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Abstract: Since 2016, the National Institute of Standards and Technology
(NIST) has been performing a competition to standardize post-quantum
cryptography (PQC). Although Falcon has been selected in the competition
as one of the standard PQC algorithms because of its advantages in short
key and signature sizes, its performance overhead is larger than that of other
lattice-based cryptosystems. This study presents multiple methodologies to
accelerate the performance of Falcon using graphics processing units (GPUs)
for server-side use. Direct GPU porting significantly degrades performance
because the Falcon reference codes require recursive functions in its sampling
process. Thus, an iterative sampling approach for efficient parallel process-
ing is presented. In this study, the Falcon software applied a fine-grained
execution model and reported the optimal number of threads in a thread
block. Moreover, the polynomial multiplication performance was optimized
by parallelizing the number-theoretic transform (NTT)-based polynomial
multiplication and the fast Fourier transform (FFT)-based multiplication.
Furthermore, dummy-based parallel execution methods have been introduced
to handle the thread divergence effects. The presented Falcon software on
RTX 3090 NVIDA GPU based on the proposed methods with Falcon-512
and Falcon-1024 parameters outperform at 35.14, 28.84, and 34.64 times and
33.31, 27.45, and 34.40 times, respectively, better than the central processing
unit (CPU) reference implementation using Advanced Vector Extensions 2
(AVX2) instructions on a Ryzen 9 5900X running at 3.7 GHz in key genera-
tion, signing, and verification, respectively. Therefore, the proposed Falcon
software can be used in servers managing multiple concurrent clients for
efficient certificate verification and be used as an outsourced key generation
and signature generation server for Signature as a Service (SaS).
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1 Introduction

Shor’s algorithm [1] running on a quantum computer can break the current public key cryp-
tosystems including Rivest–Shamir–Adleman (RSA), digital signature algorithm (DSA), and elliptic
curve Diffie–Hellman (ECDH). After 2016, the National Institute of Standards and Technology
(NIST) has been organizing a competition to standardize post-quantum cryptography (PQC) to
provide reasonable security in the era of quantum computing [2]. There are four algorithms (Classical
McEliece [3], CRYSTALS-Kyber [4], NTRU [5], and Saber [6]) in the key encapsulation mechanism
(KEM), and three algorithms (CRYSTALS-Dilithium [7], Falcon [8], and Rainbow [9]) in the digital
signature algorithm (DSA) in the Round 3 finalists. Among the Round 3 DSA algorithms, Falcon
has advantages of shortest key length and fastest signature verification speed. Thus, Falcon can
be seamlessly integrated into current security protocols (e.g., transport layer security (TLS) and
domain name server security (DNSSEC)) and applications. Consequently, Falcon has recently been
selected as one of the standard algorithms in the NIST competition. The advent of Internet of
Things (IoT) and cloud environments has significantly increased the number of clients that servers
must process. Therefore, servers have the burden of processing high volume cryptographic operations
or cryptographic protocol executions for secure communication with clients. For example, servers
should concurrently confirm the authenticity of certificates from clients; in a particular situation,
they should generate multiple key pairs and sign messages with Signature as a Service (SaS) [10,11].
Graphics processing units (GPUs) can be used as cryptographic accelerators. Many studies [10–12]
demonstrated that optimized cryptographic software with GPUs can achieve an impressive throughput
enhancement compared with conventional software operating on the central processing unit (CPU).
Certain studies [13–18] have been conducted on PQC to improve its performance using GPUs.

This study presents the first Falcon software optimized on an NVIDIA GPU. Although the Falcon
team [8] opened the CPU environment and embedded environments source codes, it did not provide
the GPU environment software. Furthermore, on the GPU side, Falcon source codes are related to
recursive function inefficiency. Thus, in this study, the gap is filled by developing an efficient GPU
Falcon software. When Falcon source codes for CPU execution are converted in an efficient GPU side
software, multiple limitations such as warp divergence related to using branch instructions and the
heavy use of recursive functions require to be solved. First, a fine-grained execution model is applied
to implement the introduced Falcon and identify the optimal number of threads in a thread block.
Second, dummy-based polynomial operation methods that alleviate the warp divergence effect and
an iterative version of Falcon sampling are proposed. Furthermore, the introduced Falcon software is
optimized by considering the GPU advantage on chip memory (registers, shared memory, and constant
memory) and by implementing polynomial multiplications using number theoretic transform (NTT)-
based method and fast Fourier transform (FFT)-based method.

