
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.034329

Article

An Optimal Algorithm for Resource Allocation in D2D Communication

Shahad Alyousif1,2, Mohammed Dauwed3,*, Rafal Nader4, Mohammed Hasan Ali5,
Mustafa Musa Jabar6,7 and Ahmed Alkhayyat8

1Research Centre, University of Mashreq, Baghdad, Iraq
2College of Engineering, Department of Electrical & Electronic Engineering, Gulf University, Almasnad, Kingdom of

Bahrain
3Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq

4Department of Pharmacy, Al-Mustaqbal University College, Hilla, 51001, Iraq
5Computer Techniques Engineering Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University,

Najaf, 10023, Iraq
6Department of Medical Instruments Engineering Techniques, Al-Turath University College, Baghdad, 10021, Iraq

7Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad, 10021, Iraq
8College of Technical Engineering, The Islamic University, Najaf, Iraq

*Corresponding Author: Mohammed Dauwed. Email: mohammed.dauwed@duc.edu.iq
Received: 14 July 2022; Accepted: 17 August 2022

Abstract: The number of mobile devices accessing wireless networks is
skyrocketing due to the rapid advancement of sensors and wireless commu-
nication technology. In the upcoming years, it is anticipated that mobile data
traffic would rise even more. The development of a new cellular network
paradigm is being driven by the Internet of Things, smart homes, and more
sophisticated applications with greater data rates and latency requirements.
Resources are being used up quickly due to the steady growth of smartphone
devices and multimedia apps. Computation offloading to either several distant
clouds or close mobile devices has consistently improved the performance of
mobile devices. The computation latency can also be decreased by offloading
computing duties to edge servers with a specific level of computing power.
Device-to-device (D2D) collaboration can assist in processing small-scale
activities that are time-sensitive in order to further reduce task delays. The task
offloading performance is drastically reduced due to the variation of different
performance capabilities of edge nodes. Therefore, this paper addressed this
problem and proposed a new method for D2D communication. In this
method, the time delay is reduced by enabling the edge nodes to exchange
data samples. Simulation results show that the proposed algorithm has better
performance than traditional algorithm.

Keywords: D2D communication; resource allocation; latency; optimization

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.034329
https://www.techscience.com/doi/10.32604/cmc.2023.034329
mailto:mohammed.dauwed@duc.edu.iq

532 CMC, 2023, vol.75, no.1

1 Introduction

With the development of the Internet of Things (IoTs) and Artificial Intelligence (AI) [1], emerging
technologies [2,3] and applications such as autonomous driving [4–7], smart medical care [8,9],
industrial automation [10], virtual reality [11] and augmented reality [12] have sprung up. The effective
implementation of these intelligent applications depends on the rapid acquisition, transmission and
summary processing of environmental information by different types of IoT nodes such as sensors.
How to support large-scale data transmission and rapid processing of massive wireless nodes has
become a huge challenge for future wireless networks. The traditional mobile cloud computing
technology transfers the data at the edge of the network to the cloud server center for processing.
With the geometric growth of the data volume, the mobile cloud computing technology faces
communication network congestion, long end-to-end delay, user data privacy protection, and other
problems. In order to effectively solve the problems existing in cloud computing technology, mobile
edge computing (MEC) technology came into being [13]. This technology utilizes the communication,
computing and storage capabilities of terminal equipment such as base stations, access points, and
IoT nodes at the edge of the wireless network to process data information and computing tasks at
the edge, which can effectively reduce the communication traffic of the backbone network and reduce
the end-to-end communication and computing delay, improve the data privacy protection capabilities,
and further stimulate various localized application innovations [14,15].

At the same time, various intelligent applications in the future rely on artificial intelligence
technology (such as deep learning, etc.), and use locally obtained data samples for artificial intelligence
model training and intelligent deduction [16,17]. In order to meet the low-latency requirements
of various intelligent applications, edge intelligence technology has become an important research
direction and has received extensive attention from academia and industry [18,19]. This technology
effectively combines MEC and artificial intelligence to support AI model training and intelligent
deduction at the edge of the network. By endowing network edge nodes with human-like real-
time response capabilities, edge intelligence technology can effectively support emerging intelligent
application scenarios and provide high-quality, low-latency service experience.

In edge intelligence technology, federated learning [20] is an important branch. Different from
the traditional centralized machine learning technology, the federated learning aims to distribute the
machine learning model training process to multiple edge nodes (such as wireless terminals such as
IoT nodes) in the MEC network, and conduct machine learning under the coordination of edge
servers. The edge nodes participating in federated learning can directly use data stored locally for
model training without sharing their user data. Specifically, the federated learning iteratively proceeds
as follows: 1) In each iteration, the edge server sends the current global AI model parameters to all
edge nodes participating in joint learning; 2) According to the received model parameters, each edge
node uses the locally stored data samples to update the local model, such as calculating the gradient
according to the loss function and updating the parameters; 3) Each edge node uploads the updated
model parameters to the edge server; 4) The edge server performs a global aggregation operation, and
performs a weighted average of the local model parameters sent by each edge node to obtain new global
model parameters. The above operations are iteratively performed until the model training converges.
In general, the federated learning can be divided into two ways: synchronous [21] and asynchronous
[22]. That is, the local model parameter update and global aggregation of different edge nodes need to
be fully synchronous, or can be done asynchronously. Reference [23] compares synchronous federated
learning and asynchronous federated learning. The research in this paper focuses on synchronous
federated learning.

