × BF1) (6)

Xjnew = Xj + rand(0, 1) × (Xbest − Mutua1−Vector × BF2) (7)

Mutua1−Vector = (Xi + Xj)/2 (8)

In the above equation, rand(0, 1) denotes an arbitrary number of vectors. BF1 and BF2 indicate the
profit factors of Xi and Xj that demonstrate the profit of every organism. In Eq. (6), Mutual_Vector
characterizes the relationships between Xi and Xj. The Mutual_Vector∗BF2 in Eqs. (6) and (7) is the
effort taken to increase the survival rate of living organisms. As per Darwinian concept, i.e., survival of
the fittest, each organism has to rise its compatibility with its surroundings. Now, Xbest characterizes
the maximum phase of compatibility.

Commensalism

Here, one of the organisms gains benefits without harming the other organism in the relationship.
For instance, in the relationship between sharks and sticky fish, the sticky fish sticks around the shark
and feed on residual foods; the shark gains small or no benefits. In this Mutualism process, the Xj
organism is arbitrarily chosen and is related to Xi. Here, Xi strives to obtain the benefits while Xj gets
no benefits or losses. Therefore, Xi is upgraded as follows.

Xinew = Xi + rand(−1, 1) × (Xbest − Xj) (9)

In Eq. (9), Xbest − Xj indicates the benefit given when using Xj for increased survival of Xi.
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Parasitism

In this relationship type, one organism gains the benefit out of the other organism while the
second one faces loss. For instance, malarial blood parasites attack the human body and proliferate
which, at times, cause death also. In SOS process, Xi, viz., malaria mosquito generates an artificial
parasite named ‘Parasite-Vector’. It is generated in the searching region with the replication of Xi.
Here, Xj is arbitrarily chosen using the ecosystem and the parasite serves as its host. Parasite-Vector
tries to capture the position of Xj in the ecosystem. Both Xi and Xj are estimated to determine the
capability. Once parasite-vector demolishes Xj and takes its position in the ecosystem, it accomplishes
the maximum capability. The maximum capability for Xj can be accomplished once it resists the
parasite, and the parasite cannot live further in the ecosystem.

Algorithm 1: Pseudocode of SOS
Initialized (primary ecosystem, set ecosystem size, and maximal iteration)
For counter-l to maximal iteration

For all the organisms from the ecosystem
Mutualism stage based on Eqs. (6) and (7)
Commensalism stage based on Eq. (9)
Parasitism stage
Upgrade an optimum organism

End For
End For

2.4 Image Classification: GRU Model

In this final stage, GRU technique is executed as a classification model to determine suitable
class labels [21]. GRU is an efficient memory cell that can be used for different kinds of applications.
It is viewed as an improvement of Long Short Term Memory (LSTM) and its performance can be
compared and generalized. In order to define a GRU evidently, the researchers proposed LSTM. In
Recurrent Neural Network (RNN), hidden unit is a major element since it is accountable for forgetting
or remembering certain datasets. LSTM, presented by Hochreiter and Schmidhuber, is an effective
enforcement and has several alternatives to its credit. The connection relationship is shown in the
following equation.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ft = σ
(
Wxf xt + Whf ht−1 + Wcf Ct−1

)
it = σ (Wxixt + Whiht−1 + WciCt−1)

Ct = ft � Ct−1 + it � tanh (Wxcxt + Whcht−1)

ot = σ (Wxoxt + Whoht−1 + WcoCt−1)

ht = ot � tanh (Ct)

(10)

In this formula, C represents the cell state, x indicates the input vector and h denotes the resultant
vector. Here, t characterizes the existing time and t − 1 indicates the final time. σ indicates a sigmoid
function, � implies Hadamard product and W embodies an uncertain variable. f signifies the forget
gate that decides what data needs to be removed from the cell state. i denotes the input gate that decides
which dataset needs to be saved in the cell states. o indicates the output gate which decides the dataset
that should be given to output. In contrast to LSTM, GRU involves certain simplification processes.
The connection relationship is demonstrated herewith.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rt = σ (Wrxt + Urht−1)

zt = σ (Wzxt + Uzht−1)

h̃t = tanh (Whxt + U (rt � ht−1))

ht = (1 − zt) ht−1 + zth̃t

(11)

From the equation given below, h symbolizes the output vector, h̃ represents the candidate output
and x indicates the input vector. Here, z represents the update gate and r denotes the reset gate of
GRU. Hence, GRU is simple when compared to LSTM and has fewer parameters. However, it provide
great benefits in terms of convergence and performance. GRU yielded high benefits in the experiments.
Fig. 2 illustrates the infrastructure of GRU method.

