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Abstract: Recently, semantic segmentation has been widely applied to
image processing, scene understanding, and many others. Especially, in
deep learning-based semantic segmentation, the U-Net with convolutional
encoder-decoder architecture is a representative model which is proposed for
image segmentation in the biomedical field. It used max pooling operation
for reducing the size of image and making noise robust. However, instead of
reducing the complexity of the model, max pooling has the disadvantage
of omitting some information about the image in reducing it. So, this
paper used two diagonal elements of down-sampling operation instead of
it. We think that the down-sampling feature maps have more information
intrinsically than max pooling feature maps because of keeping the Nyquist
theorem and extracting the latent information from them. In addition,
this paper used two other diagonal elements for the skip connection. In
decoding, we used Subpixel Convolution rather than transposed convolution
to efficiently decode the encoded feature maps. Including all the ideas, this
paper proposed the new encoder-decoder model called Down-Sampling and
Subpixel Convolution U-Net (DSSC-UNet). To prove the better performance
of the proposed model, this paper measured the performance of the U-
Net and DSSC-UNet on the Cityscapes. As a result, DSSC-UNet achieved
89.6% Mean Intersection Over Union (Mean-IoU) and U-Net achieved 85.6%
Mean-IoU, confirming that DSSC-UNet achieved better performance.

Keywords: Semantic segmentation; encoder-decoder; U-Net; DSSC-UNet;
subpixel convolution; down-sampling

1 Introduction

Recently, as artificial intelligence research has been actively conducted, it is used in many
fields from autonomous driving, medical image, robot vision, and video surveillance. Among them,
segmentation becomes the main problem and assorted studies about it are being conducted. The
problem of image segmentation can be classified by methods and goals. According to methods, there
are 10 categories based on the model architectures. These are fully convolutional networks (FCN),
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Convolutional models with graphical models, Encoder-decoder based models, etc . . . [1]. According
to goals, there are semantic, instance, and panoptic segmentation.

The goal of our research is semantic segmentation. It is a high-level problem that requires a
complete understanding of the scene, not just looking at and classifying images. The purpose of
semantic segmentation classifies all pixels of the input image into the corresponding class. In other
words, pixel-level labeling is performed on all image pixels by using a series of object categories
such as people, car, sky, tree, etc. The important problems in semantic segmentation are recognition
of small objects, maintenance of detailed context of images, and localization of objects in images
[1]. They are all related to segmentation performance. Several methods have been studied to solve
these problems. In the convolution network (CNN) with the graphical model, Conditional Random
Fields (CRFs) utilizes more context to solve the localization. It explored the “patch-patch” context
(between image regions) and “patch-background” [2]. As a result, their model localizes segment
boundaries more accurately. In the encoder-decoder based models, High-Resolution Net (HRNet)
solves the loss of fine-grained image information [3]. This loss occurs through the encoding process.
Encoder-Decoder models recover the high-resolution representations. However, HRNet maintains
high-resolution representations by connecting the high-to-low convolutions streams in parallel and
exchanging the information repeatedly between resolutions. As a result, it improves segmentation
accuracy and is used as a backbone in recent models. In the multiscale and pyramid network-based
model, Pyramid Scene Parsing Network (PSPN) utilizes the global context representation of a scene
[4]. This means it captures both local and global context information of feature maps. It extracts the
multiple patterns using a residual network (ResNet), with a dilated network. PSPN can improve the
segmentation of small objects in a scene. And its idea, multiscale, is used in recent models such as
DeepLabv3.