The contributions of this study can be summarized as follows:

• This is the first study on Falcon implementation in a GPU environment

This study is the first to present GPU Falcon software, which was developed with a fine-grained
execution model where n threads (n = 32 is selected for optimal performance) cooperate to compute
a Falcon operation: Keygen for generating a pair of public and private keys, Sign for generating a
signature, and Verify for signature verification. Furthermore, the introduced Falcon software on an
NVIDIA RTX 3090 GPU can execute 256 concurrent Falcon operations. It was observed that its
throughput with Falcon-512 and Falcon-1024 parameters outperforms at 35.14, 28.84, and 34.64 times
and 33.31, 27.45, and 34.40 times, respectively, better than the CPU reference implementation using
the AVX2 instructions on a Ryzen 9 5900X CPU running at 3.7 GHz for Keygen, Sign, and Verify.
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• The proposed additional optimization implementation plan

This study introduced a dummy-based parallel execution method to alleviate the divergence effect
from branch instructions, as well as an effective, economical approach to convert the ffSampling
recursive version into an iterative one because the GPU recursive function execution is inefficient.
Furthermore, the polynomial multiplication operations in the integer number and complex number
domains were optimized using the NTT-based and FFT-based methods; the fine-grained execution
model parallelized both the NTT-based and FFT-based methods.

The remainder of this study is structured as follows: Section 2 presents works of literature review
on GPU cryptographic algorithms optimization and introduces research trends for Falcon; Section 3
provides a brief description of Falcon and GPU; Section 4 introduces implementation methods for
operating GPU Falcon and optimization implementation methods to improve performance; Section 5
evaluates the implementation performance results; and Section 6 is the conclusion.

2 Related Work

Since 2016, NIST has organized a contest for standardizing PQC algorithms as a response to
PQC demand. In July 2020, the third round of the project was started; Table 1 shows the round’s
competition algorithms. The candidate algorithms were classified into public key encryption (PKE)/
KEM and DSA. Information on the final candidate algorithms are presented on the PQClean [19]. In
June 2022, four algorithms were selected as the final standard algorithms: Crystals-Kyber for KEM,
Crystals-Dilithium, Falcon, and Sphincs+ for DSA.

Table 1: Round 3 NIST PQC standardization final candidate algorithms and their corresponding bases

Algorithm Base

PKE/KEM Classic McEliece [3] Code
Crystals-Kyber [4] LWE
NTRU [5] NTRU
Saber [6] LWR

DSA Crystals-Dilithium [7] LWE
Falcon [8] NTRU
Rainbow [9] Multivariate

There have been multiple pieces of research on PQC implementation in a GPU environment
[13–18]. Gupta et al. (2020) [13] proposed the techniques that allow PQC-based KEM algorithms
such as FrodoKEM, NewHope, and CRYSTALS-Kyber to run fast on GPU. For NewHope,
Gao et al. (2021) [14] proposed a computational structure that maximizes GPU computational
efficiency by improving its implementation. Furthermore, Seong et al. (2021) [15] introduced a parallel
operation structure for the server to efficiently process the key exchange protocol in a multi-client
environment via the NTRU algorithm. Moreover, PQC-based KEM algorithms such as Saber, SIKE,
and NTRU have been examined on GPU [16–18]. Although certain studies have implemented lattice-
based PQC in GPU environments, these only focused on the optimization of polynomial multiplication
such as parallelizing the NTT-based polynomial multiplications [13,14], and [16]. However, in addition
to polynomial multiplication optimization, this study focuses on minimizing divergence effects and
converting recursive-based sampling into an iterative version.
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For PQC-based DSA, the final candidates were CRYSTALS-Dilithium [20], Falcon, and the
Rainbow [21] algorithms. Dilithium and Falcon were selected as the final standard algorithms.
Furthermore, CRYSTALS-Dilithium and Falcon are lattice-based cryptographic algorithms and
polynomial operations are considered their primary computation methods [22]. To date, the primary
concern of GPU lattice-based PQC implementation was to optimize polynomial multiplication by
parallelizing the NTT-based method [23,24]. However, reference codes for Falcon are not directly
converted into the software on the GPU side because of the heavy use of recursive functions and their
branch instructions. To our knowledge, this is the first result of Falcon implementation on a GPU
environment.

