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Abstract: Virtual Machines are the core of cloud computing and are utilized to
get the benefits of cloud computing. Other essential features include portabil-
ity, recovery after failure, and, most importantly, creating the core mechanism
for load balancing. Several study results have been reported in enhancing load-
balancing systems employing stochastic or biogenetic optimization methods.
It examines the underlying issues with load balancing and the limitations
of present load balance genetic optimization approaches. They are criticized
for using higher-order probability distributions, more complicated solution
search spaces, and adding factors to improve decision-making skills. Thus, this
paper explores the possibility of summarizing load characteristics. Second,
this study offers an improved prediction technique for pheromone level predic-
tion over other typical genetic optimization methods during load balancing.
It also uses web-based third-party cloud service providers to test and validate
the principles provided in this study. It also reduces VM migrations, time
complexity, and service level agreements compared to other parallel standard
approaches.

Keywords: Predictive load estimation; load characteristics summarization;
correlation-based; parametric reduction; corrective coefficient-based

1 Introduction

Cloud computing pools and shares computing, storage, and networking resources. These shared
resources can be scaled based on resource pool usage. According to Rimal et al. [1], application
developers and the industry accept the shared resource management of pooled resources method.
Cloud computing allows remote program development, hosting, and management. Patidar et al. [2]
say most network-based access to shared resources is paid. Cloud-based service providers use load
balancing to control resource usage automatically. Unless told otherwise, pooled computers share
network demand. Load-balancing solutions may help. Kaur et al. [3] say load balancing uses virtual
machines and subsequent allocations or migrations. Virtualization allows multiple operating systems
to run on a single physical resource or resource pool, according to Chandra et al. [4]. Virtualization lets
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data centers move applications, share resources, handle errors, and spread the load. Application owners
may need portability since new hardware and software will likely use the same platform and hardware.
Application and data center owners may save money by sharing load-balancing resources. Virtual
machines use physical resources. This gives developers a virtual representation of shared physical
resources. Resource competition may occur when many virtual machines use the same physical pool.
Datacenter providers use hypervisors more. According to Mishra et al. [5], virtual machines have
many benefits. Virtualization impacts hardware and software. Computed resources include processors,
storage devices, and networks. According to Agarwal et al. [6], virtual machines’ live migration
resources are only loosely linked. They are spreading the load. During live migration, old sources
are removed, and new ones are added. To move a virtual machine, reset it. Keep the virtual machine’s
memory.

Barzoki et al. [7] found a growing need for scalable, high-performance applications. Akbari et al. sug-
gested researching biology-based algorithms [8]. Current research focuses on making algorithms
to divide work without losing virtualization’s benefits. This chapter demonstrates a natural way to
balance loads. Next, the paper explains why more research is needed. Henceforth, it is natural to
realize the demand for further optimizations. These algorithms are primarily driven by the rule engine
and cannot encourage dynamic rule building, making them less dynamic and responsive to load
balancing. These strategies are also less effective in terms of proper virtual machine utilization. Finally,
it is discovered that these mechanisms are bottlenecked for reducing response time beyond a certain
scale. Thus, this paper briefly aims to evaluate the possibility of summarizing load characteristics. This
study also provides a better prediction technique for pheromone level prediction than other common
genetic optimization methods used during load balancing. However, finding the best solution usually
depends on how the problem is set up and, to a large extent, on the state of the data fed into the
algorithms. So, optimization techniques are often used to make further improvements and find the
best solution to a problem.

Further, this paper is organized such that, in Section-2, the foundational understanding of this
domain of the research is furnished, the baseline methods for the load balancing are discussed to
evaluate research gaps, in Section—3 as proposed algorithms, further this paper furnishes the obtained
results and discuss the improvements compared with the parallel other research outcomes in Sections—
4 and 5, the research conclusion is furnished.