Early semantic segmentation studies applied deep neural networks often used for classification,
such as AlexNet [5], VGGNet [6], and GoogLeNet [7] to the segmentation [8]. After that research, deep
learning-based technology has developed rapidly in semantic segmentation [1]. Particularly, the deep
learning-based semantic segmentation methods using Convolutional Neural Networks (CNN) are
being studied. Representative methods are Fully Convolutional Networks (FCN) [8], U-Net [9], and
SegNet [10]. However, these methods had several shortcomings [1]. In FCN, it is too computationally
expensive for real-time inference. And it is hard to account for global context information efficiently
and generalize it to 3D images. In U-Net, it lacks context information extracted from the encoder,
resulting in incorrect or unsuccessful segmentation of the object. In SegNet, it has a limitation
in that small objects in the image are not well classified. Motivated by these problems, we think
we can minimize the loss that can occur when training detailed information on images that affect
semantic segmentation and improve segmentation performance by using more context for training.
Additionally, we think parameter-free subpixel convolution can reduce training time when it applies
to the decoder.

In this paper, it proposed a new encoder-decoder based network to solve these problems: Down-
Sampling and Subpixel Convolution U-Net (DSSC-UNet). It is based on U-Net, which used down-
sampling instead of pooling operation with context loss. Also, it used the subpixel convolution, which
was proposed by Efficient Sub-Pixel Convolutional Neural Network (ESPCN), instead of transposed
convolution during image expansion. We think that feature maps of the down-sampling have more
information than max pooling because of keeping the Nyquist theorem and extracting the latent
information. The Nyquist theorem is that a signal can be restored to its original signal by sampling it
at regular intervals, twice the frequency of the highest frequency contained in that signal. Based on this
idea, this paper used two down-sampling maps of each feature for making noise robust. In addition,
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it also used two other diagonal elements for the skip connection. That is, our proposed method aims
to minimize the loss of information and make noise robust to perform semantic segmentation with as
much latent information as possible to increase segmentation accuracy.

This paper conducted experiments for comparing the performance of the base method (U-Net)
and DSSC-UNet. The experiments were conducted 15 times using the cityscapes dataset. As a result
of it, DSSC-UNet showed an increase in segmentation performance by about 4% compared to U-Net.
The test result shows significant differences.

2 Related Work
2.1 Fully Convolution Network (FCN)

Fully convolution network (FCN) is a modified version of the CNN-based models (AlexNet,
VGGNet, GoogLeNet) used in the existing classification to suit the purpose of semantic segmentation.
It can be divided into three courses: Convolutionalization, Deconvolution, and Skip Architecture [8].
Regardless of the internal structure, the classification models consist of Fully Connected Layer (FC
layer) for the fundamental goal of the model. This configuration is to extract the characteristics of
the image using convolution from the input layer to the middle of the network and classifies the
characteristics using the FC layer from the output layer part. However, from the viewpoint of semantic
segmentation, there is a limitation of the FC layer. As a limitation, the location information of the
image disappears, and the size of the input image is fixed.

To solve these limitations, FCN replaces the FC layer with Convolution. Through convolutional-
ization, the output feature map can contain the location information of the original image. However,
compared to pixel-by-pixel prediction, the final purpose of semantic segmentation, FCN’s output
feature map is too coarse. Therefore, it is necessary to convert the coarse map into a dense map close
to the original image size. FCN used two methods: Bilinear interaction and Deconvolution to obtain
dense prediction from a coarse feature map. However, the predicted dense map is still coarse because
there is a lot of lost information. FCN solved this with Skip Architecture, which combines semantic
information of Deep & Coarse layers with apparent information about the Shallow & Fine layers
[8]. FCN was the basis for subsequent Semantic Segmentation methodologies. However, small objects
can be ignored or perceived as unusual when it uses the restricted field. Also, large objects can be
perceived as small objects or inconsistent results. In addition, there was a problem that the results
were not accurate by using the method of restoring the reduced resolution through upscaling [11].

2.2 U-Net

U-Net is a fully convolution network (FCN)-based model proposed for image segmentation
in the biomedical field. It consists of a network for obtaining overall context information of an
image and a network for accurate localization [9]. And it proposed a method of combining shallow
feature maps with deep feature maps using FCN’s concept of skip architecture. Despite better results
than FCN in the medical field, U-Net lacks context information extracted from encoders, wrong
segmentation of objects, or failure occurs. These problems interfere with the recognition of the location
and motion of objects in autonomous vehicles, which are applications, and increase errors in the
location and size of lesions in medical image analysis [12].