CMC, 2023, vol.75, no.1 533

Efficient implementation of federated learning faces a series of technical challenges. On the
one hand, the computing resources of edge nodes are relatively limited. On the other hand, the
implementation of federated learning relies on frequent parameter update and aggregation between
edge nodes and edge servers, and as the number of edge nodes increases and the dimension of AI
models increases, the above parameter update and aggregation will lead to communication overhead
very large. Therefore, the limited computing and communication resources are the main bottlenecks
for the improvement of joint learning performance. In the actual network, different edge nodes have
heterogeneity in computing power, and the data sample sizes that different edge nodes need to process
are also different. Therefore, the calculation execution time for local model update will be different.
At the same time, due to the differences in deployment locations and the fading characteristics of
wireless channels, the channel states between different edge nodes and edge servers are also different,
resulting in differences in the performance of model parameters during upload and download.
Therefore, how to optimize the communication and computing resource allocation of the network
is an important means to improve the performance of joint learning. In the existing work, reference
[24] studied how to efficiently utilize the limited resources to achieve adaptive joint learning in a
resource-constrained MEC system. However, it only considers the resources consumed by the two
processes of local model update and global aggregation, while ignoring the communication resources
consumed by the model parameter update process. Reference [25] proposed a ternary gradient method
to reduce the communication time of joint learning. Reference [26] proposed two methods to reduce
the communication cost of the model parameter upload link to improve the communication efficiency
of joint learning. Reference [27] proposed a new multiple access method to achieve fast aggregation
of global model parameters. However, the above existing studies have ignored the influence of the
heterogeneity of computing and communication capabilities of edge nodes on the training of federated
learning models. Due to this heterogeneity, in the joint learning process, the time it takes for different
edge nodes to complete the local model update and parameter upload will be different, and the node
that first completes the model parameter upload needs to wait for other nodes to upload the model
parameters, resulting in computational problems and the waste of communication resources, resulting
in a decrease in the performance of joint learning. Therefore, this paper proposes to utilize offloading
technology to solve this problem.

In the MEC system, offloading is an important technology, which can effectively improve the
computing power of edge nodes and alleviate the situation that the computing and communication
capabilities of edge nodes do not match the task load. Generally, according to different offloading
objects, offloading techniques can be divided into two types, namely offloading between devices and
infrastructure (such as base stations) [28] and D2D offloading [29]. Offloading between devices and
infrastructure means that devices with weak computing power or shortage of computing resources
offload some or all computing tasks to infrastructures (such as base stations) that are closer to them for
processing. D2D offloading refers to devices with weak computing power or shortage of computing
resources, using D2D communication and other technologies to offload some computing tasks to
nearby devices with strong computing power or idle for processing. At present, the solution of how to
apply offloading technology to federated learning has not been proposed yet.

This paper studies federated learning in MEC networks. The D2D computing task offloading
for federated learning in the MEC network is shown in Fig. 1. The system includes an edge server
and multiple heterogeneous edge nodes, and each node stores its own user data. In order to solve the
problem of efficient joint learning in the heterogeneous scene of nodes, this paper proposes a D2D
computing task offloading scheme for joint learning. In view of the heterogeneity of computing and
communication capabilities of edge nodes, before the joint learning model training starts, the edge

534 CMC, 2023, vol.75, no.1

nodes use D2D communication to offload the tasks. It matches the communication ability, thereby
minimizing the total time of D2D computing task offloading and joint learning model training, and
improving the efficiency of joint learning.

Edge server

Edge node 1

Edge node 2

Edge node 3

Edge node K

Calculation task unloading D2D communication link

Global model parameters downlink

Local model parameters Uplink

Figure 1: Proposed system model

In this paper, it is assumed that the D2D task offloading between different edge nodes and
the uploading of the model parameters of the uplink adopts the frequency division multiple access
(FDMA) protocol to avoid the mutual interference of different edge nodes in the transmission process.
Based on this, the goal of this paper is to optimize the amount of computing tasks offloaded by all edge
nodes, so as to minimize the total time consumed by the offloading process of computing tasks and the
training process of the joint learning model. However, since the computational task offload of edge
nodes is a discrete variable, this problem is a non-convex optimization problem that is difficult to solve.
In order to facilitate the solution, this paper converts the non-convex optimization problem into a
convex optimization problem by means of continuous discrete variables, and then rounds the obtained
continuous solution to obtain the original problem. The simulation results show that the proposed
D2D computing task offloading scheme can reduce the impact of the heterogeneity of computing and
communication capabilities of edge nodes on the training of the joint learning model. It greatly reduces
the time consumed by the joint learning model training and improve the training efficiency of the joint
learning model. At the same time, it reduces the impact of the non-IID characteristics of the data, and
improve the accuracy of model training.