Figure 2: Structure of GRU

3 Results and Discussion

The performance of the proposed SOSDL-ODC method was validated using a dataset [22] that
comprises of 1,144 images under three classes. Table 1 shows the details of the dataset considered for
the study. Some of the sample images are illustrated in Fig. 3.

Table 1: Dataset details

Class name No. of images

Viable tumor (VT) 345
Non-viable tumor (NVT) 263
Non-tumor (NT) 536
Total 1144

Fig. 4 displays a set of confusion matrices generated by the proposed SOSDL-ODC method on the
applied dataset under distinct number of epochs. The figures imply that the proposed SOSDL-ODC
method achieved high performance under every epoch. For samples, with 200 epochs, the proposed
SOSDL-ODC method classified 310 samples under VT, 241 samples under NVT, and 513 samples
under NT class. Along with that, with 400 epochs, the proposed SOSDL-ODC approach categorized
313 samples under VT, 241 samples under NVT, and 512 samples under NT classes. Followed by, with
600 epochs, SOSDL-ODC algorithm identified 327 samples under VT, 252 samples under NVT, and
525 samples under NT classes. In line with this, with 800 epochs, the proposed SOSDL-ODC system
identified 327 samples under VT, 252 samples under NVT, and 526 samples under NT classes.
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Figure 3: Sample images

Figure 4: (Continued)
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Figure 4: Confusion matrices generated by SOSDL-ODC technique at (a) epoch-200, (b) epoch-400,
(c) epoch-600, and (d) epoch-800

Table 2 and Fig. 5 shows the analysis results accomplished by SOSDL-ODC method under
distinct number of classes and epochs. The experimental outcomes imply that the proposed SOSDL-
ODC method has the ability to attain effectual outcomes under all classes and epochs. For sample,
with 200 epochs, SOSDL-ODC methodology gained average accuy, precn, recal, Fscore, and MCC values
such as 95.34%, 92.71%, 92.40%, 92.55%, and 88.93% respectively. Eventually, with 400 epochs, the
proposed SOSDL-ODC system reached average accuy, precn, recal, Fscore, and MCC values such as
95.45%, 92.96%, 92.63%, 92.79%, and 89.25% correspondingly. Meanwhile, with 600 epochs, the
presented SOSDL-ODC methodology gained average accuy, precn, recal, Fscore, and MCC values such as
97.67%, 96.32%, 96.18%, 96.25%, and 94.45% correspondingly. At last, with 800 epochs, the proposed
SOSDL-ODC system reached average accuy, precn, recal, Fscore, and MCC values such as 97.73%,
96.42%, 96.24%, 96.33%, and 94.58% correspondingly.

Table 2: Results of the analysis of SOSDL-ODC technique under different measures and epochs

Measures Class name Epoch-200 Epoch-400 Epoch-600 Epoch-800

Accuracy Viable tumor 94.76 94.84 97.38 97.47
Non-viable tumor 96.15 96.42 97.99 97.99
Non-tumor 95.10 95.10 97.64 97.73
Average 95.34 95.45 97.67 97.73

Precision Viable tumor 92.54 92.06 96.46 96.75
Non-viable tumor 91.63 92.69 95.45 95.45
Non-tumor 93.96 94.12 97.04 97.05
Average 92.71 92.96 96.32 96.42

(Continued)
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Table 2: Continued
Measures Class name Epoch-200 Epoch-400 Epoch-600 Epoch-800

Recall Viable tumor 89.86 90.72 94.78 94.78
Non-viable tumor 91.63 91.63 95.82 95.82
Non-tumor 95.71 95.52 97.95 98.13
Average 92.40 92.63 96.18 96.24

F-Score Viable tumor 91.18 91.39 95.61 95.75
Non-viable tumor 91.63 92.16 95.64 95.64
Non-tumor 94.82 94.81 97.49 97.59
Average 92.55 92.79 96.25 96.33

MCC Viable tumor 87.47 87.71 93.75 93.96
Non-viable tumor 89.14 89.84 94.33 94.33
Non-tumor 90.20 90.19 95.27 95.44
Average 88.93 89.25 94.45 94.58

Figure 5: Average analysis results of SOSDL-ODC technique at (a) epoch-200, (b) epoch-400,
(c) epoch-600, and (d) epoch-800
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Both Training Accuracy (TA) and Validation Accuracy (VA) values, attained by the proposed
SOSDL-ODC approach on test dataset, are demonstrated in Fig. 6. The experimental outcomes imply
that the proposed SOSDL-ODC method gained the maximum TA and vA values. To be specific, VA
is superior to TA.