2 Background of the Research

In this Section of the work, the foundation layout of the research is furnished. Bio-Inspired
methods are widely popular in various fields of research. Every research in various fields proposes
multiple algorithms to solve domain-specific problems, and the solutions by these algorithms lead
to specific problem solutions. Nevertheless, algorithms often research to some extent where further
improvements cannot be proposed, only relying on the core strategical solutions, and many of these
algorithms provide multiple solutions, which are all timely and effective. However, finding the most
optimal solution habitually relies on the problem environment, which can be significantly represented
by the state of the data as input to the algorithms. Thus, optimization techniques are widely used for
further improvements and to find the optimal solution for the problem. Apart from finding the best
solution or the solution space, the optimization algorithms on top of the primary problem-solving
algorithms can cater to a wide range of solutions. The Bio-Inspired optimization algorithms can be
primarily categorized into two different categories:
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2.1 Deterministic Methods

The first category is the deterministic methods. The deterministic method of the problem solution
ensures the optimization solution in the complete solution space. The deterministic algorithms usually
consider the features or the parameters which describe the problem in detail and thus guarantee to
find the global solution to the same problem. Nevertheless, the deterministic methods are limited
to solving the problem with less or no information from the outside and are generally treated as
black box problems. Also, this method is difficult to solve in the case of the problem, which is highly
unpredictable and frequently changes the pattern of the transitions. Further, these methods can also
be difficult to apply to some problems, which deal with a higher order of the data and comparatively
large dependencies, as demonstrated in work by Li et al. [9]. There are many prominent methods in
this optimization category, such as Branch & Bound, Cutting Plane, Inner & Outer approximation,
and convex methods.

2.2 Stochastic Method

The second category of them is the stochastic methods. These methods can find the solution in
finite time and faster than the deterministic methods. Nonetheless, the stochastic methods cannot
provide the optimal global solution for any problem solution space. The stochastic methods can only
find the probabilistic solution in finite time, as showcased and proven by Zhou et al. [10]. The wide
acceptance of the stochastic methods is driven by various advantages such as:

Firstly, less complex mathematical modeling can still be useful for finding the solution. Secondly,
the case of large-scale data-driven problems, the recent problem trend, can be well handled by the
stochastic methods as elaborated in work by Yan et al. [11].

Lastly, the time to find the optimal solution, the optional probabilistic solution, is less than
the deterministic methods. The popular optimization algorithms under the stochastic methods are
genetic algorithms, ant colonies, artificial bee colonies, particle swarms, and many more. This work
also proposed a novel optimization method using bio-inspired strategies on the edge of the stochastic
optimization method. Further, this work elaborates on the possibilities of applying bio-inspired opti-
mization methods to solve cloud computing load-balancing problems. Nevertheless, these algorithms
are criticized for the following reasons:

e These algorithms are primarily driven by the rule engine. They cannot encourage dynamic rule
building, which makes these algorithms less dynamic and less responsive to load balancing.

e These strategies are also less effective in properly utilizing virtual machines.

e Finally, these mechanisms are found to be bottlenecked for reducing the response time beyond
a certain scale.

Thus, these problems demand further research. In this chapter of the work, the problems
encountered by the parallel research attempts are addressed with a novel bio-inspired mechanism for
optimizations. The next Section of the work addresses the fundamental strategy for load balancing on
cloud computing, and the principle mathematical model is analyzed.

3 Formulation of the Research Problem and Proposed Load Summarization Process

This portion of the paper discusses the basic technique for load balancing and summary.
The underlying idea of load balancing is virtual machine migration. Thus, the load computation
and migration methods must be well understood. According to Medina et al. [12], the commonly
acknowledged procedure of migrating virtual machines from the source physical resource pool to
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the destination physical resource pool is termed live migration. The source virtual machines and
services are not stopped, and the destination virtual machines and services are not restarted, but all
maintenance activities may be done using kernel procedures. This technique improves availability and
service level violations compared to other parallel solutions.

Regardless, integrating physical resource usage is the key to success for any load-balancing
strategy. So, in this part, we suggest first the load summarization approach. Wen et al. [13] recently
suggested a load formulation approach. This method’s main flaw is the need for more consideration
for diverse service requests. This Section explains the main problem with this method and sets up
a different way to add up all the loads using service type load analysis in the mathematical lemma.
The benefits of this load-balancing or virtual machine-moving strategy are explained [14—19]. Virtual
machine bandwidth is hard to determine. This proposed change to workload summarization is
helpful. Different types of services require different types of storage containers. Migration is based
on more than capacity. With this change, we can see the real demand. Depending on when they need
data, different services have different storage and replication needs. People’s abilities don’t explain
migration. So, the proposed change to work summaries is helpful. Load balancing or virtual machine
migration after a proposed method corrects workload summarization requires a basic understanding
of optimization methods [20—26]. The recent outcomes also suggest that the summarization process of
loads shall lead to the correct identification of the problem [27-29].