2 Federated Learning

This paper studies the federated learning system based on MEC. As shown in Fig. 1, the system
includes an edge server and K edge nodes, and the set of edge nodes is represented as k = {1, 2, . . . , K}.
Any edge node i ∈ K owns a local dataset Di consisting of all data samples stored locally. For any data
sample d in any local data set Di, it usually consists of two parts, the feature vector xd of the data sample
and the label yd. A machine learning model is described by a model parameter w, and the accuracy of

CMC, 2023, vol.75, no.1 535

the model is often evaluated by a loss function. For the model parameter w and the feature vector xd

and label yd of the data sample d, the loss function is defined as f
(
w, xd, yd

)
, abbreviated as fd (w). This

paper mainly studies the machine learning model of smooth support vector machine (SSVM), and its
loss function is shown in Eq. (1).

fd (w) = λ

2
||w|| + 1

2
max

(
0, 1 − ydwTxd

)2
(1)

The research method in this paper can also be extended to other machine learning models. On
edge node i, its local loss function is defined as:

Fi (wi) =
∑

d∈Di
fd (wi)

|Di| (2)

Among them, wi is the local model parameter of edge node i, and |Di| is the size of the dataset Di.

On edge servers, the global loss function is defined as:

F (wserver) =
∑K

i=1 |Di| Fi (wi)∑K

i=1 |Di|
(3)

Among them, wserver is a global model parameter, generally there are:

wserver =
∑K

i=1 |Di| wi∑K

i=1 |Di|
(4)

Finding the global model parameter w∗
server that minimizes the global loss function F (wserver) is the

objective of the joint learning model, which is expressed as:

w∗
server = argminF (wserver) (5)

Eq. (5) typically employs a synchronous distributed gradient descent technique to minimize the
global loss function F (wserver). The synchronous distributed gradient descent algorithm has four steps:
global model parameter download, local model update, local model parameter upload, and global
aggregation. The joint learning model training process is a cycle of the above four steps until the model
training is completed. For the convenience of description, this paper will complete these four steps in
sequence as a frame of joint learning. Model training consists of several frames. The frame structure
of joint learning is shown in Fig. 2.

It is assumed that the FDMA access protocol is used when uploading model parameters between
edge nodes and edge servers, and different edge nodes use different frequency bands, so there is
no mutual interference between edge nodes. In addition, the uplink/downlink for model parameter
transmission uses Time Division Duplex (TDD) technology. Due to the reciprocity of the channel, the
channel state information of the uplink/downlink is consistent. This paper assumes that the wireless
channel during the training of the federated learning model is static and does not change.

536 CMC, 2023, vol.75, no.1

Figure 2: Schematic diagram of the frame structure of joint learning

2.1 Global Model Parameters

At the beginning of each frame, that is, when the federated learning model training starts or
after the edge server completes the global aggregation operation, the edge server needs to send the
global model parameters to each edge node. The information transfer rate for global model parameter
download is determined by the user with the worst channel gain [30]. Let Pserver be the transmit power
of the edge server, then the information transmission rate for downloading global model parameters
is:

rdown = B log2

(
1 + mini∈K (gi) Pserver

�n0B

)
(6)

Among them, gi is the channel power gain between the edge node i and the edge server, n0 is the
noise power spectral density, B is the channel bandwidth, � ≥ 1 is the signal-to-noise ratio (SNR) gap
under the actual modulation and coding method, which describes the actual transmission constant of
the gap between the rate and the channel capacity. For simplicity, this paper assumes � = 1.

Therefore, the time it takes for the edge server to send the global model parameters to each edge
node is:

tdown = q
rdown

(7)

Among them, q is the number of bits corresponding to the model parameter w.

CMC, 2023, vol.75, no.1 537

2.2 Local Model Update

After receiving the global model parameters, all edge nodes overwrite the original local model
parameters with the global model parameters. The process that edge nodes use their local datasets to
update local model parameters using gradient descent method is called local model update operation.
All edge nodes can perform one or more local model update operations. In this paper, all edge nodes
are set to use batch gradient descent (BGD) method to train the model [31]. That is, gradient update
is performed using all data samples in one local model update operation.

For any edge node i, when the n ∈ {1, 2, . . . , N}th local model update is performed in the m ∈
{1, 2, . . . , M}th frame of joint learning, its local model parameters w(m,n)

i . Gradient update according
to the following rules:

w(m,n)

i =
{

w(m)

server − η∇Fi

(
w(m)

server

)
, n = 1

w(m,n−1)

i − η∇Fi

(
w(m,n−1)

i

)
, n > 1

(8)

where η is the learning rate. In the mth frame of joint learning, when n = 1, each edge node performs
gradient update on the global model parameter w(m)

server issued by the edge server, specifically when m =
1, w(m)

server is the system initialized global model parameters. When m > 1, w(m)

server is the global model
parameter obtained by performing the weighted average operation on the local model parameters of
all edge nodes. When n > 1, each edge node performs gradient update on the local model parameters
w(m, n−1)

server obtained by the (n − 1)th local model update.