3 Backgrounds
3.1 Falcon Overview

Falcon [25] is a post-quantum DSA algorithm based on the lattice NTRU problem. Falcon uses
the operation in the field of Q[x]/(φ), where φ = xn + 1, and is divided into Falcon-512 and Falcon-
1024 depending on whether n = 512 or 1024. The necessary notation for the algorithm description
is shown in Table 2. For example, Falcon-512 and Falcon-1024 uses polynomials of 512 terms and
1024 terms, respectively. Table 3 describes the Falcon-512 and Falcon-1024 parameters. Falcon-512
and Falcon-1024 provide NIST Security Levels 1 and 5, respectively. Falcon comprises three primary
functions: Keygen generates a pair of public and private keys, Sign generates a signature, and Verify
verifies the signature.

Table 2: Notations

Symbol Definition

Bold uppercase (e.g., B) Matrices
Bold lowercase (e.g., v) Vector
Italic lowercase (e.g., s) Polynomial
Bt Transpose of Matrix
φ = xn + 1 (for x = 2k) Polynomial modulus
FFT Fast Fourier Transform
Z

qZ
(with q = 12289) Quotient rings

Table 3: Falcon parameters

Falcon-512 Falcon-1024

Security level 1 5
Ring degree n 512 1024
Modulus q 12289 12289
Max. signature square norm �β 2

⌋
34034726 70265242

Public key byte length 897 1793
Signature byte length 666 1280
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In the Keygen step, the private key F and G components, which satisfies the NTRU equation, are
obtained via random polynomials f and g (refer to Algorithm 1). The Sign phase involves hashing
the message to a value modular φ (refer to Algorithm 2). Next, the signer creates a polynomial-based
signature pair (s1, s2) using (f, g, F, G), which is the signer’s secret information. The signature value is
obtained as s2. In Verify (refer to Algorithm 3), s1 is calculated using the hashed message and signature
s2; moreover, it is determined whether the signature is correct based on whether (s1, s2) satisfies the
shortest vector in a lattice.

The Sign generates s1 and s2 by satisfying s1 + s2h = c mod (φ, q) using the message m, the random
seed r, and the private key sk. The ffSampling function is repeatedly called (refer to Algorithm 4) to
calculate s that meets the condition. In Verify, s1 and s2 are recalculated and verified if

∥∥s1, s2‖2 ≤ �β 2
⌋

is satisfied. Falcon uses multiple methods to perform efficient polynomial operations for signature
generation and verification process.
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A FFT-based discrete Gaussian sampling is used to efficiently generate polynomial matrices.
Moreover, FFT-based [26] and NTT-based [27] methods are used for polynomial multiplication on
the complex number domain and integer number domains, respectively. The FFT and NTT are known
as efficient methods that can reduce the computational complexity of the existing school book-based
polynomial multiplication from O(n2) to O(nlogn). In FFT and NTT-based polynomial multiplication,
two polynomials are converted into either the FFT or NTT domain. Then, point-wise multiplication
is computed using the two converted polynomials. After completing the point-wise multiplication
process, the final result is obtained by applying either the inverse FFT or NTT. In addition to the
NTT-based method that uses integer numbers, the FFT-based method coefficients of polynomials are
complex numbers (comprising a real part and an imaginary part) and thus floating-point type is used
in representing them.

Complex number-based operations are included in the Keygen and Sign processes. From the
Falcon implementation perspective, complex numbers are represented using an IEEE 754 64-bit
floating-point representation [28] known as double precision. FFT-related functions operate on double
precision. For NTT, the operation is implemented on a 16-bit integer representation because an integer
operation is performed on modular q on the finite field Zq. The modular multiplication over Zq is
performed using the Montgomery multiplication [29,30].
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In the DSA, different signature values are generated using a random value generator function
that is performed even for the same message. Generally, multiple functions are used to generate
random values. However, to extract a value that satisfies a specific range or distribution, it is important
to perform a sampling process. In Falcon, a function called ffSampling is used when generating a
signature value. The ffSampling process can be reported in Algorithm 4 [31]. The splitfft and mergefft
inside ffSampling perform the domain transformation, and DZ (SamplerZ) accepts only the desired
value by rejection sampling. As per the rejection sampling, each value is subject to acceptance–rejection
evaluation and only those values that satisfy the condition can be accepted. Values determined
acceptable by SamplerZ follow a distribution like the discrete Gaussian distribution.

In addition to the primary functions, Falcon uses additional ones. The Sign phase HashToPoint
function replaces the message hash value with a polynomial. Moreover, the Compress function
compresses the generated signature value. However, the Decompress function called during the Verify
process restores the output value generated by the Compress function in the Sign phase.