3.1 Formulation of the Research Problem

The flaws in the current methods have been exposed by the discovery of the fundamentals of load
succinct summation, primitive optimization methods, and recent research on the primitive method.
From now on, the issues that need to be addressed in this study will be outlined in this Section of the

paper.
During this phase, two problems are recognized and formulated so that the solutions can be
modeled in greater detail.

Primitive and enhanced ACO methods have both been criticized for being overly complex when
applied to large search spaces, as discussed in the previous part of this document. Thus, to demonstrate
the reduction potential of predictive methods, the following equation lemma is formulated:

Lemma-—1: The prediction of the future load conditions shall lead to a significant reduction of the
time complexity for any load-balancing algorithm.

Proof: The standard analogy compares the performance or the time complexity for two load
balancing strategies, wherein in the first instance, the Algorithm calculates the load situations
reactively, and in the second instance, the Algorithm calculates the load conditions proactively or using
predictive analysis. However, the standard load analysis algorithms are furnished into four primary
phases identification of the load condition (LC), identification of the instance capacity (IC), load
optimization (LO), and finally, migration between the instances (MB). Here for reactive algorithms,
assuming that these four phases take the time as t1, t2, t3, and t4, respectively with the total time as T.
Thus, this can be realized as,

T =(t14+02+13+14) ey
Naturally, the first phase of identification of the load condition is highly repetitive and must be

added as a service protocol to the data center architecture. Hence the time t1 is significantly higher
compared to the other three phases’ time complexity. As



CMC, 2023, vol.75, no.1 517

11> [£2]13]¢4] )

Similarly, it is natural to realize that the optimization phase is also iterative and must be almost
equal to the identification phase. Also, the migration phase may be flexible, but due to the larger size of
the virtual machine, may take longer. Hence, the complete comparison between the time complexities
in various phases can be identified as,

Lh>t,>6L>0 (3)

Alternatively, during the proactive or the predictive strategy for the same Algorithm, assuming
that the standard load analysis algorithms are furnished into four primary phases identification of the
load condition (LC), identification of the instance capacity (IC), load optimization (LO) and finally
migration between the instances (MB). Here for reactive algorithms, assuming that these four phases
take the time as t11, t22, t33, and t44, respectively with the total time as T1. Thus, this can be realized as

T1 = (11 + 122 + 133 + t44) “4)

Fundamentally, for the predictive strategy-driven algorithms, the iterative phases must be con-
verted into a single-step process and can be computed during the previous step of the algorithms. As
the identification of the load condition must be completed during the migration process of the previous

phase. The separate time taken for identifying the load condition tasks is completed within the same
time limit of the migration process. As

t1l C 144 &)
Henceforth, this understanding must also be incorporated with the previous assumptions, as

stated in Eq. (2),

T1 = ([t11|t44] + 122 + 133) (6)

These enhancements to the Eq. (6) can be justified with the following relation,
If t11 > t44, then T1 = ([ ¢11] + 122 + £33)

Else, then time — T1 = ([t44] + 122 + 133) )
Hence,
T>>TlI ®)

Consequently, this mathematical formulation proves that load prediction can substantially
decrease the computational complexity of the load-balancing Algorithm using predictive calculations.

Secondly, as discussed in the previous sections of this work, the ABC or BAT methods, both
primitive and enhanced methods, are criticized for less stability due to incorporating the various
parameters. Henceforth, in the following mathematical model using the correlation method, the
stability of the proposed model is aimed to be increased.

Lemma-2: The correlation-based attribute reduction reduces the time complexity and model
stability to a greater extent.

Proof: In this mathematical formulation, the non-correlation-based strategy is compared with
the correlation-based strategy. Assuming that the non-correlation-based model is deployed with a set
of n parameters as P [], and each parameter in the model is denoted as pi, then this relation can be
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formulated as,

Pn=>»p ©)

Also, if processing each parameter for the fitness function is t time, then for total time, T,, for
processing the fitness function can be formulated as,

T =nxt (10)

On the other hand, if n number of parameters can be reduced to m number of parameters using
the correlation factors, then a set of m parameters as P1[] and each parameter in the model is denoted
as pl;, can be formulated as,

PI[ =) pl, (11)

where the n number of parameters can be converted into a lesser number of parameters, m, using
the correlation method with X as correlation factors, then each parameter in the reduced set can be
formulated as,

pli=Bipi+ Bopin + Bspia+ .o (12)

Again, if processing each parameter for the fitness function is t time, then for total time, T,, for
processing the fitness function can be formulated as,

T,=mxt (13)

Here it is significant to realize that m << n the following relation can be easily derived,
T >>T, (14)

Thus, with this mathematical formulation, it is conclusive that the correlation-based attribute
reduction reduces the time complexity and model stability to a greater extent. The proposed predictive
model is presented in the next Section of this work. Henceforth, based on the problem identifications
and mathematical problem modeling, the proposed solutions with the mathematical models are
furnished in the next Section of this work.