In order to analyze the latency performance of the local model update, it is assumed that any
edge node uses a data sample to perform a local model update operation that requires a floating-point
operation. loss function decision. This paper uses the machine model SSVM to find the gradient of
the loss function of SSVM, and we can get:

∇f (w) =
{

λw + (
1 − ydwTxd

)
xd, ydwxd < 1

λw, ydwxd > 1
(9)

During the training process of the joint learning model, it is difficult to count the number of
floating-point operations of the piecewise function in Eq. (9). Therefore, in this paper, the maximum
number of floating-point operations required for a data sample to perform a local model update
operation in Eq. (9) is taken as the number of floating-point operations actually performed. The
number of floating-point operations required for the inner product of two vectors of dimension u is
2u − 1. Let the dimension of the data sample feature be u, so the dimension of the model parameters is
also u. For any data sample of any edge node, the maximum number of floating-point operations
required to derive any element of the model parameter vector is (2u − 1) + 4. Therefore, for the
derivation of the model parameters of dimension u number of floating-point operations required is
u((2u − 1) + 4) = 2u2 + 3u. Therefore, the number of floating-point operations a required by any edge
node to perform a local model update operation using any data sample is 2u2 + 3u + 2u = 2u2 + 5u,
when u is large enough, a ≈ 2u2.

Edge node i can perform ci floating-point operations in one CPU clock cycle, and its CPU clock
frequency is fi. Assuming that all edge nodes upload the local model parameters to the edge server
after performing N ≥ 1 local model update operations, the time consumed by edge node i to perform
N local model update operations using the batch gradient descent method is:

tloc
i (Si) = N

aSi

ci

1
fi

(10)

538 CMC, 2023, vol.75, no.1

Among them, Si is the number of data samples stored locally by edge node i.

2.3 Uploading Local Model Parameters

When each edge node completes N local model update operations, it needs to upload its local
model parameters to the edge server. In order to avoid mutual interference between different edge
nodes, the FDMA access technology is used in the process of uploading local model parameters, and
the system bandwidth is evenly distributed to all edge nodes participating in joint learning, and each
edge node performs local model in the allocated frequency band. parameter transfer.

Each edge node uploads local model parameters according to the FDMA access protocol, and the
transmission bandwidth allocated by all edge nodes is B/K. Therefore, the information transmission
rate at which the edge server receives the local model parameters uploaded by the edge node i is:

rup
i = B

K
log2

[
1 + giPi

n0B/K

]
(11)

Among them, Pi is the transmit power of edge node i.

Since the number of bits of the local model parameters is the same as the number of bits of the
global model parameters, the time consumed by the edge node i to upload the local model parameters
to the edge server is:

tup
i = q

rup
i

(12)

2.4 Global Aggregation

After receiving the local model parameters uploaded by all edge nodes participating in the joint
learning, the edge server performs a weighted average operation on all the local model parameters,
and the process of obtaining new global model parameters is called global aggregation.

Since the computing power of the edge server is strong enough, and the global aggregation
operation only performs a weighted average operation on all the received local model parameters,
which requires less computation, the time tglo consumed by the global aggregation will be very small.
Therefore, the time consumed by global aggregation is negligible, i.e., tglo ≈ 0.

After completing the model training of M-frame joint learning, the total time consumed by the
system is:

ttotal = M
(
tdown + maxi∈K

{
tloc (Si) + tup

i

})
(13)

Among them, M is the number of frames trained by the joint learning model.

Due to the heterogeneity of edge nodes, that is, the difference in CPU clock frequency of different
edge nodes, the difference in the number of floating-point operations that can be performed in one
CPU clock cycle, the difference in the number of stored data samples, and the difference in transmit
power. There is a difference in the time taken to complete the local model update operation process
and the local model parameter upload process in one frame.

It can be seen from Eq. (13) that the time consumed to complete the training of a frame of joint
learning model is limited by the edge node that finally completes the upload of local model parameters.
Because the edge server needs to receive the local model parameters uploaded by all edge nodes to
perform the global aggregation operation, and the edge node that completes the local model parameter

CMC, 2023, vol.75, no.1 539

upload first needs to wait for the edge node that completes the local model parameter upload last
before it can get the global aggregation of the edge server and then send new data of global model
parameters to start the next frame. As shown in Fig. 2, the edge node i is the last edge node that
completes the upload of local model parameters. Therefore, the waiting time Δti of edge node i is zero,
and at this time, other edge nodes j that complete the upload of local model parameters before edge
node i waiting time of Δtj (j �= i) will be greater than or equal to zero.

The greater the heterogeneity of different edge nodes, the longer the edge nodes with stronger
computing and communication capabilities (or smaller data samples) need to wait, which will cause the
computing and communication resources of edge nodes with strong computing and communication
capabilities. At the same time, it prolongs the time consumed by the joint learning model training
process and reduces the training efficiency of the joint learning model.

