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Abstract: In the financial sector, data are highly confidential and sensitive,
and ensuring data privacy is critical. Sample fusion is the basis of horizontal
federation learning, but it is suitable only for scenarios where customers
have the same format but different targets, namely for scenarios with strong
feature overlapping and weak user overlapping. To solve this limitation, this
paper proposes a federated learning-based model with local data sharing and
differential privacy. The indexing mechanism of differential privacy is used to
obtain different degrees of privacy budgets, which are applied to the gradient
according to the contribution degree to ensure privacy without affecting
accuracy. In addition, data sharing is performed to improve the utility of
the global model. Further, the distributed prediction model is used to predict
customers’ loan propensity on the premise of protecting user privacy. Using
an aggregation mechanism based on federated learning can help to train the
model on distributed data without exposing local data. The proposed method
is verified by experiments, and experimental results show that for non-iid
data, the proposed method can effectively improve data accuracy and reduce
the impact of sample tilt. The proposed method can be extended to edge
computing, blockchain, and the Industrial Internet of Things (IIoT) fields.
The theoretical analysis and experimental results show that the proposed
method can ensure the privacy and accuracy of the federated learning process
and can also improve the model utility for non-iid data by 7% compared to
the federated averaging method (FedAvg).
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1 Introduction

In the finance field, risk control has always been the most important link of the credit business of
banks. Due to the increase in big data, machine learning has been widely applied to all aspects of life
[1,2]. Namely, using big data to conduct risk control modeling has become the mainstream method in
the finance field. This method mostly relies on the integration and sharing of loan data between banks.
However, the increasingly strict domestic regulations on privacy protection have brought the problem

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.


https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.034879
https://www.techscience.com/doi/10.32604/cmc.2023.034879
mailto:001030@nuist.edu.cn

864 CMC, 2023, vol.75, no.1

of data silos, so a federal learning framework is necessary [3]. One research direction has been to reduce
communication time and improve the risk control level of enterprises under the premise of ensuring
data privacy [4]. However, there is a lack of effective means for non-id data [5]. Another research
direction has been to optimize the convergence by optimizing the resource allocation of terminals, but
this can cause problems of slow convergence speed and poor optimal solution accuracy [6,7]. To solve
these problems, a classifier-based loan analysis model was proposed in [8], where a classifier based on
min-max normalization (Min-Max) and k-nearest neighbor (KNN) method was used to predict loans.
However, this method cannot guarantee data privacy. In reference [9], a system based on blockchain
and intelligent contracts was developed to solve the problem of data center unreliability.

In the field of distributed machine learning, federated learning has been used to enable deep
learning models to benefit from interrelated multi-node data [10,11]. However, it is necessary to
explore more possibilities for federated learning, particularly the cooperation between multiple
devices. Federal learning based on the SGD has been proven to have good performance in training
deep networks, but the problem is that customer groups are different while their characteristics are
basically the same. Therefore, this study selects horizontal federated learning [12,13]. In reference
[14], a federated learning model with blockchain, which used the consensus mechanism of blockchain
exchange learning, was presented; therefore, there was no need to process data. Currently, a federated
averaging (FedAvg) algorithm [15], which can achieve high accuracy for iid data by model training on
the MNIST and CIFAR-10 datasets, has been commonly used in the industry.

However, how to improve the convergence speed and accuracy of a model while ensuring data
privacy has been the main challenge. In reference [16], a sparse ternary compression (STC) method,
which uses a compression framework to improve federal learning under resource constraints, was
proposed to overcome this challenge. The problems of model convergence and data heterogeneity
in joint learning can be addressed by improving the FedAvg algorithm [17-19]. At present, federal
learning has been applied to many fields, including health care, car driving, and communication. In
addition, joint learning has been used to optimize the complexity of non-iid medical data [20,21].

Data privacy can be ensured by using differential privacy, but this method can affect model
accuracy [22,23]. According to the analyses of the impact of differential privacy on machine learning-
based models and application scenarios [24,25], there are two methods protects data privacy. The
first method is to achieve local differential privacy while preserving graph accuracy, and this method
protects data privacy through data splitting and combining [26,27]. Another method is to adopt
a strategy that combines privacy-preserving data publishing with principal component analysis
optimization (PPDP-PCAOQO) [28] to disturb local data and encrypt the reduced-dimensional data using
homomorphic encryption to ensure data privacy.