3.2 Mathematical Model for the Proposed Solutions

After understanding the load summarization and balancing process, primitive and recent methods
for optimizations with the fundamental bottlenecks, and formulating the problems to be solved,
the mathematical models for the proposed solutions are furnished in this Section of the work. This
Section of the work discusses 2 major solutions, apart from the contribution of load summarization
in the previous Section for predictive analysis of the load balancing mechanism with the correlation-
based fitness function minimizations. Firstly, as demonstrated in Lemma-2, the incorporation of the
predictive model for pheromone level is formulated.

Lemma-3: The corrective coefficient-based pheromone prediction analogy can improve the
performance of the load-balancing strategy.

Proof: The corrective coefficient-based pheromone prediction strategy is formulated in this math-
ematical formulation. Assuming that the following is the network physical resource pool availability.
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In this model example, there are a total of 4 physical resource pools configured as N1, N2, N3, and N4.
Here N1 physical resource pool is categorized as the source or the overloaded physical resource pool,
and other nodes are identified destinations or available physical resource pools for migration from the
source. As this optimization process can be deployed seamlessly and the existing strategy is assumed
to be already deployed with the ACO method, thus there are some initial pheromone levels exists on
each path as traces of the previous virtual machine migrations. Thus, some pheromones exist for every
path as PH1 to PH6, respectively. Also, assuming that any given virtual machine, V, is allocated the
physical resource pools as n number of computes, C, m number of memory units, M, k number of
storage units, S and finally, p number of network resources, N. Thus, the load, L, at a specified time
point, t, can be presented as,

n m k P
Lty=YC+> M. +> S;+> N, (15)
x=1 x=1 x=1 x=1

Further, if the pheromone level at a given time t can be represented as PH(t) and at time t+1, the
pheromone level can be presented as PH(t+1). The increase or the decrease of the pheromone level
can be formulated as,

PH(t+1)=PH () £ A1 (16)

The factor At defines the deposition of evaporation of the pheromone as the positive sign denotes
the deposition and the negative sign denotes the evaporation. Here, this proposed method deploys the
predictive analogy for pheromone level prediction as,

PH (t +1) = PH (1) .e**" (17)

The ¢**" defines the decay or growth in the rate of pheromone deposition or evaporation, where
4K defines the rate of growth or decay, which is again controlled by the sign as positive or negative and
T denotes the life span of the path or network connection span in this case. Also, the growth or decay
rate is a time-dependent variable, which must be decided using the trend, TR(t), and the prediction
depth, DP(t). Regardless to mention, these two new variables are also time-dependent. Hence, the
growth of the decay rate can be formulated as,

K () =TR()+ DP (1) (18)

where the greater number of increases or decay in the pheromone levels can decide the trend,

TR (1) = HK— HK (19)
K—+ve K——ve

Furthermore, the depth of the prediction is the number of historical data points considered.
Regardless, as this proposed method relies on the pheromone level prediction, thus the correction
during the prediction phases is highly important. Hence, this method deploys the correction strategy
with the help of the mean square error « as the correction coefficient method as formulated here,

PN AGENAGY

o == (20)
n

Here, k() it defines the actual growth or decay and k, () the predicted growth or decay for n
number of notes at time t. Finally, the prediction of the pheromone level for any given path can be
formulated with the help of Eqs. (17)—(20) as,
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K- [1 K@0+DP@®).T

I1
PH(t+1) = PH(f).e K~ kot ta Q1)

The proof of the performance improvement is already established in the previous Section of this
work. As demonstrated in Lemmas—2 and 3, incorporating correlation-based parametric reduction
shall reduce the complexity.

Lemma—4: Correlation-based parameter reduction can improve the performance of the load-
balancing strategy.