3.2 Graphic Processing Units

GPUs are devices developed to process graphics operations. Currently, their usage is extended
to general purpose applications such as machine learning and accelerating cryptographic operations.
Although GPU has a higher number of cores than CPU, a GPU core is slower than that of the
CPU. For example, NVIDIA RTX 3090 GPU has 10,496 computational cores. GPUs are known for
parallel computation rather than sequential execution. NVIDIA GPUs contain multiple independent
streaming multiprocessors (SMs) in which each has multiple computational cores. For example, RTX
3090 has 82 SMs that each have 128 cores. Moreover, each SM has an instruction cache, a data cache,
and a shared memory space.

Generally, libraries such as compute unified device architecture (CUDA) [32] or open computing
language (OpenCL) [33] are used to operate general purpose computing on graphics processing units
(GPGPU). The CUDA library enables GPU parallel programming via the NVCC compiler. In GPU
implementation, tasks are processed in parallel by threads that are computation units. Typically, all 32
threads are grouped into an instruction execution unit known as warp. The threads of the same warp
perform the same operation without a separate synchronization procedure. Moreover, the bundles
of thread blocks composed of multiple threads are distributed to streaming multiprocessor cores. To
maximize GPU resource utilization, identifying the optimal number of threads and thread blocks is
important.

The proper usage of GPU memory is an important efficiency factor. A GPU is composed of
multiple types of memory, and their characteristics are as follows:

• Global memory is the dynamic random access memory (DRAM) that occupies the largest
capacity of the GPU. However, memory reference speed is slow because data must be copied
between the CPU and GPU via a PCIe interface to share data between the CPU and GPU.

• Shared memory is the memory shared by threads in the same block. It is on-chip memory
that has faster access speed than global memory. Shared memory is divided into equally sized
memory banks that can be simultaneously accessed.

• Constant memory is read-only memory. Here, data copying can be performed outside the GPU
kernel. When warp threads frequently access data in constant memory, the data are cached to
enable fast memory access.

• Texture memory has the fastest memory access speed for graphic work but is small in size.
Therefore, local memory requires to be allocated when multiple local variables are used.
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The GPU is operated by the CPU-launched kernel function. Before using external data in GPU
operation, the data require to be copied from the CPU to GPU. Moreover, it is important to perform
a memory copy from the GPU to the CPU to use the computed data on the GPU in the CPU. Each
thread running inside the kernel receives a unique identification.

4 Proposed Falcon GPU Implementation
4.1 Difficulties and Solutions

Many errors are generated when converting Falcon reference codes to GPU. This is because certain
operation functions are implemented in a form that is unsuitable for the GPU environment (i.e.,
the original Falcon reference codes do not fit the GPU’s single instruction multiple threads (SIMT)
execution model). Therefore, the study introduces multiple implementation methods that can handle
the difficulties that arise during Falcon’s reference code conversion to GPU efficient codes.

4.1.1 CPU to GPU Data Porting Difficulties and Solutions

Falcon uses multiple variables and constant data to generate and confirm signatures. There are
declared and used variables inside the function (e.g., temporary variables that store intermediate
computation values, flags, and counters) as well as predefined data values (e.g., RC table for SHA-
3, max_sig_bits for decoding, GMb for NTT conversion, and iGMb for inverse NTT conversion)
that are used in the reference table form. In processes, certain data (e.g., message, signature, and key
materials) consume memory from start to finish. Generally, variables declared inside a function can
be similarly used on the GPU. However, if the variable size increases beyond a certain level, the stack
memory may become insufficient, e.g., in Falcon-1024, the size of one public key is 1,793 bytes while
the size of one signature is 1,280 bytes. Since the latest GPU register capacity per block is 256 KB, if
the number of available threads per block increases, the register runs out and slow local memory is
used instead. Therefore, the CPU dynamically allocates and uses memory for the variable. However,
performing dynamic memory allocation in the middle of GPU kernel execution reduces the overall
computationally intensive efficiency of the GPU. The size of multiple polynomial data used to solve the
NTRU equation in Falcon reference codes may be difficult for each thread to independently declare
and use. Therefore, the study has dynamically allocated the memory required to store polynomials
before launching kernel execution. To prevent the declaration of variables during a function execution
or a change in memory size through the memory reallocation function that results in a performance
decrease, the variables are defined in advance as the largest size. Falcon structure variables containing
the primary data (i.e., signature, signature length, public key, public key length, message, and message
length) are predefined and used in a GPU.