The network structure of U-Net is symmetrical and divided into the contracting path and the
expansive path. The purpose of the contracting path is to capture the context in the input image. The
expansive path upscales the context of feature maps captured in the contracting path and combines
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them with the information through skip connection. Its purpose is to make the localization more
accurate. One example of the U-Net architecture sees Fig. 1.

Figure 1: U-Net architecture

The contracting path consists of four blocks, each of them consisting of two 3 ∗ 3 convolutions
(same convolution), each followed by a Leaky Rectified Linear Unit (ReLU), Batch normalization,
and Max Pooling. Max Pooling has a 2 ∗ 2 kernel size and stride of 2. The number of channels in the
blocks is initially 32 and doubles each time it moves to the next block. In the middle of the model, two
3 ∗ 3 convolutions (same convolution) with 512 channels serve as the bottleneck. The expansive path
consists of four blocks, each of them consisting of 3 ∗ 3 convolution (same convolution), transposed
convolution, and concatenation. Excepting concatenation operation, each is followed by a ReLU and
Batch normalization. Transposed convolution has a 2 ∗ 2 kernel size and stride of 2. The number of
channels in the blocks is initially 512 and divided by 2 each time it moves to the next block. The
output feature map of the last transposed convolution goes through two 4 ∗ 4 convolutions (same
convolution), each followed by dropout, and then adjusts the channels of the feature map to the same
number of label classes through 1 ∗ 1 convolution (same convolution).

The contracting path is the process of capturing the essential context of input images. Max
pooling, which is a key operation of the contracting path, is a pooling operation that calculates
the maximum value for patches of a feature map and uses it to create a pooled feature map. Max
pooling does not have parameters for learning. This reduces the complexity of the model, thereby
reducing the memory resources and speeding up. Because max pooling reduces parameters, it reduces
computation, saving hardware resources, speeding up learning time, and suppressing overfitting to
reduce the expressiveness of the network. Also, the result of pooling does not affect the number of
channels, so the number of channels is maintained (independent) and even if there is a shift in the
input feature map, the result of pooling has a slight change (robustness). In addition, information that
captured the essential context of input images is delivered to upscaling process using a skip connection
for preserving the structure and objects in the original image.

The expansive path is the process of upscaling feature maps. Key operations of the expansive
path are transposed convolution and concatenation. Transposed convolution is to expand the size
of an image. Like general convolution, it has parameters of padding and stride. If you do a general
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convolution with the values of stride and padding, you will create the same spatial dimension as the
input. Given i, k, p, s of input, kernel, padding, and stride in a typical convolution layer, the length
of the output o follows the formula below Eq. (1).

o = i − k + 2p
s

+ 1 (1)

Transposed convolution consists of three steps. At first, this operation dilates the input tensor with
zero insertion. The input tensor is transformed into the tensor that consists of inserting d − 1 zeroed
rows and columns between each couple of rows and columns of it by using a dilation rate d. In U-Net,
the dilation rate is set to s. In the second step, the tensor is padded with p′ = k − p − 1. In the third
step, this operation performs general convolution with a stride of 1. That is, transposed convolution
does the convolution with the finally transformed input tensor.

Concatenation operation combines deep, coarse, semantic information and shallow, fine, appear-
ance information through skip architecture [8]. Since the semantic feature map has already lost a lot of
information during reducing the size of the image, expanding this by using the transposed convolution
results in coarse information that has summarized information. To solve this problem, U-Net used a
skip connection in FCN [8]. This passed the fine feature maps, which is before the image reduction
(max pooling) of the contracting path, to the symmetric expansive path. As a result, this can utilize
coarse and fine information for the segmentation.