Proof: The correlation-based parameter-reduction strategy is formulated in this mathematical
formulation. In this example, we assume that each virtual machine (Vi) has a variable number of
processors, C, m multitude of memory units, M, and ultimately p number of social reserves, N, in
its physical resource pool. In this way, the load at a given time, t, can be expressed as L,

n m k ¥
Lty=YCo+> M. +> S;+> N, (22)
x=1 x=1 x=1 x=1

Also, assuming that any given destination resource pool, D;, is allocated the physical resource
pools as n number of computes, C, m’ number of memory units, M, k' number of storage units, S and
finally p’ number of network resources, N. Thus, the capacity, Capp, at a specified time point, t', can
be presented as,

" m K 4
Capy (1) =D Co+ > M.+ > S+ D N, (23)
x=1 x=1 x=1 x=1

Further, as demonstrated in Lemma-1, during the load summarization process, the generic
equivalent must be defined and utilized for the load prediction. Assuming the new load is L (z + 1)
at time t+1, it can be formulated as follows,

n m k P

L+ =8> Cc)+Bu. D M (D) +Bs. DS, (D) + Bv. D N, (D) (24)
x=I x=I x=1 x=I

Here, 8., By, Bs, By are the compute, memory, storage, and network load coeffects, respectively,
and can be formulated as,

cw MW SW NW
ﬁr=”—aIBM:n—5ﬁS="—5ﬂN:y,—’
> C.( > M. (1) PINNG) 2N
x=1 x=1 x=1

x=1 R
CW, MW, SW, and NW are the compute, memory, storage, and network weight constants. The
calculation of the weight constants is directly proportional to the number of elements in the service
code running on the virtual machine. Korra et al. [23] discuss extracting the number of elements for
these four types in work.

(25)

Finally, the fitness function can be presented as,

Fitness ( D, ) _ [M’ PH () ‘e;tK_]:[_HWK(r)7K_l:[+ve1<(r)+DP(t),T N oc] 26)
ource Lit+1)

Henceforth, the prediction of the final load can be predicted with Eq. (24) and the proof of
the performance improvement is already established in the previous Section of this work. Also, the
fitness function is expected to be maximum from Eq. (26). Thus, with the mathematical models of the
proposed solutions discussed in this Section of the work, the proposed algorithm steps are furnished
in the next Section.
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3.3 Proposed Algorithms

After understanding the load summarization and balancing process, primitive and recent methods
for optimizations with the fundamental bottlenecks, formulating the problems to be solved, and the
mathematical models for the proposed solutions, in this Section of the work, the proposed algorithms
based on the mathematical models are furnished. This work section elaborates on four algorithms for
the complete load-balancing strategy. Firstly, the load summarization algorithm is discussed.

Algorithm 1: Load Summarization with Service Categorization (LSSC) Algorithm
Input:
Service list as SL [], VM List as VL [], Instance Processing Capacity as C [], Instance Memory Capacity
as M [], Instance Storage Capacity as S [], and Instance Bandwidth Capacity as N []
Output: Service-Specific Summarized Load
Step-1.
For every element of SL [] as SL[i]
a. For every element of VL [] as VL[j]
1. Build the load of compute set as SP [] + = V[j].C[]
ii. Build the load of memory set as SM [] + = V[j].M []
iii. Build a load of storage set as SS [ + = V[j]. S[]
iv. Build the network load set as SN [] + = V[j]. N []

Step-2.
Produce sum (SP), sum (SM), sum (SS), sum (SN)

Secondly, the pheromone-level prediction algorithm is furnished.

Algorithm 2: Corrective Coefficient Based Pheromone Level Prediction (CCPLP) Algorithm

Input:

V: List of VMs, PH(t): Pheromone Level, K1: Rate of growth in PH, K2: Rate of decay in PH, T:
Simulation Duration, K: Set of deposition & evaporation events of PH, TR: Depth of Prediction
Output: PH(t+1) as predicted Pheromone Level

Step-1.
For each V[i]
a. Initialize the parameters as
b. TR =i
c. If K[j] = “Growth”
i. Increase K1
d. Else
i. Increase K2
e. Calculate the rates as K11 = K1/T and K22 = K2/T
f. Calculate the final rate as (K11 — K22) + TR
g. Calculate the correction factor, CF = {(K11 — K22) + TR}/{K1 — K2}
h. Generate PH(t+1) = {PH(t). pow (e, (K11 — K22) + TR)} — CF
Step-2.