The main contributions of this paper can be summarized as follows:

(1) To handle scenes with non-iid data, a federated learning scheme based on global data sharing
is proposed to overcome the problems of divergence explosion and slow convergence caused
by data imbalance;

(2) To ensure privacy in the data transmission process, a noise algorithm based on the commonly-
used differential privacy is developed to improve model accuracy while ensuring data privacy
by imposing different privacy budgets according to the contribution;

(3) To overcome the problem of a certain difference between the fusion algorithm on the server
side and the traditional asynchronous updating method, global and local models are assigned
different weights according to the contribution degree algorithm based on the Bayesian
theorem.
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2 Related Work

In this section, an overview of recent studies on federated learning and differential privacy is
provided, and a federated learning-based framework that uses differential privacy for local data
sharing is proposed to address the risk control problem in the banking and credit industry so that
each client can keep customer data confidential. The model is trained on the premise.

2.1 Federated Learning

The FedAvg algorithm is the basis of the federated learning-based algorithm. Recently, many
studies have achieved certain improvements using the FedAvg algorithm. The FedAvg algorithm aims
to increase the number of local updates while reducing the communication amount between a client
and a server. In reference [29,30], it has been proven that the FedAvg algorithm converges under both
iid and non-iid data sets, but the convergence speed is slower for non-iid data. Since each FedAvg
client shares a fusion model, for non-independent same-distributed data, the gradient deviation of
a locally-trained model is large, so the needs of each client cannot be met. This is demonstrated by
the data comparison presented in Table 1. The global model has poor prediction performance on the
client side due to data distortion [31].

The learning process is illustrated in Fig. 1.
Step 1: A client downloads the original data model from server A;

Step 2: The client uses local database data to train the model, employs the mini-batch (small batch
gradient descent) to minimize the local loss function of the model, and uploads the updated gradient
to server A;

Step 3: Server A selects different clients according to contribution and uses average or weighted
aggregate gradients to update the model parameters;

Step 4: The client downloads the updated model for personalization training, where the client cost
function is given by

1 1 ns :
Ji(9) = P (¢ - n—\ Zi:l XJ,:‘) (1)

where ¢ is changed with the updated parameters of each client, and ¢; = ¢ + p,, and p; is the added
Gaussian noise; training samples of each client are represented by Xx;;.

The pseudo-code of the FedAvg algorithm is shown in Fig. 2.

Assume that there are N clients and each customer has a local dataset. During each iteration, a
server sends the initial model to the client, which generates a small sample gradient descent according
to the global state and local data. Generally, the optimization process for the d-dimensional data is as
follows:

) l o
minf (), where f(q) = — > fi(@) (2)

weR

Assuming that data of client 7 is denoted by D, and n = |D,|, the optimization goal can be
reached for:

X 1, 1
f@=2, ZF@. where F@=—>" (@ (3)

k
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Figure 1: The architecture of the FedAvg algorithm

Algorithm 1 FEDAvg: Federated Averaging
1: server input: initial g, and global step-size 7,
2: client ¢ ’s input: local step-size 7;

3: foreachroundr = 1,...,E do

4: sampleclients S C {1,...,N}

5: communicate g to all clientsi € S

6:  onclient i € S in parallel do

7:  initialize local model y; < g

8 fork=1,...,Kdo

9 compute mini-batch gradient g;(y;)
100y« yi — mgi(:)

11:  end for

communicate Ay; <- ¥; — ¢

end on client

12: Ag«+ % Sies Aui

14: g« q+nAq

16: end for

Figure 2: The pseudo-code of the FedAvg algorithm

2.2 Differential Privacy Attack

The definition of differential privacy is as follows. For two datasets x, x’eX with the Hamming
distance of one, if x and X’ are adjacent datasets with only one element difference in input, then a
randomization algorithm 4: X — R for a subset S can be defined by:

x,X € D:Pr[f(x) € S] < & Pr[f(x) € S] + & @)

Then, (e, §) differential privacy is satisfied.
One typical differential privacy attack principle is shown in Fig. 3.

To deal with this attack, the basic idea of differential privacy is used to add the disturbance noise
to data so that a single difference in the data does not generate a significant difference in the output
results, thus preventing the loss of data availability. However, it is challenging to ensure the global
model performs well on all customers’ local datasets. To reduce the performance degradation of joint
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learning caused by differential privacy, this study adopts optional differential privacy to solve this
problem and enhances the performance of the improved model on the local dataset by 12% compared
to the original model.