2.3 Subpixel Convolution

Subpixel convolution is the upscaling method that is proposed as Efficient Sub-Pixel Convolu-
tional Neural Network (ESPCN) in the super-resolution [13]. Before ESPCN, the existing methods
in super-resolution up-sample the image using bicubic interpolation and then apply a convolutional
network [14]. However, ESPCN applies convolutional networks and then up-samples the image using
a subpixel convolution. Unlike existing interpolation methods, the subpixel convolution layer up-
samples feature maps by using their depth of them. This method has more representation power than
existing methods [14]. Fig. 2 shows the subpixel convolution.

Figure 2: Subpixel convolution in efficient sub-pixel convolutional neural network (ESPCN). (a)
Feature maps before subpixel convolution. (b) Feature map after subpixel convolution

Subpixel convolution makes the original image of size r2 × H × W by an image of size 1 × rH × rW
to create the high-resolution image. As a result, it is upscaled by r times in each direction. For example,
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see the 4 color feature maps of the left in Fig. 2. After subpixel convolution, those look like the right
of Fig. 2.

3 Proposed Network Architecture

This paper shows our proposed model (DSSC-UNet) in Fig. 3. It is based on the U-Net’s encoder-
decoder and symmetric structure. It can be divided into two parts like U-Net: the contracting path that
captures the context in the feature maps when reducing them and the expansive path that captures the
accurate localization of the class when expanding them.

Figure 3: Proposed model (DSSC-UNet)

The contracting path consists of four blocks, each of the blocks consists of two 3 ∗ 3 convolutions
(same convolution) and sampling, each convolution followed by a Leaky Rectified Linear Unit
(ReLU), Batch normalization (BN). The number of channels in the blocks is initially 32 and doubles
each time it moves to the next block. The contracting path’s final channels are 512. And the bottleneck
layer is between the contracting path and the expansive path. It consists of one 3 × 3 convolution
(same convolution). The expansive path consists of four blocks, each of the blocks consists of two
3 × 3 convolutions, concatenation, and subpixel convolution. Each convolution is followed by ReLU,
BN. The number of channels in the blocks is initially 512 and divided by 2 each time it moves to the
next block. The expansive path’s final channels are 32. The final feature map of the expansive path
passes through two 4 × 4 convolutions (same convolution) and then goes through a 1 × 1 convolution
(same convolution). At the final layer, a 1 × 1 convolution is used to map each 32-component feature
vector to the desired number of classes. There are 20 convolutional layers in the network. This paper
called our proposed network: DSSC-UNet (Down-Sampling and Subpixel Convolution U-Net).

U-Net used the max pooling operation for feature map reduction in the contracting path. This
may lose sensitive information of them. It means that detailed information on the feature maps might
be lost because the max pooling summarizes them. To solve this problem, this paper replaced the max
pooling operation with down-sampling. It was shown in Fig. 4.

Max pooling operation has a fundamental problem of losing detailed information when reducing
the feature maps. So, this paper uses sampling instead of max pooling to avoid this problem. It is
different from the max pooling operation. In deep learning, the sampling can be divided into two
categories: down-sampling and up-sampling. Down-sampling is the process of reducing the size of
data. If the feature maps down-sample with stride 2, four kinds of them are created. They are shown
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in Fig. 4a. It will use each two feature maps for contracting path and skip-connection. They are shown
in Fig. 4b.

Figure 4: Down-sampling operation. (a) The feature maps before and after sampling. (b) Feature maps
for contracting path and skip-connection

As shown in Fig. 4a, the A is a feature map that starts at [0, 0] and consists of pixels located in
indexes with even rows and even columns. The B is a feature map that starts at [0, 1] and consists
of pixels located in indexes with even rows and odd columns. The C is a feature map that starts at
[1, 0] and consists of pixels located in indexes with odd rows and even columns. The D is a feature
map that starts at [1, 1] and consists of pixels located in indexes with odd rows and odd columns.
The size of them is half of the input feature maps, but the size of batch and channels is maintained.
In U-Net, summarized data configured with maximum value are used to extract the feature. On the
contrary to this, DSSC-UNet used two diagonally symmetric data summarized by sampling to extract
features. That is, it uses more summarized data in feature extraction than U-Net. We expect that it
will find more hidden features of input data and improve segmentation performance. In addition, the
remaining feature maps of the sampling, not used for feature extraction in the contracting path, are
passed through the skip connection as additional information for image restoration in the expansive
path. As a result, sampling improves segmentation performance because it extracts more latent features
than max pooling and makes noise robust.