3 Problem Modeling
3.1 Computational Task Offloading for Federated Learning

In order to reduce the impact of the heterogeneity of computing and communication capabilities
of edge nodes on the training efficiency of the joint learning model, this paper proposes a D2D
computing task offloading scheme for joint learning. The process of performing D2D computing
task offloading is defined as the 0th frame of joint learning. The D2D computing task offloading for
joint learning is shown in Fig. 3. The D2D computing task offload is realized by D2D communication
technology, and a D2D communication link is directly established between edge nodes, without the
need for communication through base station services. By allocating the amount of computing tasks
of edge nodes participating in joint learning, the optimal compromise between the time consumed by
computing task offloading and the time consumed by joint learning model training is achieved, which
reduces the computing and communication capabilities of edge nodes. The effect of heterogeneity on
the training efficiency of the federated learning model.

0th D2D calculation
task

Frame 1 … Frame m … Frame M

Figure 3: Computational task offloading for federated learning

In machine learning, the number of data samples reflects the amount of computing tasks required
for model training. Therefore, the offloading of computing tasks for D2D is actually the offloading
of data samples between edge nodes.

The number of data samples unloaded from edge node i to j is sij. Then, after completing the
unloading of D2D computing tasks, the number of data samples owned by edge node i is:

S
′
i = Si +

∑
j �=i

sji −
∑

j �=i
sij (14)

The FDMA access protocol is used when computing tasks are offloaded between edge nodes to
avoid mutual interference between different links. Since there is no task transfer between two edge
nodes in the process of offloading computing tasks between edge nodes, the bandwidth allocated to
the communication link between any two edge nodes is

BW = B
K (K − 1) /2

(15)

540 CMC, 2023, vol.75, no.1

Let Pij be the transmission power of edge node i unloading data samples to edge node j, then the
information transmission rate of edge node i unloading data samples to edge node j is:

roffl
ij = B

K (K − 1) /2
log2

[
1 + hijPij

n0
B

K(K−1)/2

]
(16)

Among them, hij is the channel gain between edge node i and j.

Therefore, the time it takes for edge node i to unload data samples to edge node j is:

toffl
ij

(
sij

) = bsij

roffl
ij

(17)

Among them, b is the number of bits of a training data sample.

After the D2D computing task is unloaded, the time consumed by the edge node i to perform the
local model update operation is:

tloc
i

(
S

′
i

) = N
aS′

i

ci

1
fi

(18)

Substituting Eq. (14) into Eq. (18), we can get:

tloc
i

({
sij

}) = N
a

(
Si + ∑

j �=i sji − ∑
j �=i sij

)
ci

1
fi

(19)

3.2 Problem Modeling and Optimization

Based on the above D2D computing task offloading scheme, this paper considers the problem
of computing task distribution among different edge nodes, minimizes the total time consumed by
the computing task offloading process and the joint learning model training process, and realizes
the task offloading process time consumption and model training process time consumption is the
optimal compromise between the them. Therefore, the goal of this paper is to minimize the total latency
consumed by the joint learning training process by optimizing the amount of data sample unloading{
sij

}
. The problem can be modeled as (P1).

(P1) : min{sij} max
i,j∈K

{
toffl

ij

(
sij

)} + M
(

tdown + max
i∈K

{
tloc

i

({
sij

}) + tup
i

})
(20)

s.t.
∑

j �=i
sij ≤ Si, ∀i ∈ K

sij ≥ 0, ∀i, j ∈ K, j �= i (21)

Among them, Eq. (20) indicates that the total amount of data samples unloaded by edge node
i cannot exceed the number of data samples it has, and Eq. (21) indicates that the amount of data
sample unloading is a non-negative number.

Although the D2D computing task offloading scheme for federated learning increases the time
consumed by the D2D computing task offloading process, it can effectively reduce the impact caused
by the heterogeneity of computing and communication capabilities between different edge nodes,
making each edge node more efficient. The amount of computing tasks is matched with its computing
power, reducing the time consumed in the training process of the joint learning model, thereby
achieving the goal of minimizing the total time consumed by the entire system. This scheme can achieve
the optimal compromise between the time consumption of the computing task unloading process and
the time consumption of the model training process.

CMC, 2023, vol.75, no.1 541

Since the variables
{
sij

}
are discrete variables, problem (P1) is not a convex optimization problem,

which makes it difficult to solve.

To facilitate the solution, first relax
{
sij

}
to a continuous variable. At the same time, the auxiliary

variables Toffl and T loc_up are introduced. Therefore, the problem (P1) can be transformed into a convex
optimization problem, namely (P1.1).