Data1 ‘ ...... Output=S

Data2 Output=S

o

Figure 3: Obtaining dataset privacy using differential attacks

Definition 1: Differential privacy (e, §)

If x and x’ are adjacent datasets with only one-element difference in input, for two datasets x, x’
€D with a Hamming distance of one as input, and S as output, a randomization algorithm A: X—R,
R for a subset S is defined as follows:

x,X € D:Pr[f(x) € S] < e Pr[f(x) e S]+ 6 (5)

The differential privacy (e, 8) is satisfied; the smaller the privacy budget ¢ is, the better the privacy
protection will be, and the larger the added noise will be at the cost of the decline in data availability; § is
the probability of accidental disclosure that violates differential privacy under normal circumstances.
As a relaxation term, it is usually defined as a small number, and in this paper, it is set to 0.02. The
theorem has been proved in [22].

Definition 2: Sensitivity mechanism

Sensitivity represents the maximum variation range of two data sets x and x’ with a one-element
difference. A query function f (-) is used to output the result, and it is defined by Eq. (6), where ||x||p
represents the Lp-norm. The smaller the sensitivity is, the less noise needs to be added.

5f = max | fX) — (X)) |, (6)

Definition 3: Noise mechanism

The common method of adding the noise is to randomize the query results without affecting the
data output and adding the noise with a certain distribution. One of these methods is the Gaussian
mechanism, where the noise with the Gaussian distribution is added to the query results; this method is
suitable for numerical output. Another method is the exponential mechanism, where the exponential
distribution is used to adjust the probability of query results, and this method is suitable for non-
numerical output. This study introduces two variables: clipping and noise. Suppose that in each update,
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a client with a probability P is selected among M clients, and the clipping of the selected client is the
norm. Then, after the average value of the update gradient values of the clients is calculated, the sum
of the mean covariance and the Gaussian noise satisfying the distribution is taken as a variation range
of difference privacy (¢, §).

o’'l=27 (%) I (7)

3 Formulation Methodology
3.1 System Architecture

The architecture of the data sharing-based FL algorithm (DSFL) includes two main layers, a data
encryption layer and a data transmission layer, as shown in Fig. 4. The former is deployed locally
on the client side, and the gradient is encrypted by adding the differential privacy noise after data
alignment; meanwhile the latter consists of a server and M clients. The data encryption layer is used
for gradient transmission between the central server and a client to update the federation model, and
the data transmission layer is used for the central server to deploy a subset of the global data to a client
to reduce the independence of local and global data distributions.

In each update model iteration, m clients are selected from all clients by contribution, and the

optimal gradient of the loss function J(f (¢, x;) is solved on the dataset consisting of the current
client database and shared data.

1 D;] 8J(f(qf_l,Xj)an)

k—1. _
Ve(q D) = — , 1 &)
|Di i=1 aq;
Server ‘ | Sending encrypted gradients
(2 Sending back model updates
’ w > ~ Secure aggregation
ar // y \ @ 4) Differential privacy encryption
/ ) | U,
/ - // \ ® Deploy shared data
®/ e||® \ —
////// @ AN \\ S@
O e 0O O O 0 Q O N \
‘u._ ,,-\.._.\z \_;_.\/ \ > ‘C‘ _.\J
0050 B % 0% B 5%,
00 N0 O : 0
Clietnt 1 Clietnt 2 Clietnt 3

Figure 4: The DSFL architecture

Step 1: After a server receives a batch of clients, one part of desensitized data is sampled from
all clients to form a global dataset S, and its subset is randomly deployed to the client according to
proportion 8;

Step 2: The client uses a small-batch SGD algorithm to update the gradient according to the local
dataset D; and random subset Si of dataset S, and the loss function f(-) and step « to determine the
local optimal gradient;
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Step 3: The sampling is performed for different privacy to obtain the number of gradients n,
and contribution degree function u(Vg(qi™'; D;), D)) is used to obtain the gradient of the m largest
contribution degrees and the smallest one to impose noise of different privacy budgets;

Step 4: After receiving the gradient uploaded by multiple clients, the server performs the weighted
averaging according to the error function and updates the machine learning-based parameters;

Step 5: After downloading the latest model from the client, the server updates the local model with
the global optimal gradient for the next training iteration.