In U-Net, transposed convolution expanded the size of the feature maps. However, it has the
disadvantages of increasing the amount of computation due to increased parameters and generating
checkerboard artifacts [15]. To solve this problem, this paper used subpixel convolution in DSSC-
UNet. It restores the size of the original image by reconstructing the feature maps. Fig. 5 presented
the expanding process using it. In Fig. 5, slicing performs preprocessing to connect the feature maps
summarized in the contracting path to transfer from the skip connection. Its process is as follows.
First, it divides the summarized feature maps A and D in half. Through this process, A and D are
divided independently. Next, the transferred B and C are connected between A and D. The sequence of
concatenation is A, B, C, and D. It is based on the channel axis. Finally, the result of the concatenation
performs the subpixel convolution operation. It is restored to the size of the original image by subpixel
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convolution. The operation of the subpixel convolution has the advantage of reducing computational
complexity because parameters do not generate.

Figure 5: Expanding process using subpixel convolution operation

As a result, DSSC-UNet will restore as close as possible to the original image, minimizing the loss
of detailed context of the image, unlike existing methods. Through this, we expect that it will improve
the segmentation performance.

In summary, this paper can explain our algorithm in the three main steps: contracting path
(encoding), bottleneck, and expansive path (decoding). The following summarized the algorithm of
DSSC-UNet:

1. Contracting path (encoding): Extract the hidden feature from the input data
1-1. Perform the input data with 3 × 3 convolution (same convolution), Batch Normaliza-
tion (BN), and Leaky Rectified Linear Unit (ReLU) twice.
1-2. Divide the output feature maps into four kinds of them (A, B, C, and D) by down-
sampling.
1-3. Send the A and D feature maps for the next encoding process. Keep the B and C feature
maps for skip connection.
1-4. Repeat 1-1–1-3 from 4 times. Each iteration doubles the number of channels. The initial
number of channels is 32.

2. Bottleneck:
Perform the output feature maps through the last iteration of the contracting path with
one 3 × 3 convolution (same convolution), BN, and ReLU. The number of channels is 512.

3. Expansive path (decoding): Image restoration and expansion
3-1. Perform the output feature maps of the bottleneck layer with 3 × 3 convolution (same
convolution), BN, and ReLU twice.
3-2. Concatenate the output feature maps with B and C that were stored in an empty list
of the contracting path. When concatenating output feature maps to B and C, they are
divided in half and concatenate B and C in the middle of the divided feature maps. When
calling B and C for concatenation, they are called in reverse of the stored order in the list.
In other words, the last stored B and C are called first. In addition, concatenation is based
on the channel axis.
3-3. Expanding concatenated feature maps through the subpixel convolution.
3-4. Repeat 3-1–3-3 from 4 times. Each iteration halves the number of channels. The initial
number of channels is 512.
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3-5. After the last iteration of the expansive path, perform output feature maps with 4 × 4
convolution (same convolution), and ReLU twice. At last, performing 1 × 1 convolution
maps each of the component feature vectors to the desired number of classes. In our
network, the number of classes is 19.

4 Experiments
4.1 Dataset and Metric

During the evaluation, Cityscapes, a publicly available benchmark dataset, was used. It is a large-
scale database with a focus on semantic understanding of urban street scenes [1]. It includes a variety
set of stereo video sequences recorded in street scenes from 50 cities, with high-quality pixel-level
annotation of 5 k frames in addition to a set of 20 k weakly annotated frames. It includes semantic
and dense pixel annotations of 30 classes grouped into 8 categories (flat surfaces, humans, vehicles,
constructions, objects, nature, sky, and void) [16]. Among the cityscapes dataset, LeftImg8bit and
gtFine are used for evaluation. It includes 2975 train images and 500 validation images.