Return PH(t+1) for each V

To better understand the advantages of the Algorithm, examples of real-world data are used.
Analytical input is referred to as “input data,” as shown in Table I. Own Data from practical
experimentation



522 CMC, 2023, vol.75, no.1

Table 1: Initial data for evaluation

Instance type Initial PH level ~ No. PH growth events No. PH decay events Duration (ms)

c5d.xlarge 13 4 5 22
c5d.2xlarge 19 4 5 58
c5d.4xlarge 18 5 5 25
c3.8xlarge 18 3 4 84
c5d.9xlarge 10 3 3 54
c5d.12xlarge 17 3 5 26
c5d.18xlarge 12 5 5 84
c5d.24xlarge 16 3 4 60

After the Initial PH level and the growth or decay events are identified, in the next phase, the
growth rate and the decay rate are calculated as shown in Table 2.

Table 2: Growth and decay rate calculation

Instance type Initial PH level Rate of growth Rate of decay Duration (ms)

c5d.xlarge 13 0.18 0.23 22
c5d.2xlarge 19 0.07 0.09 58
c5d.4xlarge 18 0.20 0.20 25
c3.8xlarge 18 0.04 0.05 84
c5d.9xlarge 10 0.06 0.06 54
c5d.12xlarge 17 0.12 0.19 26
c5d.18xlarge 12 0.06 0.06 84
c5d.24xlarge 16 0.05 0.07 60

Further, based on the mentioned steps in the Algorithm, the predictive value for the PH levels is
compared with the actual PH level values. In this process, the correction factors are also calculated, as
shown in Table 3.

Table 3: Prediction of PH levels

Instance type Initial PH level Actual PH (Next Iteration) Predicted PH level Correction factor

level
c5d.xlarge 13 12.95 13.61 0.654
c5d.2xlarge 19 18.98 19.13 0.152
c5d.4xlarge 18 18.00 18.65 0.652
c3.8xlarge 18 17.99 18.19 0.199
c5d.9xlarge 10 10.00 10.79 0.792
c5d.12xlarge 17 16.92 17.40 0.476
c5d.18xlarge 12 12.00 12.97 0.972

(Continued)
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Table 3: Continued

Instance type Initial PH level Actual PH (Next Iteration) Predicted PH level Correction factor
level

c5d.24xlarge 16 15.98 16.44 0.454

As this Algorithm is an iterative process, the correction factors shall become zero in further
iterations, and the actual PH level shall equate with the predicted PH levels. Thirdly, the load prediction
algorithm is elaborated.

Algorithm 3: Prediction of Computational Load using Correlation Method (PCLC) Algorithm
Input:
VM List as VL [], List of Constants of Weight for the Instance Capacity as CW [], List of Constants
of Weight for the Instance Memory Capacity as MW [], List of Constants of Weight for the Storage
Capacity as SW [], List of Constants of Weight for the Instance Bandwidth as BW [] and outputs from
Algorithm — I as sum (SP), sum (SM), sum (SS), sum (SN)
Output: L(t+1) as predicted load
Step-1.
For every element of V [] as V[i]
a. Build a load of computing set as SP = VL][i]. CW][i]
b. Build the load of memory set as SM = VL[i]. MWI[j]
c. Build a load of storage set as SS = VL[i]. SW[i]
d. Build the load of the network set as SN = VL[i]. BW]i]
e. Build the regression formulation coefficients as
f. Bl = CWIJi]J/SP, B2 = MWI[i]/SM, B3 = SW[i}/SS and B4 = BW[iJ/SN
g. Build the predicted load instance as L(t+1) = B1.VL]Ji]. SP 4+ B2.VL[i].SM + B3.VL][i].
SS + B4.VL[i].SN

Step-2.
Return L(t+1) for each VL []

The benefits of the Algorithm are better understood with the help of sample data. As a starting
point, this data is referred to as Table 4.

Table 4: Initial data for evaluation

Instance type vCPUs Memory Storage  Maximum number CW MW SW NW

(MiB) (GB) of network interfaces
cSd.xlarge 2 4096 50 3 15 15 16 2
c5d.2xlarge 4 8192 100 4 17 20 20 1
c5d.4xlarge 8 16384 200 4 17 16 18 2
c3.8xlarge 16 32768 400 8 17 16 15 1
c5d.9xlarge 32 61440 640 8 16 17 19 1
c5d.12xlarge 36 73728 900 8 15 15 18 1
c5d.18xlarge 48 98304 1800 8 15 16 17 2

(Continued)
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Table 4: Continued

Instance type vCPUs Memory Storage  Maximum number CW MW SW NW
(MiB) (GB) of network interfaces

c5d.24xlarge 72 147456 1800 15 18 18 18 1

The parallel research results recommend deriving the weight constants from the source course. For
this location, and under the assumption that the c5d.xlarge available physical pool is overburdened, a
load prediction is performed, as shown in Table 5.