3.2 Algorithm
Innovation 1: Data tilt in non-iid data

Based on the classical FedAvg algorithm proposed by Google, this study proposes a strategy to
balance highly-skewed non-iid data using one part of the shared public data. The proposed method
can be used to reduce data divergence between the client and server sides and improve the overall
training accuracy of a model. The globally shared dataset is denoted by S, and it represents a uniformly
distributed dataset that includes all categories of data. Dataset S is used to train the global initial
model, and a random subset of S with a ratio of 8 is deployed to customers. Finally, the local and
shared data are used jointly to train local models. The ratio 8 is given by:

I
B_||N||

Innovation 2: Shared data collection and client update

x 100% )

Each client is defined according to its local data distribution {x.’, '’ " 5 select a random distribu-
tion dataset with a data ratio 8 and all local classes for updating S.

A client i receives the initial model ¢, and a random subset of the globally shared dataset S and
uses GSD (f(-), B + S, «) to update the local gradient because function f is strongly convex. The
client can update a local gradient to make it close to the global loss minimum, with a time complexity
O(logl/a).

1 1 ng
f@) =56——> %) (10)

Innovation 3: Server update gradient
Nodes are assigned weights according to the contribution of the global and local models.

After the updated gradient ¢, of a client is sent to a server, the model weight distribution of the
global client is initialized. Next, the client gradient weight distribution is updated according to the error
function, and finally, a weighted average classifier model is obtained. The client model weight update
process is as follows. Weight «, of this model should be set such that «,g, minimizes the exponential
loss function.

tep (00| D,) = By, [e7 0] = By p, [e™ T (f(x) = q, (X)) + eI (f(x) # q,(%))]
= e Pp (X)) = q, (%)) + e Pp (f(X) # q, (X)) =e (1 —€) + "¢ (11)
where the exponential loss function is derived so that it equals zero.

aLeXP(atqt\Dt) _

—e (1 — €) + €™, (12)
oo,
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Further, «, is the weight update coefficient of the local gradient function, and it is given by:

1 1 —¢
=<1 13
* z“( . ) (13)

Innovation 4: Data privacy concerns

This paper proposes using decentralized differential privacy. According to the contribution
difference between the gradient values of different dimensions of the local model and the contribution
function, different privacy budgets are used to add the noise. When a local gradient is calculated,
data samples are divided into a small batch of data D;, which corresponds to the local gradient model
obtained by the SGD algorithm, where J(f(q{~", x;), ;) is the loss function.

The gradient is calculated by:
1 IDjl aJ(f(q:(_laxj), yJ)

V k_l' Di = — 14

g@ D) =150 2 A (14)
Client P updates the gradient using the local model as follows:

at =q' —nVe@ ;D) (15)

Based on the small batch of data D,, the local gradient model Vg;(¢/™"; D,) is obtained, and the
availability of gradients of different dimensions is calculated using the contribution function R as
follows:

u(vgj(qu, Di)’ Dl) = Ivgj(q:*l; D1)|5J = 1’ 2’ R (16)

Then, the exponential mechanism is used to sample n model gradient values to obtain the total
privacy budget ¢; as follows:

Pr [V € Va(g; D] o exp (M)J: 1,2,....n (17)
' 2nAu
The higher the contribution degree of a gradient value of the local model is, the greater its chance
to be selected will be. The Laplacian noise with a privacy budget of ¢, is added to the gradient with the
largest contribution value for the first m2; the Laplacian noise with a privacy budget of ¢, is added to
the last (n — m) gradients.

AL _ A
Vi sD) = Ve D) + Lap, (1) 19)

When L is in the range of [1, m], i = 2 is the Laplacian noise with a privacy budget of &,, and
when L is in the range of [m, n], then i = 3, and the local optimal gradient model is generated after
many local iterations. After the weighted average is obtained, it is uploaded to the server to update the
model.

4 Experimental Results
4.1 Dataset Definition

Two public datasets 1, Loan (https://www.kaggle.com/itsmesunil/bank-loanmodelling) and
Abank credit department (BANK data set), were used to classify personal loan behavior.

After obtaining a total of 12,047 samples with a total of 31 user features, the problem of missing
dimensions in the samples was addressed as follows. Data scaling and data discretization were adopted
for digital fields. According to the width, frequency, and clustering features, the features such as age
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were mapped to the interval, and the interval id instead of the specific value was used to perform the
numerical mapping.