Figure 6: TA and VA analyses results of SOSDL-ODC technique

Both Training Loss (TL) and Validation Loss (VL) values, achieved by SOSDL-ODC methodol-
ogy on test dataset, are shown in Fig. 7. The experimental outcomes infer that the proposed SOSDL-
ODC system achieved the least TL and VL values. To be specific, VL seemed to be lower than TL.

Figure 7: TL and VL analyses results of SOSDL-ODC technique
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A brief precision-recall inspection was conducted upon SOSDL-ODC method on test dataset and
the results are depicted in Fig. 8. By observing the figure, it can be inferred that the proposed SOSDL-
ODC model accomplished high precision-recall performance under all the classes.

Figure 8: Precision-recall curve analysis results of SOSDL-ODC technique

A detailed ROC investigation was conducted upon SOSDL-ODC approach on test dataset and
the results are showcased in Fig. 9. The results indicate that the proposed SOSDL-ODC algorithm
exhibited its ability to categorize three different classes such as VT, NVT, and NT on test dataset. In
order to validate the enhanced performance of SOSDL-ODC method, a detailed comparative analysis
was conducted and the results are shown in Table 3 [23,24].

Figure 9: ROC curve analysis results of SOSDL-ODC technique
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Table 3: Comparative analysis results of SOSDL-ODC technique and other existing methodologies

Methods Precision Recall Accuracy

VGG16 79.19 74.48 80.90
LeNet 74.62 67.59 68.55
ReseNt50 77.98 79.36 76.52
AlexNet 81.30 75.18 73.93
Sequential RNN 89.08 90.49 88.77
Non-regularized CNN 88.67 92.55 90.45
Regularized CNN 90.53 93.99 91.52
SOSDL-ODC 96.42 96.24 97.73

A detailed precn analysis was conducted between SOSDL-ODC method and other existing models
and the results are shown in Fig. 10. The figure highlights that VGG16, LeNet, and ReseNt50 models
achieved the least precn values such as 79.19%, 74.62%, and 77.98% respectively. On the other hand,
AlexNet model attempted to achieve an increased precn value of 81.30%. Though Sequential RNN,
Non-regularized CNN, and Regularized CNN models accomplished enhanced precn values such as
89.08%, 88.67%, and 90.53%, the presented SOSDL-ODC method gained the maximal precn value of
96.42%.

Figure 10: Precn analysis results of SOSDL-ODC technique and other recent methodologies

A brief recal analysis was conducted between the proposed SOSDL-ODC method and other
existing algorithms and the results are portrayed in Fig. 11. The figure reveals that VGG16, LeNet, and
ReseNt50 methods achieved the least recal values such as 74.48%, 67.59%, and 79.36% correspond-
ingly. Also, AlexNet model attempted to demonstrate an enhanced recal value of 75.18%. Eventually,
Sequential RNN, Non-regularized CNN, and Regularized CNN techniques accomplished enhanced
recal values such as 90.49%, 92.55%, and 93.99%. However, the presented SOSDL-ODC method
achieved the maximum recal value of 96.24%.
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Figure 11: Recal analysis results of SOSDL-ODC technique and other recent methodologies

A detailed accuy analysis was conducted between SOSDL-ODC method and other existing models
and the results are shown in Fig. 12. The figure infers that VGG16, LeNet, and ReseNt50 algorithms
achieved the least accuy values such as 80.90%, 68.55%, and 76.52% correspondingly. Followed by,
AlexNet model tried to achieve a superior accuy value of 73.93%. Further, Sequential RNN, Non-
regularized CNN, and Regularized CNN approaches accomplished high accuy values such as 88.77%,
90.45%, and 91.52%. However, the projected SOSDL-ODC method gained the maximum accuy of
97.73%. Based on the discussions made in the above mentioned tables and figures, it is evident that
the proposed SOSDL-ODC method is superior to other existing models.

Figure 12: Accuy analysis of SOSDL-ODC technique and other recent methodologies

4 Conclusion

In this work, a new SOSDL-ODC approach has been developed for recognition and classification
of osteosarcoma with the help of histopathological images. The presented SOSDL-ODC approach
initially applies pre-processing technique to enhance the quality of images. Then, MobileNetv2 model
is applied to generate a suitable group of feature vectors and hyperparameter tuning of MobileNetv2
model is performed using SOS algorithm. Lastly, GRU technique is applied as a classification model
to determine the suitable class labels. In order to validate the enhanced osteosarcoma classification
performance of the proposed SOSDL-ODC technique, a comprehensive comparative study was
conducted. The obtained outcomes established the supremacy of the proposed OSDL-ODC algorithm
over other existing approaches. In future, an ensemble of DL-based models can be developed to
significantly boost the classification results of SOSDL-ODC model.
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