(P1.1) : min{sij}, Toffl,T loc_up
Toffl + M

(
T loc_up + Tdown

)
s.t. toffl

ij

(
sij

) ≤ Toffl, ∀i, j ∈ K, j �= i (22)

tloc
i

({
sij

}) + tup
i ≤ T loc_up, ∀i, j ∈ K, j �= i (23)∑

j �=i
sij ≤ Si, ∀i ∈ K (24)

sij ≥ 0, ∀i, j ∈ K, j �= i (25)

Since the problem (P1.1) is a convex optimization problem, the mature convex optimization tool
CVX can be used to solve the problem (P1.1), and the continuous solution

{
sij

}
can be obtained. On

this basis, the continuous solution
{
sij

}
is rounded up and down at the same time. By traversing and

comparing all the rounding combinations of
{
sij

}
, the solution that minimizes the value of the problem

is found. The corresponding
{
sij

}
is the integer solution of the obtained problem (P1).

4 Simulation Results

In this section, simulation experiments are used to verify that the D2D computing task offloading
scheme proposed in this paper achieves a large performance gain for the time consumption of the joint
learning process.

4.1 Experimental Configuration

This paper simulates a MEC environment on a cellular network consisting of an edge server and
several edge devices. The distribution of edge nodes in the MEC system is shown in Fig. 4, where the
transmit power of the edge server is 50 W. The total bandwidth B of the system is 100 MHz, and the
noise power spectral density 0 n is −174 dBm/Hz.

Figure 4: Distribution of edge nodes in the MEC system

542 CMC, 2023, vol.75, no.1

In the MEC system, there are three heterogeneous edge nodes for three different types of
smartphones to participate in the joint learning model training, which are named as edge node I, edge
node II and edge node III. The CPU clock frequency If of the edge node I is 1.5 GHz, the number
of floating-point operations cI that can be performed in one CPU clock cycle is 8, and the transmit
power PI is 2 W. The CPU clock frequency fII of edge node II is 1.95 GHz, the number of floating-point
operations cII that can be performed in one CPU clock cycle is 12, and the transmit power PII is 2 W.
The CPU clock frequency fIII of edge node III is 2.6 GHz, the number of floating-point operations cIII

that can be performed in one CPU clock cycle is 16, and the transmit power PIII is 2 W. In this paper, it
is assumed that edge node I, edge node II and edge node III each have three edge nodes to participate
in joint learning, that is, a total of nine edge nodes participate in joint learning.

The public data set used for joint learning model training is the MNIST data set, with a total of
70,000 images of handwritten digits with white characters on a black background, of which 60,000
pictures are training data samples and 10,000 pictures are test data samples [17]. The number of bits b
owned by a data sample is 6136 bits. Each data sample has a total of 784 pixels as the characteristics
of the data sample, so there are 784 model parameters in total. Assuming that each model parameter
has 8 bits, the total number of bits q owned by all model parameters is 6272 bits. There are a total of
10 labels in the MNIST dataset, which are numbers 0 to 9. In this experiment, the joint learning model
is used to classify whether the handwritten digits are odd or even.

Before the start of the experiment, all edge nodes have 4500 data samples, and the data set owned
by each edge node is assumed to be non-IID. That is, the labels of the data samples owned by each
edge node only have the MNIST data set labels.

The training model used in the experiment in this paper is SSVM, and a data sample can be
obtained to perform a local model update operation, which requires 2 × 7842 = 1229312 floating-point
operations, that is, a = 1229312.

4.2 Results

Given the number of global aggregations M = 40 and the number of local model updates N = 5,
Fig. 5 compared the global loss function and model training accuracy of joint learning model training
over time before and after D2D computing task offloading, D2D computing task offloading before
and after, the global loss function of the joint learning model.

Figure 5: The global loss function of the joint learning model before and after the D2D computing
task is unloaded

CMC, 2023, vol.75, no.1 543

It can be seen from Fig. 5 that the global loss function of the joint learning model before and after
the D2D computing task is unloaded shows a significant downward trend during the training process.
Although in the early stage of joint learning model training, the joint learning after D2D computing
task unloading needs to consume extra time in the process of computing task unloading, but in the
process of model training, its global loss function decline rate per unit time is greater than that without
D2D. The decline rate of the global loss function per unit time in the joint learning of computing task
offloading shows that the D2D computing task offloading scheme for joint learning not only does not
affect the training of the joint learning model, but also can significantly improve the training efficiency
of the joint learning model.

The training accuracy of the joint learning model before and after the D2D computing task
is unloaded is shown in Fig. 6, which also verifies that the joint learning-oriented D2D computing
task offloading scheme can significantly improve the training efficiency of the joint learning model.
After completing 40 global aggregations, the training accuracy of the joint learning model before and
after D2D computing task unloading is about 0.85 and 0.86, respectively, and the training accuracy
of the joint learning model after D2D computing task unloading is higher than that without D2D
computing task unloading. The model training accuracy is improved by 0.01, because D2D offloads
computing tasks (actually D2D data sample offloading), which weakens the non-IID characteristics
of data samples, thereby improving the training accuracy of the joint learning model.