The string-type data were used for hot coding. Data of different structures were unified and
converted into a Hive table for subsequent calculation. Considering the missing degree of samples,
features with a missing degree of more than 50% were discarded. As shown in Fig. 5, Based on the
principle of 1V statistics, feature vectors were selected continuously by boxes. Finally, the remaining
10 features were trained.
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Figure 5: The correlation between features obtained based on the covariance matrix

The data were divided into training and test sets according to the proportion of 8:2. The training
set was divided between 12 clients on average, and the training samples were divided into 10 classes.
Next, 1,000 data samples, including 10 classes, were selected to form a shared dataset as a global shared
data subset S; the number of clients was set to five. The training set was randomly and unequally
deployed at the client as a local database.
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Two commonly-used indicators were selected to evaluate model quality. The canonical term
coefficients of accuracy and loss were set to 0.0005, and the step size was set to 0.001.

4.2 Comparison with FedAvg Algorithm

First, experiments with the proposed method were conducted on the iid and non-iid datasets. The
FedAvg algorithm was used as a baseline, and experiments were divided into three groups. The DSFL
algorithm was performed on the iid dataset, and the FedAvg and DSFL algorithms were applied to the
other two groups of non-IID data. Each client’s local dataset in the iid data was randomly, uniformly
distributed across all classes. The non-iid data were arranged according to the class labels into 20
partitions, making the client receive data from only a certain number of classes. The other parameters
were set as follows. The number of clients was N, the number of training epochs was FE, the local
calendar was set to one, and the learning rate of the client was o = 0.02.

As shown in Fig. 6, the accuracy of the DSFL algorithm reached 87.6% after being stabilized on
the dataset with the balanced distribution, while for the second type of dataset with data distortion,
the non-iid dataset 1, the DSFL algorithm had better performance than on the second non-iid
dataset. After stabilization, the convergence round number was decreased by six, and the accuracy
rate increased by 7%.

Result Analysis

80

60

Accuracy

40 4

20 — iid
—— Non-iid(1)
—— Non-iid(2)

0 25 50 75 100 125 150 175 200
rounds

Figure 6: The accuracy result comparison of the algorithms on the iid dataset and two non-iid datasets

To verify the effectiveness of the proposed DSFL method, comparative experiments were con-
ducted with several mainstream models, including the CNN model (Taheri et al. 2021), LSTM model
(Yuwei Sun et al. 2021), and classic Fed Avg model, with the same simulation configuration on datasets
1 and 2. The experimental results are shown in Table 1.

As shown in Table 1, for the loan prediction task, the proposed algorithm had a significant advan-
tage in accuracy compared to the CNN, LSTM, and FedAvg models. There were 24 training rounds.
The precision, recall, and F1-score of DSFL were 0.7266 model, 0.6977, and 0.7119, respectively. The
FedAvg model had the precision, recall, and F1-score values of 0.6679, 0.6397, and 0.6551, respectively.
Although the accuracy of the subsequent training performed according to the different privacy budgets
was improved, the proposed algorithm had a good performance because using the shared data could
more effectively solve the problem of horizontal federation learning data imbalance. Compared with
the local models CNN and LSTM, the FedAvg algorithm sacrificed the accuracy to a certain extent
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compared to the LSTM and CNN algorithms in the process of passing the gradient to ensure data
privacy. The DSFL could significantly reduce this impact by using the noise of different privacy
budgets in data privacy tasks. The DSFL had a greater advantage.

Next, the following two points were verified in the experiment:

(1) The influence of privacy budget on accuracy and loss function;
(2) The influence of shared data on model accuracy.

4.3 Privacy Budget Effect on Model Accuracy and Loss Function

A feedforward neural network (FFNN) was used to train the model; the hidden layer included
three layers and had N input features; the number of neurons was N or 2N, and the N output
layer consisted of a single neuron. The mini-batch SGD algorithm was employed for local gradient
optimization, using the cross-entropy loss function as a loss function L = —[ylogy+ (1 —y) log(1 —y)].
The learning rate of local learning . was set to 0.01, and the local mini-batch data size D was set to
100.

As shown in Fig. 7, adding the noise reduced the accuracy to a certain extent. According to
the Laplacian noise addition formula, the smaller the privacy budget was, the greater the impact of
the added noise on the result was. The protection degree was good, and the convergence occurred
after approximately 80 epochs. The loss was fixed at nearly 0.5. In this study, an adjustable privacy
mechanism was used to achieve a balance between privacy and model availability, providing a certain
availability, which is proven below.