Table 5: Load prediction

Instance type Predicted vCPUs  Predicted Predicted Predicted maximum number
memory (MiB) storage (GB) of network interfaces
c5d.xlarge 30 61440 800 6

The strength calculations are performed in the next step of the Algorithm. Over or justified
capacity is shown by the positive numbers, while under capacity is shown by the negative numbers
in Table 6.

Table 6: Capacity calculations

Instance type vCPUs Memory (MiB)  Storage (GB) Maximum number of network

interfaces
c5d.2xlarge —26 —53248 —700 -2
c5d.4xlarge -22 —45056 —600 -2
c3.8xlarge —14 —28672 —400 2
c5d.9xlarge 2 0 —160 2
c5d.12xlarge 6 12288 100 2
c5d.18xlarge 18 36864 1000 2
c5d.24xlarge 42 86016 1000 9

As a result, c5d.12xlarge, ¢5d.18xlarge, and c¢5d.24xlarge are the migration options that can be
considered. The live vm migration methodology for task scheduling is presented as a final example.

The benefits of the Algorithm are better understood with the help of sample data. As a starting
point, this data is referred to in Table 7.

Based on the capacity, it is natural to realize that c5d.9xlarge, ¢5d.12xlarge, c5d.18xlarge, and
c5d.24xlarge are the feasible migration options. Thus, based on the proposed optimization fitness
function, the capacity must be optimal, and the pheromone level must be highest. Hence, ¢5d.9xlarge
is selected for the migration destination. Hence, based on the complete analysis, it is observed that
the most cost-effective physical resource pool is selected for the migration. The more relevant proof is
generated in the next Section of this work.
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Algorithm 4: Load Balancing by Predictive Corrective Coefficient and Correlative Prediction (LB-

PCC-CP)

Input: V: List of VMs, sum (SP), sum (SM), sum (SS), sum (SN): From Algorithm 1, PH[t+1]: From

Algorithm 2(CCPLP), L[t+1]: From Algorithm 3(CBLP)

Output: V(t+1) as Destination

Step-1.

For each V[i]
a. Calculate the threshold, TH = (SP + SM + SS + SN) — L(t)

b. If L[t+1]> TH

c. Then,
i. Calculate the fitness function, FF = Max (Cap[t+1]), Max (PH[t+1])

Step-2.

Sort the V [] based on FF

Step-3.

Select the optimal V[x] based on FF

Step-4.

Start Migration

Table 7: Pheromone level and optimal capacity

Instance type Predicted Predicted  Predicted Predicted Calculated  On-demand
vCPUs memory storage (GB) maximum  PH linux pricing
(MiB) number of (USD per
network Hour)
interfaces
c5d.xlarge -26 —53248 —700 -2 19.135 0.224
c5d.2xlarge =22 —45056 —600 -2 18.652 0.448
c5d.4xlarge —14 —28672 —400 2 18.187 0.896
c3.8xlarge 2 0 —160 2 10.792 2.117
c5d.9xlarge 6 12288 100 2 17.399 2.016
c5d.12xlarge 18 36864 1000 2 12.972 2.688
c5d.18xlarge 42 86016 1000 9 16.437 4.032
c5d.24xlarge 66 135168 2800 9 11.252 5.376

Fig. 1 shows the visualization of the continuous improvements.

Henceforth, after the detailed discussion of the proposed Algorithm, in the next Section of the
work, the results are analyzed.
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Figure 1: Visualization of the continuous improvements

4 Comparative Analysis

After understanding the load summarization and balancing process, primitive and recent methods
for optimizations with the fundamental bottlenecks, formulating the problems to be solved, the
mathematical models for the proposed solutions, and proposed algorithms based on the mathematical
models, in this Section of the work, the obtained results are furnished. The results are simulated in
controlled hardware and tested on the amazon web service platform for better results. The simulation
is carried out firstly on CloudSim and AWS EC2 Services. The results obtained from CloudSim
are furnished here. During this simulation, the performance measure parameters such as Energy
consumption, Number of VM migrations, Violation of SLA, Number of host shutdowns, and total
Execution time are considered. The algorithms are simulated over 10 PlanetLab [26] datasets and
compared with the primitive algorithms such as “iqr_mmt, iqr_mu, iqr_rs, Irr_mc, Irr_mmt, lrr_mu,
Irr_rs, Ir_mc, Ir_mmt, Ir_mu, Ir_rs, mad_mc, mad_mmt, mad_mu, mad_rs, thr_mc, thr_mmt, thr_mu
and thr_rs”. Finally, in this Section of the work, the proposed method is compared with the other
virtual machine migration method with the average value for each parameter discussed. The analysis
is furnished here in Table &.