Figure 6: The training accuracy of the federated learning model before and after the D2D computing
task is unloaded

Fig. 7 shows the relationship between the time consumption of the system and the accuracy of the
model under different global aggregation times before and after the D2D computing task is unloaded.
There are five points on each line, which are the points corresponding to the time consumption of the
system and the accuracy of the model when M is 10, 20, 30, 40 and 50.

It can be seen from Fig. 7 that when M is small, the difference in total time consumed by the system
before and after D2D computing task unloading is not large, but its accuracy is low. However, with
the increase of M, the training accuracy of the joint learning model before and after the offloading
of D2D computing tasks continues to improve, but the gap of the total time consumed by the system
continues to increase, and the total time consumed by the system for offloading D2D computing
tasks Significantly less than the total time consumed by a system without D2D computational
task offloading. In practice, joint learning model training often requires a large number of global
aggregations to make the joint learning model perform better. Therefore, in practical applications,

544 CMC, 2023, vol.75, no.1

the D2D computing task offloading scheme for joint learning proposed in this paper can effectively
reduce the time consumed by the joint learning model training and significantly improve the training
efficiency of the joint learning model. Given the same M, the training accuracy of the joint learning
model after D2D computing task offloading is higher than the training accuracy of the joint learning
model without D2D computing task offloading. The computing task offloading scheme can also
reduce the influence of the non-IID characteristics of the data and improve the accuracy of model
training.

Figure 7: The relationship between system time consumption and model accuracy under different
global aggregation times before and after D2D computing task unloading

5 Conclusion

This paper considers the joint learning model of joint edge server and multiple edge nodes in the
MEC system, studies the influence of edge node communication and computing heterogeneity on the
training efficiency of joint learning model, and proposes a D2D computing task for joint learning.
The unloading scheme, by allocating the number of data samples of edge nodes participating in joint
learning, realizes the optimal compromise between the time consumed by data sample unloading
and the time consumed by joint learning model training, so as to minimize the time consumed by
the system. The simulation results verify that the D2D computing task offloading scheme for joint
learning proposed in this paper can effectively reduce the impact of the heterogeneity of edge node
computing and communication capabilities, significantly improve the training efficiency of the joint
learning model, and at the same time, it can reduce the non-independence of data. The influence of
the same distribution characteristic improves the training accuracy of the joint learning model. The
future work is to consider different other parameters and evaluate the proposed method.

Acknowledgement: The authors would like to thanks the editors and reviewers for their review and
recommendations.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMC, 2023, vol.75, no.1 545

References
[1] O. Hamid, R. Abduljabbar and N. Alhyani, “Fast and robust approach for data security in communication

channel using pascal matrix,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19,
no. 1, pp. 248–256, 2020.

[2] S. Khodhair, M. Nagmash, R. B. Abduljabbar and A. Alrawi, “Minimum delay congestion control in
differentiated service communication networks,” The Open Electrical & Electronic Engineering Journal, vol.
12, no. 3, pp. 42–51, 2018.

[3] S. Bashir, M. H. Alsharif, I. Khan, M. A. Albreem, A. Sali et al., “MIMO-Terahertz in 6G nano-
communications: Channel modeling and analysis,” Computers, Materials & Continua, vol. 66, no. 1, pp.
263–274, 2020.

[4] A. Amin, X. Liu, I. Khan, P. Uthansakul, M. Forsat et al., “A robust resource allocation scheme for device-
to-device communications based on Q-learning,” Computers, Materials & Continua, vol. 65, no. 2, pp. 1487–
1505, 2020.

[5] S. Alemaishat, O. A. Saraereh, I. Khan, S. H. Affes, X. Li et al., “An efficient precoding scheme for
millimeter-wave massive MIMO systems,” Electronics, vol. 8, no. 9, pp. 1–15, 2019.

[6] A. Al-Nimrat, M. Smadi, O. A. Saraereh and I. Khan, “An efficient channel estimation scheme for
mmwave massive MIMO systems,” in Proc. IEEE Int. Conf. on Communication, Networks and Satellite
(ComNetSat), Makassar, Indonesia, pp. 1–8, 2019.

[7] I. Khan and D. Singh, “Efficient compressive sensing based sparse channel estimation for 5G massive
MIMO systems,”AEU-International Journal of Electronics and Communications, vol. 89, pp. 181–190, 2018.

[8] A. Amin, X. H. Liu, M. A. Saleem, S. Henna, T. Islam et al., “Collaborative wireless power transfer in
wireless rechargeable sensor networks,” Wireless Communications and Mobile Computing, vol. 9701531,
pp. 1–13, 2020.

[9] F. Jameel, T. Ristaniemi, I. Khan and B. M. Lee, “Simultaneous harvest-and-transmit ambient backscatter
communications under Rayleigh fading,” EURASIP Journal on Wireless Communications and Networking,
vol. 19, no. 1, pp. 1–9, 2019.

[10] W. Shahjehan, S. Bashir, S. L. Mohammed, A. B. Fakhri, A. A. Isaiah et al., “Efficient modulation scheme
for intermediate relay-aided IoT networks,” Applied Sciences, vol. 10, no. 6, pp. 1–12, 2020.