Result Analysis Result Analysis
—— Our scheme,g=2
—— Our scheme,e=4
801 2.0 1 —— Our scheme,e=8
60 4 1.5 4
>
g w
5 w
g 8
40 1.0 4

20 4 0.5 |

—— Our scheme,e=2
—— Our scheme,e=4
—— Our scheme, =8

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 7: Impact of different privacy budgets on model accuracy and loss

As shown in Table 2, When the mini-batch data size was 64, the accuracy was higher than that
when the mini-batch data size was 128. The results indicated that the accuracy of the global model was
improved, and the convergence speed of the model was increased at the cost of training time. When
€, and €; were unchanged, and the proportion of €, was large, the model accuracy was improved. It is
worth noting that the accuracy of the global model differed at different values of €, (0.25/0.5). Namely,
there were obvious changes in accuracy, and the results demonstrated that the adopted differential
privacy could provide higher balance accuracy and better privacy.
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Table 2: Comparison of the model loss results of federated learning under different parameters

P=3 P=6 P=9
bs €, Loss bs €, Loss bs €, Loss
0.2¢ 0.61287 0.2 ¢ 0.47681 0.2¢ 0.37464
64 04¢; 057811 64 0.4 ¢, 0.41566 64 0.4¢ 0.33281
0.6¢; 0.36832 0.6 ¢, 0.39714 0.6¢; 0.34321
0.2¢ 0.57654 0.2 ¢ 0.56213 0.2¢ 0.55364
128  04e  0.56571 128 0.4 ¢, 0.56114 128 0.4¢ 0.55261
0.6€; 0.53695 0.6 ¢, 0.53625 0.6¢; 0.54128

Abbreviations: bs denotes the number of mini-batch samples; larger ¢, means more noise was added.

4.4 Shared Data Effect on Model Accuracy

The divergence of a client and a server with the same initialization was calculated by Eq. (20)
Confirmation of changes, and it was affected by the learning rate, the number of synchronizations,
and the gradient magnitude. The accuracy decreased with the divergence degree (DD), and the DD
could be effectively reduced by global data sharing.

PD=" 1lg"(=1—q( =0l (20)

The proposed method did not change the client dataset but sent a small portion of shared data
with uniform data distribution to the server contributed by all clients, which resulted in a random data
distribution on the server. After the client model was initialized, it was expected to reduce the DD and
improve the accuracy of the global model.

I1S]]
= —— x 1009 21

B Nl 00% (21)

The training data were divided into two parts, one was the client dataset D, and the other was
dataset S. This experiment considered more extreme and distorted class 1 non-iid data of the two
types of non-iid datasets; namely, the dataset contained only one class. In the data initialization phase,
the server deployed a partial subset a of S to each client for initialization, and the client used the two
parts of data to train the local model. Then, Eq. (1) was used to evaluate the effect of data scale g of
G and S on the model accuracy, and Eq. (2) was used to analyze the effect of the partial subset of S
on the model accuracy.

The influence of B in 0%-25% on the model’s accuracy is presented in Fig. 8a, where it can be
seen that after 400 training epochs, with the continuous increase in 8, the accuracy reached the value
of 78.42%. Even when the lower 10% was used, an accuracy rate of 72.86% could be achieved. Under
the same settings, the accuracy rate without using the shared data was only 38%. Because the accuracy
rate was flattened at only 25%, it was not required to deploy too much data to the client. With the
increase in B, the DD first decreased and then stabilized at approximately 25%.

The same changing trend can be observed in Fig. 8b. The accuracy of the model first increased
rapidly and then stabilized in the range from 76% to 78%. Therefore, based on the experimental results,
the amount of data deployed to a client could be reduced. For instance, when 10% of client data were
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used as the global shared data and o was set to 40%, only 5% of the data was needed to improve the

overall model accuracy by 22%.

Consequently, the proposed shared data strategy provided a better solution to the considered
federated learning problem, but the error was too large on the non-iid data.

Compare different a% Influence on model

Compare different B Influence on model accuracy

accuracy and data divergence under
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Figure 8: The influence comparison of @ and 8 on data accuracy

5 Conclusions and Future Work

For data with strong privacy and large distribution differences, this paper uses the data divergence
degree and adopts the federated learning algorithm with gradient fusion and Gaussian noise addition,
which has a slight influence on model accuracy but can provide good robustness against differential
attacks. Differences in the data distribution between clients are quantified, and the training accuracy
of the model is improved and verified by sharing 5% of the data.

In future work, the proposed method could be improved to handle highly private data, such
as lung CT photos of patients with COVID-19 infection, for medical disease prediction, and the
adopted technology could be improved using effective methods and clustering algorithms for clients.
In addition, clustering committees could be used to assign each client a different contribution degree,
and more complex reinforcement learning-based models could be employed to reduce the number of
clients participating in training without reducing model accuracy.
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