Table 8: Comparative analysis

Algorithms Energy Number of VM Violation of =~ Number of host Total
consumption  migrations SLA (%) shutdowns execution
(kWh) time (sec)
IQR_MMT 45.35 5113 0.22 1499 0.0032
IQR_MU 47.25 5593 0.25 1618 0.0034
IQR_RS 44.55 4806 0.26 1458 0.0028

(Continued)
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Table 8: Continued

Algorithms Energy Number of VM Violation of =~ Number of host Total
consumption  migrations SLA (%) shutdowns execution
(kWh) time (sec)
LRR_MC 34.35 2203 0.14 685 0.0027
LRR_MMT 35.37 2872 0.13 806 0.0027
LRR_MU 35.38 2808 0.13 816 0.0026
LRR_RS 34.07 2222 0.13 666 0.0022
LR_MC 34.35 2203 0.14 685 0.0024
LR_MMT 35.37 2872 0.13 806 0.0024
LR_MU 35.38 2808 0.13 816 0.0022
LR_RS 34.18 2206 0.14 683 0.0019
MAD_MC 39.31 4124 0.26 1294 0.0033
MAD_MMT 40.60 4669 0.23 1378 0.0033
MAD_MU 42.52 4965 0.26 1476 0.0037
MAD_RS 39.74 4229 0.26 1338 0.0030
THR_MC 27.99 2140 0.24 646 0.0016
THR_MMT 29.02 3006 0.21 761 0.0014
THR_MU 31.34 4073 0.30 989 0.0017
THR_RS 27.62 2007 0.22 599 0.0012
Lietal. [9],2020  35.37 5593 0.37 816 0.0034
Zatoutet al. [22], 47.25 2872 0.31 828 0.0037
2021
Korraetal. [23], 27.99 4229 0.30 874 0.0031
2019
LB-PCC-CP 34.15 2250 0.13 674 0.0019
(Proposed)

From the analysis, it is observed that for Energy consumption as low as 34.15 (kWh) as better
validation, the proposed method stands in 6™ position. For the Number of VM migrations as low
as 2250 as better validation, the proposed method stands at 7™ position. For Violation of SLA as
low as 0.13(%) as better validation, the proposed method stands at 1* position. For the Number of
host shutdowns as low as 674 as better validation, the proposed method stands at 4" position. For
total Execution time as low as 0.0019 (sec) as better validation, the proposed method stands at the 5*
position, ensuring the performance in the upper half during the total analysis. Hence, this is conclusive
that the proposed model is a highly stable performance-improved method for load balancing strategy.

5 Conclusion

The current load-balancing systems have nearly explored genetic optimization strategies. As a
result, load-balancing solutions can only improve response times up to a degree. These optimization
approaches are criticized for being less dynamic, rule-based, and less effective on virtualized resources.
To optimize load balance, this study presents a unique approach for predictive load estimate, reduction,
or summarization, combining correlation-based parametric reduction and correction coefficient-
based pheromone prediction. This work shows the solution of long-standing problems using standard
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optimization methods, such as highly complex probability distributions, higher complexity of the
solution search space for ACO using predictive analysis of the pheromone level, non-coordinated
search space problem, which cannot be solved by PSO, and increasing complexity problem while in
ACO. The findings show a considerable decrease in response time or time complexity for optimization
resulting in fewer SLA violations and a significant reduction in virtual machine migrations compared
to other standard benchmarked techniques. From the analysis, we can see that for Energy consumption
as low as better validation, the proposed method ranks 6th. For the Number of VM migrations as low
as better validation, it ranks 7th. For Violation of SLA as low as better validation, it ranks 1st. For the
Number of host shutdowns as low as better validation, it ranks 4th, and for total Execution time as
low as better validation, it ranks 1st. So, the proposed model is an improved load-balancing method
that is stable and works well.
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