For reference tables having constant data used in Falcon, table values are copied in advance via
constant memory and are cached on the GPU. During Verify, five constant tables are stored (RC table
used in SHA-3 function, max_sig_bits used in Falcon decoding function, GMb table used in NTT
conversion, iGMb table used for inverse NTT conversion, and l2bound table for verifying length
condition in the signing and verification processes) in a constant memory area wherein the total
amount is ∼4 kB.

Moreover, standard memory copy functions such as memcpy, which are frequently used in the
original Falcon reference codes, have limited usage on the GPU. Accordingly, the value is copied via
a deep copy with a for-loop.
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4.1.2 Solution for GPU Double Recursive Function Difficulties

In cryptography, sampling is a method that extracts random values in a specific distribution.
Falcon has a function known as SamplerZ that performs discrete Gaussian sampling. Moreover,
the entire sampling function of Falcon is ffSampling (refer to Algorithm 4) and its structure is
similar to FFT. The ffSampling function is called in a double recursive manner in which a parent
function recursively calls two child functions for log2n times for the polynomial dimension n. As
the operation proceeds, ffSampling recursively calls itself twice. At this time, the input parameter
n is halved. For example, if ffSampling n input is 1024, the total number of ffSampling functions
recursively called via the double recursive manner becomes 2047 times (= 1 + 2 + 4 + . . . + 1024).
Fig. 1 shows the simplified expressions of the functions before and after the recursive functions. The
code block performed in the conditional statement is substituted using the X symbol. The code block
before the first recursive function is substituted with the F symbol. The code block after the second
recursive function is substituted with the H symbol while the block between two recursive functions
is substituted with the G symbol. The block related to X, F, H, and G symbols can include normal
function calls (not recursive functions).

Figure 1: Illustration of a simplified ffSampling when n = 8 (red, yellow, green, and blue-sky rectangles
denote codes related to F , X , G, and H symbols, respectively)

In GPUs where multiple threads perform simultaneous operations, the use of recursive functions
is extremely limited because of the function call stacks problem. Therefore, to efficiently process the
ffSampling function on the GPU, the double recursive function requires to be replaced with an iterative
version. First, Fig. 1 shows that the F and H blocks are always continuously executed at the beginning
and end of ffSampling. After a repeated execution of the first F, the next is X when n is 1, and G
and X are executed only before the last H is consecutively executed. Because the number of iterations
continuously executed is repeated log2n times as per the first input n, the following rules are derived for
the iterative version of ffSampling by borrowing the concept of the ruler function [34] which defines
the order of execution and the execution times for each code block (F, X, G, and H):

• In the middle part, the primary iteration is repeated a total of n/2–1 times; within the main
loop, there are two extra loops with the sequence following the derived ruler function as the
number of repetitions are executed further. Fig. 2 shows the derived ruler function graph for
the ffSampling iterative version.

• G and X are first executed in the middle loop and H is executed RF [i] times where the RF
function is a predefined table in constant memory and RF [i] is the i-th result of the ruler
function for the index i that is the counter to the primary loop repetitions. Then, G is performed
once and then F is performed RF [i] times. Then, X is executed to complete the series of primary
loops.
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Figure 2: Ruler function graph

Algorithm 5 is the proposed ffSampling iterative version corresponding to the ruler function
recursive execution shown in Fig. 1. While the process of replacing a recursive function with an iterative
execution model improves efficiency, one other problem still remains. Because the existing ffSampling
uses a Falcon tree, each time ffSampling is recursively called, another child of the tree is called. To use
different parameters in the same function, even when using the iterative version, the address of each
child of the tree is stored as an address pointer array and passed as a function argument. Then, the
address pointer array stores the variable addresses used at each tree level.
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4.2 Proposed Functionalities and Overall Software Structure
4.2.1 Software Functionalities

The introduced software provides key generation (Keygen), signing (Sign), and verification (Verify)
functions. For Keygen, it is assumed that multiple and independent keys are generated and can be used
in the future, whereas for Verify, each multiple signatures should be confirmed with its related public
key. Unlike the abovementioned two operations, it is assumed for Sign that a single key or multiple
keys can be used to sign multiple messages. For example, a typical application server must sign multiple
messages with its private key. However, each key in an outsourced signature server [10,11] should sign
certain messages. To summarize, the Falcon software provides three functions: Keygen for multiple
keys, Sign for single key and multiple keys, and Verify for multiple keys. Thus, in Section 5, the Falcon
software performance based on the aforementioned functionalities is presented.