The data used in the training and validation have the same trainId for several classes. For training,
labels with trainId of 255 or less than 0 are ignored so that they are not used for evaluation. Our
experiments only use 19 categories for data classification. Additionally, various random transforma-
tions (random saturation/brightness change, random horizontal flip, random crop/scaling, etc . . . ) are
applied to increase the data to be used for training. Some transformations should be applied to both
the input image and the target label map. When the image is turned over or cut, the same should be
performed on the label map.

Representative metrics for segmentation models are pixel accuracy, mean pixel accuracy, inter-
section over union, mean intersection over union (Mean-IoU), precision/recall/F1 score, and dice
coefficient. Among the metrics, this paper uses the mean intersection over union for measuring the
performance of our proposed model (DSSC-UNet). Intersection over Union (IoU) is defined as an
overlapping area between the predicted segmentation map and the ground truth and can be divided
into their area of union. The following Eq. (2) is the formula of IoU, and each of A and B represents
the predicted segmentation map and ground truth. It ranges between 0 and 1. Mean-IoU is defined as
the average of the IoU and it can be obtained by averaging the results of the IoU calculation by class.

IoU = J (A, B) = |A ∩ B|
|A ∪ B| (2)

4.2 Hyper Parameters

In training, all input images are preprocessed to be 512 × 512 × 3. The number of classes to be
classified in the data is 19. It used Adam optimizer to optimize all the network by setting β1 = 0.9,
β2 = 0.999. The learning rate is set to 1e-3. It uses sparse categorical cross entropy to train the proposed
model and sparse categorical accuracy to evaluate the performance of the trained model in the
validation set. Additionally, before calculating the loss and accuracy, we except ignored labels from
the predicted logit map and ground-truth label map to compare only the considered class. This paper
used Tensorflow to implement our network, and one NVIDIA TITAN RTX GPU which was 24 GB
of memory size was applied for training the whole network. More details about hyperparameters in
our experiments are listed in Table 1.
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Table 1: Hyper parameters in our proposed network (DSSC-UNet)

Hyper parameters

Input size [512, 512]
Number of channels 3
Number of classes 19
Epoch 1000
Batch size 8
Learning rate 1e-3
Optimizer (Adam) β1 = 0.9, β2 = 0.999

4.3 Results

This paper evaluated and compared the performance of our proposed model (DSSC-UNet) and
U-Net. As shown in Fig. 6, the orange line is our proposed model, and the blue line is the U-Net. Early
in the experiment, it sets the learning rate to 1e-5 and epoch to 5000 and obtains (a) result. The mean
intersection over union (Mean-IoU) is 86.7% for U-Net and 90.5% for DSSC-UNet. However, this
experiment showed too slow a training speed. So, it used a 1e-3 learning rate and epoch 1000 in the new
experiment. In this experiment, Mean-IoU is 85% for U-Net and 89.4% for DSSC-UNet. And training
speed was faster than the initial experiment. As a result, DSSC-UNet shows better performance than
U-Net in the experiment.

Figure 6: Results of mean intersection over union (Mean-IoU) performance between U-Net and our
proposed network (DSSC-UNet). (a) is the result of the validation Mean-IoU which sets 1e-5 learning
rate and 5000 epochs. (b) is the result of the validation Mean-IoU which sets 1e-3 learning rate and
1000 epochs

Fig. 7 is the box plot results of Mean-IoU measured in 15 experiments. Table 2 is the results of
DSSC-UNet and U-Net’s Mean-IoU measured in 15 experiments. The red box represents the Mean-
IoU for 15 experiments of U-Net. The blue box represents Mean-IoU for 15 experiments in DSSC-
UNet. In training, U-Net’s Mean-IoU has 83.5% minimum and 85.6% maximum. DSSC-Unet’s
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Mean-IoU has 87.8% minimum and 89.6% maximum. In validation, U-Net’s Mean-IoU has 84.7%
minimum and 87% maximum. DSSC-Unet’s Mean-IoU has 87.7% minimum and 89.2% maximum.
As a result, DSSC-Unet achieved about 4% higher than U-Net.