[11] O. A. Saraereh, A. Alsaraira, I. Khan and B. J. Choi, “A hybrid energy harvesting design for on-body
internet-of-things (IoT) networks,” Sensors, vol. 20, no. 2, pp. 1–14, 2020.

[12] T. Jabeen, Z. Ali, W. U. Khan, F. Jameel, I. Khan et al., “Joint power allocation and link selection for
multi-carrier buffer aided relay network,” Electronics, vol. 8, no. 6, pp. 1–15, 2019.

[13] S. Alemaishat, O. A. Saraereh, I. Khan and B. J. Choi, “An efficient resource allocation algorithm for D2D
communications based on noma,” IEEE Access, vol. 7, pp. 120238–120247, 2019.

[14] R. A. Alhameed, I. Elfergani and I. Rodriguez, “Recent technical developments in energy-efficient 5G
mobile cells: Present and future,” Electronics, vol. 9, no. 4, pp. 1–4, 2020.

[15] S. Safavat, N. Sapavath and D. Rawat, “Recent advances in mobile edge computing and content caching,”
Digital Communications and Networks, vol. 6, no. 2, pp. 189–194, 2020.

[16] M. Mehrabi, S. Shen, Y. Hai, V. Latzko, G. Koudouridis et al., “Mobility- and energy-aware cooperative
edge offloading for dependent computation tasks,” Network Journal, vol. 1, no. 2, pp. 1–12, 2020.

[17] Z. Abbas, Z. Ali, G. Abbas, L. Jiao, M. Bilal et al., “Computational offloading in mobile edge with
comprehensive and energy efficient cost function: A deep learning approach,” Sensors, vol. 21, no. 10,
pp. 1–18, 2021.

[18] B. Letaief, W. Chen and Y. Shi, “The roadmap to 6G: AI empowered wireless networks,” IEEE Communi-
cations Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[19] M. Chen, Y. Miao, H. Gharavi, L. Hu and I. Humar, “Intelligent traffic adaptive resource allocation for
edge computing-based 5G networks,” IEEE Transactions on Cognitive Communications and Networking,
vol. 6, no. 2, pp. 499–508, 2020.

[20] J. Konecny, M. Brendan and D. Ramage, “Federated machine learning: Concept and applications,” ACM
Transactions on Intelligent Systems and Technology, vol. 10, no. 2, pp. 1–17, 2019.

546 CMC, 2023, vol.75, no.1

[21] J. Zhang, H. Tu and Y. Ren, “An adaptive synchronous parallel strategy for distributed machine learning,”
IEEE Access, vol. 18, no. 6, pp. 19222–19230, 2018.

[22] M. Hosseinzadeh, A. Hemmati and A. Rahmani, “Federated learning-based IoT: A systematic literature
review,” International Journal of Communication Systems, vol. 35, no. 11, pp. 518–533, 2022.

[23] C. Xie, O. Koyejo and I. Gupta, “ZenoPS: A distributed learning system integrating communication
efficiency and security,” Algorithms Journal, vol. 15, no. 7, pp. 1–18, 2022.

[24] S. Wang, T. Tuor and T. Salonidis, “Adaptive federated learning in resource constrained edge computing
systems,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221, 2019.

[25] B. Guo, Y. Liu and C. Zhang, “A partition based gradient compression algorithm for distributed training
in AIoT,” Sensors Journal, vol. 21, no. 6, pp. 1–19, 2021.

[26] X. Li, G. Zhu and Y. Cong, “Wirelessly powered data aggregation for IoT via over-the-air function
computation: Beamforming and power control,” IEEE Transactions on Wireless Communications, vol. 18,
no. 7, pp. 3437–3452, 2019.

[27] M. Liyanage, P. Porambage, A. Ding and A. Kalla, “Driving forces for multi-access edge computing (MEC)
IoT integration in 5G,” ICT Express, vol. 7, no. 2, pp. 127–137, 2021.

[28] J. Xu, L. Chen and K. Liu, “Designing security-aware incentives for computation offloading via device-
to-device communication,” IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6053–6066,
2018.

[29] S. Lee, Y. Tcha and S. Seo, “Efficient use of multicast and unicast channels for multicast service
transmission,” IEEE Transactions on Communications, vol. 59, no. 5, pp. 1264–1267, 2019.

[30] J. Ibanez, J. Alonso, P. Jorda, E. Defez and J. Sastre, “Two taylor algorithms for computing the action of
the matrix exponential on a vector,” Algorithms Journal, vol. 15, no. 2, pp. 1–19, 2022.

[31] J. Park, S. Lee, H. Kim, S. Song and S. Kang, “System invariant method for ultrasonic flaw classification
in weldments using residual neural network,” Applied Sciences, vol. 12, no. 3, pp. 1–17, 2022.

	An Optimal Algorithm for Resource Allocation in D2D Communication
	1 Introduction
	2 Federated Learning
	3 Problem Modeling
	4 Simulation Results
	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