4.2.2 Overall Structure

There are two primary execution models when implementing GPU applications: coarse-grained
execution (CGE) model and fine-grained execution (FGE) model. In CGE, the thread processes one
complete task. For example, a CGE thread computes a single Keygen, Sign, or Verify. It has two
important advantages: ease of implementation and provision of maximum throughput. However, there
is latency in completing the assigned operation because the computational power of each GPU core
is considerably lower than that of the CPU.

FGE can reduce latency to complete the assigned operation by making multiple threads operate
together. A single Keygen, Sign, or Verify can be processed using multiple threads in the FGE model.
The Falcon software lowers operation latency while providing reasonable throughput by following the
FGE model.

Figure 3: Overall structure of the Falcon GPU software

In the NVIDIA GPU, the maximum number of threads that reside in each thread block is 1,024.
However, because there are limited resources per block, it is necessary to adjust the number of threads
by considering the required resource (registers) in each thread within the block. When selecting the
optimal number of threads in a block, it should be a multiple of Warp size, which is typically 32.
Because Warp is the unit of scheduling in GPU, the CUDA manual suggests that the number of threads
in a block should be a multiple of Warp size [32]. The study tested GPU Falcon implementation on a
target GPU (RTX 3090) with multiple numbers of threads per block and reported that using 32 threads
per block provided the best performance in terms of latency. Thus, in the implementation, 32 threads



1974 CMC, 2023, vol.75, no.1

in a block can compute a single Keygen, Sign, or Verify. To simultaneously process multiple operations,
the study’s software launches multiple thread blocks. Fig. 3 shows the software overall structure.

In the introduced software, 16 and 32 terms are assigned in the polynomial operation of each
thread in a thread block for Falcon-512 and Falcon-1024, respectively, with the applied FGE model.
Moreover, multiple Keygen, Sign, or Verify can be computed by launching multiple thread blocks.
Several techniques are proposed to minimize warp divergence and for efficient cooperation among
block threads, including parallel implementation of polynomial multiplication in the Falcon software.

4.3 Specific Parallel Optimization Strategy
4.3.1 Optimization Method for Common Polynomial Functions

General polynomial-based operation functions operate on each term belonging to a polynomial.
For example, when two polynomials are added, each term of the two polynomials should be added
based on the position. If the number of terms in the polynomial is 512 (Falcon-512), then 512 addition
operations are performed. Therefore, if the GPU optimizes the addition operation using 32 threads,
each thread can operate on 16 terms such that the addition of all 512 terms can be processed in parallel.
For Falcon-1024, each thread in a block comprising 32 threads should process 32 polynomial operation
terms.

4.3.2 Optimization Method for NTT and FFT Functions

In the study FGE model, each thread of a block cooperates to process polynomial operations such
as addition and multiplication. The same number of terms belonging to a polynomial is allocated to
and processed by each thread. For example, when adding two polynomials with 512 terms, each of the
32 threads compute different 16 terms, i.e., the i-th thread adds 16 terms of the two polynomials from
16 × i to 16 × i + 15 indexes where 0 ≤ i ≤ 31. However, polynomial multiplication is more complex
than simple polynomial addition. Falcon uses NTT- and FFT-based methods for efficient polynomial
multiplications in the integer and complex domains. Because NTT is an integer domain analog of
FFT, the process is similar. Thus, only the NTT-based polynomial multiplication method is explained.
NTT-based polynomial multiplication comprises three parts: conversion to the NTT domain, point-
wise multiplication, and inverse NTT conversion (which is conversion back to the original). In the NTT
process, the Zq[X ]/<φ>(φ = X n + 1), which is the ring of Falcon, is factored to n different sub-Rings
of degree 1, and a polynomial in Zq[X ]/<φ> is converted into n polynomials over the factored sub-
Rings. Thus, the NTT process can be considered to repeatedly reduce the intermediate polynomials
by the sub-Rings of Zq[X ]/<φ> until it reaches degree 1.