Figure 7: Box plot results of mean intersection over union (Mean-IoU) measured in training and
validation

Table 2: Mean intersection over union (Mean-IoU) measured in 15 experiments for U-Net and our
proposed network (DSSC-Unet)

Experiments U-Net (%) DSSC-Unet (%)

No. (seed) Training Validation Training Validation

1 (10) 85.5 86.5 89.4 89
2 (20) 85.0 86.4 89.4 89.2
3 (30) 85.5 86.7 89.3 88.8
4 (40) 85.6 86.9 89.1 89
5 (50) 83.5 85.7 89.6 89
6 (60) 85.5 87 89.6 89
7 (70) 85.5 86.7 88.7 89
8 (80) 85.0 86.4 89.2 89
9 (90) 85.4 86.6 87.8 89
10 (100) 84.8 84.7 89.1 87.7
11 (110) 85.4 86.6 89.3 89.2
12 (120) 85.6 87.1 89.4 89.1
13 (130) 85.3 86.7 89.4 89.2
14 (140) 85.4 86.7 88.9 88.8
15 (150) 85.3 86.9 89.4 88.8
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a: Fig. 8 below shows predicted segment images and ground truths for comparing U-Net and
DSSC-UNet.

Figure 8: Results of compared input image’s ground truth with U-Net’s prediction and our proposed
model (DSSC-UNet)’s prediction. Black labels in ground truth are ignored in prediction of U-Net and
DSSC-UNet. The area surrounded by the red box is the extended area in Fig. 9

Figure 9: This is the result of expanding specific areas in input image’s ground truth, U-Net’s
prediction, and our proposed model (DSSC-UNet)’s prediction. Compared to ground truth, DSSC-
UNet captured more detail features and small objects from image than U-Net
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In addition, this paper compared the parameters between U-Net and DSSC-Unet. In the case
of U-Net, the number of parameters is 13,304,371. DSSC-Unet is 18,156,275. This paper confirmed
this difference occurred by the down-sampling in DSSC-Unet. The reason is that the output filter of
down-sampling is twice as large as the input filter. As a result, the number of parameters in DSSC-Unet
increased.

To see whether the performance of the DSSC-UNet algorithm is significant, this paper conducted
the normality test. The result is significant. (In the case of U-Net, the Shapiro-Wilk test’s P-value was
7.9053e-5 in training and 0.0007 in validation. In the case of our proposed network was 0.0011 in
training and 3.1637e-5 in validation. Those are less than 0.05.) So, neither U-Net nor our proposed
model follows the normal distribution. And the result of the Mann–Whitney U test is significant (P-
value was 1.5252e-6 in training and 1.3940e-6 in validation.).

As a result, DSSC-UNet used more latent information for training by replacing max pooling
with down-sampling. This approach was able to train more detailed information from feature maps
and better classify small objects from images. In addition, the transposed convolution was replaced
with the subpixel convolution in the expansive path. It expanded the feature maps as close as original
with minimized loss of detailed information. Because diagonal elements of the original feature maps
were used as additional information for summarized feature maps expansion. The reason for these,
DSSC-UNet achieved higher segmentation accuracy than U-Net.

5 Conclusion

This paper proposed the method using down-sampling and subpixel convolution to improve
accuracy in semantic segmentation. Our proposed model (DSSC-UNet) minimized the detailed
context loss of the image when it reduced the size of the feature maps. And it preserved localization
and detailed context during the expansion. As a result, this paper confirmed that DSSC-UNet showed
higher accuracy than U-Net in semantic segmentation. In the future, it will apply DSSC-UNet to other
datasets and utilize it in our previous resolution research [17]. In addition, various experiments will
be conducted to maintain accuracy while reducing the increased parameters using 4 feature maps of
down-sampling.
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