Butterfly operation is the primary NTT conversion computation that is responsible for reducing
coefficients in degrees higher than the factored sub-Ring’s degree to a lesser degree. Because one
Butterfly operation reduces the coefficient, n/2 times of Butterfly operations are executed in log2n
layers where n = 512 or 1024. For example, at the first layer, a coefficient in the range of 511-th
degree and 256-th degree is reduced to the range of 255-th degree and 0-th degree with 256 Butterfly
operations for n = 512. Butterfly operation multiplies a coefficient to be reduced with a twiddle
factor and adds/subtracts it with a coefficient in a lower degree. Twiddle factors are predefined values
stored in constant memory. After converting two polynomials over Zq[X ]/<φ> into the NTT domain,
n coefficients in the NTT domain are multiplied by each other in a point-wise manner. The i-th
coefficient of the first polynomial is multiplied by the i-th coefficient of the second polynomial and
then stored in the i-th position. After computing point-wise multiplication, n coefficients are converted
into a polynomial over Zq[X ]/<φ> with inverse NTT (iNTT). Note that iNTT is almost the same as
the NTT process except that the inverse twiddle factors are used.
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In the parallel NTT and FFT implementation, because 32 threads cooperatively process a Falcon
operation such as Keygen, Sign, and Verify, these compute an NTT operation in cooperation. For n =
512, there are eight layers in NTT conversion where each layer computes 256 Butterfly operations.
Thus, each thread computes eight Butterfly operations in each layer. When a thread processes a
Butterfly, it accesses two coefficients: one to be multiplied with a twiddle factor and the other to be
added/subtracted with the multiplied result. Because each thread simultaneously accesses a different
coefficient, it is important to determine the coefficients that are accessed by the threads. For efficient
position calculation, section_number and index_number are first defined. The section_number and
index_number are computed with section_number = offset/interval_size and index_number = offset
mod interval_size, respectively. The initial value of interval_size is 256 which decreases by half for
each layer such that the final layer becomes 1. Moreover, in a Butterfly operation, term_number is
the first operand index and the second operand is indexed with term_number + interval_size; these
two operands are in the same polynomial. At the i-th layer, two operands in a Butterfly operation
are located (512 ≤ i) apart in the polynomial. Fig. 4 shows how term_number is computed and how
each thread accesses two operands for the Butterfly operation. Because 32 threads cooperatively
execute NTT conversion, each thread executes eight Butterfly operations in each layer. Although
their operational structures are similar, the difference between NTT and FFT is that each uses 16-bit
and 64-bit integers double-precision float-point, respectively, for expressing polynomial coefficients.
Algorithm 6 shows the proposed parallel NTT algorithm. Note that in-place indicates the resulting
sub-polynomials are stored in the output storage memory. Each thread in a block executes Algorithm
6 for a complete NTT conversion operation. The n in the inner loop (Step 5–15) is the number of
threads in a block. It is divided by the thread per block (TPB).

Figure 4: Parallel implementation techniques for NTT and FFT
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Remarks The CUDA platform provides a cuFFT library for FFT conversion operations. However,
it requires certain rules to use the library, i.e., the data should be stored in the cufftComplex structure
before converting it to the FFT domain. The cufftComplex data memory should be allocated before
launching a kernel function. However, in the Falcon software, the FFT conversion process is performed
in the middle of Keygen, Sign, and Verify. Thus, allocating memory to the cufftComplex data is
difficult. Furthermore, the original data should be converted to cufftComplex data format, which
results in overhead because Falcon codes use only an array format to express complex numbers. Thus,
the study implemented its own FFT-based polynomial multiplication method.

4.3.3 Reducing Divergence Effects with Dummy Operations

Synchronization should always be considered when multiple threads concurrently perform opera-
tions. If threads perform different operations because of branch-like statements, even within the same
warp, a divergence problem occurs. This is when the first branch threads execute the corresponding
statement as per the branch statement while the other branch threads enter the idle state without
performing other operations until all operations on the first branch are performed.

Warp divergence occurs if the threads cannot perform the same operation because of branch
instructions. Thus, the functions containing branch instructions with dummy operation-based parallel
codes are redesigned. Moreover, the additional memory of a precomputation table must be applied in
the dummy operation-based model, i.e., additional memory or a table to exclude the result of a dummy
operation can be used such that it does not affect the final result. Fig. 5 shows the basic approach to
dummy operation-based parallel codes where the left side shows the original codes including branch
instructions, i.e., thread i in a block executes either R[i] = f (A[i]) op g(A[i]) or R[i] = f (A[i]) where
f and g are a type of simple function, and op means operations such as addition and multiplication.
Furthermore, the right side of the figure shows the revised codes. Moreover, f and g are redefined as
table operations with f′ and g′. For example, f′(A [3]) and g′(A [1]) return zero value, which does not
affect the final result.

Figure 5: A basic approach for dummy operation-based parallel codes

4.3.4 Reducing Latency for Memory Copy

To reduce the idle time of GPU kernel execution because of memory copy between CPU and GPU,
the CUDA stream technique [32] is further exploited, which can asynchronously execute memory
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copy while the kernel executes Falcon operation. From the experimental result, the 32 CUDA stream
provides the best performance.

5 Results

This section discusses the evaluation of the Falcon performance running successfully on the
GPU and confirms its implementation by comparing output results through the test vector. Table 4
shows the performance comparison between the proposed implementation on a GPU and the latest
Falcon implementation on a CPU running AVX2. The Falcon result of the CPU used for performance
comparison is referenced by Pornin (2019) [35].

Table 4: Throughput of Keygen, Sign, and Verify per second for Falcon-512 and Falcon-1024 (Sign1

and Sign2 are the throughput of Signings with multiple keys and with a single key, respectively)

Parameter Falcon-512 Falcon-1024

Operation Keygen Sign1 Sign2 Verify Keygen Sign1 Sign2 Verify

Software1 115.7 5,948.1 27,933.0 36.4 2,913.0 13,650.0
Software2 135.3 7,692.9 44,424.7 45.5 3,818.5 22,416.5
Software3 1.0 7.9 333.3 0.3 3.7 162.9
Software4 172.1 12,134.4 58,169.2 59.2 6,117.3 28,987.4
Our works
(GPU)

6047.4 349,960.2 385,761.1 2,014,924.4 1971.8 167,928.4 181,110.7 997,067.4

Notes: Software 1: Falcon on Intel i5-8259U 2.3 GHz [31]. Software 2: Falcon on Intel i7-6567U 3.6 GHz using AVX2 [35]. Software 3:
Falcon on ARM embedded Cortex-M4 [35]. Software 4: Ryzen 9 5900X 4.7 GHz using AVX2.

The performance evaluation environment was as follows: the operating system was Windows
and the AMD Ryzen 9 5900X CPU and NVIDIA GeForce RTX 3090 GPU were used. The
performance evaluation was measured based on the time required to process a certain amount of key
generation/signature generation/signature verification workload and measured based on the average of
1,000 repetitions of the same operation. The GPU-side software was implemented such that 32 threads
for each block cooperatively performed one Falcon operation, and the number of blocks available was
set to 256, which corresponded to the performance threshold. The time calculation for performance
measurement was conducted based on the operation time, including the memory copy time between
the CPU and GPU.

The values in Table 2 are the throughput per second. In the table, Sign1 and Sign2 are the
throughput of the signing operation when using multiple keys and a single key, respectively. For
CPU implementations, there is no difference between using multiple keys and a single key because
the CPU software’s serial execution only uses a single key. For example, Pornin (2019) [35] used
Falcon-512 to generate 7,692.9 signatures per second. The study proposed implementation uses a
GPU to simultaneously perform more operations. In Falcon-512, it has a 52 times faster throughput
for key generation, 58 times speed for signature generation, and 72 times faster signature verification
compared with those in the study by Prest et al. (2022) [31]. When using AVX2 instructions, Falcon-
512 shows 44/45/45 times faster performance for Keygen/Sign1/Verify, respectively, than those in the
Pornin (2019) study [35]. For Falcon-1024, this study confirmed that its implementation was about
43/43/44 times faster than those of Pornin (2019) [35] for Keygen/Sign1/Verify, respectively. For Sign2,
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using a single signing key, the proposed implementation outperforms the CPU implementation [35]
with the AVX2 by 50 and 47 times for Falcon-512 and Falcon-1024, respectively.

Compared with Falcon CPU software (Software4) using AVX2 on the latest AMD Ryzen 9
5900X CPU, the study’s Falcon-512 software demonstrated 35/28/34 times better performance in
Keygen/Sign1/Verify, respectively. Moreover, the study’s Falcon-1024 software demonstrated 33/27/34
times better performance in Keygen/Sign1/Verify, respectively.

6 Conclusion

In this study, it was suggested that PQC can operate on GPU by considering the Falcon as an
example which is the final selected algorithm by NIST’s PQC standardization competition. Multiple
methods were proposed to successfully help the existing functions operate on the GPU. Moreover,
optimization techniques that can be quickly processed using the GPU features were introduced. To
our knowledge, this is the first result of implementing Falcon on a GPU. By operating PQC on a
GPU, the possibility of replacing the existing algorithm with PQC in multiple server environments
using the GPU is proposed. Furthermore, in this study, the proposed implementation techniques have
potential use for other lattice-based PQCs.
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