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Abstract: Diabetic Retinopathy (DR) is a serious hazard that can result in
irreversible blindness if not addressed in a timely manner. Hence, numerous
techniques have been proposed for the accurate and timely detection of
this disease. Out of these, Deep Learning (DL) and Computer Vision (CV)
methods for multiclass categorization of color fundus images diagnosed with
Diabetic Retinopathy have sparked considerable attention. In this paper,
we attempt to develop an extended ResNetl152V2 architecture-based Deep
Learning model, named ResNet2.0 to aid the timely detection of DR. The
APTOS-2019 dataset was used to train the model. This consists of 3662 fundus
images belonging to five different stages of DR: no DR (Class 0), mild DR
(Class 1), moderate DR (Class 2), severe DR (Class 3), and proliferative
DR (Class 4). The model was gauged based on ability to detect stage-wise
DR. The images were pre-processed using negative and positive weighted
Gaussian-based masks as feature engineering to further enhance the quality
of the fundus images by removing the noise and normalizing the images. Up-
sampling and data augmentation methods were used to address the skewness
of the original dataset. The proposed model achieved an overall accuracy
of 91% and an area under the receiver-operating characteristic curve (AUC)
score of 95.1%, outperforming existing Deep Learning models by around 10%.
Furthermore, the class-wise F1 score for No DR was 92%, Mild DR was 82%,
Moderate DR was 66%, Severe was DR 89% and Proliferative DR was 80%.

Keywords: Diabetic retinopathy; deep learning; transfer learning; image
processing; image classification

1 Introduction

Diabetes is caused due to the lack of insulin production or a failure to utilize the insulin that is
generated in the body [1]. Diabetes affects a variety of organs, one such example is diabetic retinopathy,
which damages the eye’s tiny vessels. It is one of the leading causes of blindness worldwide today [2,3].
Non-proliferative diabetic retinopathy (NPDR) and Proliferative Diabetic Retinopathy (PDR) are the
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two main forms of DR. In its early beginnings, the DR is referred to as NPDR, and it is further
classified into Mild, Moderate, and Severe phases [4]. According to statistics, there are 415 million
diabetes sufferers globally and at some time in their lives, 40 to 45 percent of diabetes patients will
develop DR; yet, less than half of DR patients are aware of their illness [5]. This is because patients
with DR are asymptomatic in the early stages and if the illness is not addressed, it can lead to visual loss
[6]. Early identification and treatment of DR are therefore critical in addressing this global epidemic
and preventing complete vision loss.

Diabetic Retinopathy is still widespread today, and preventing it is a difficult task. Diabetics
should be tested every year to avoid blindness. Ophthalmologists generally diagnose the existence and
severity of disease by doing a physical examination of the fundus and analyzing the color images of
the eye. Although effective, this method is costly and time-consuming, given the enormous number
of diabetes patients worldwide [7]. Moreover, 75% of the patients with DR conditions reside in
impoverished areas, where there are insufficient experts and facilities for diagnosis [8]. Global screening
systems have been established to combat this; however, DR is prevalent at such a vast scale that
such programs cannot effectively identify and treat retinopathy on an individual basis. As a result,
millions of people throughout the world continue to have this problem due to a lack of availability of
early detection and effective treatment. Therefore, using computer vision algorithms to automatically
evaluate fundus pictures and aid physicians/radiologists is critical.

Automated methods for diagnosing retinal disease using filtered color fundus pictures have
previously been presented to overcome the shortcomings of current diagnostic processes [9,10]. Deep
Learning along with Computer Vision techniques has made the process of automation more effective
than any other methods, by accurately predicting the disease while utilizing lesser time and resources.
The work of LeCun et al. [11] gave birth to deep learning (DL). The convolutional neural network
(CNN), a DL approach employed by his student Krizhevsky et al. [12] in the 2012 ImageNet [13]
competition, helped to launch DL’s popularity in 1998. Since then, many state-of-the-art architectures
have been developed and greater results have been achieved year after year. The neural networks kept
becoming more complex and deeper in layers. The success of this was highly influenced by graphics
processing unit (GPU) hardware availability, as the number of trained parameters grew in direct
proportion to the depth of the created networks.

Deep learning can facilitate medical studies by improving, classifying, segmenting, and detecting
medical pictures, as well as relating to the images and taking important measures [14—18]. Automatic
diabetic retinopathy identification has been the subject of several studies in the literature in the past
years. Unlike traditional machine learning methods, deep learning does not require external feature
extraction techniques via image processing. It employs automated feature extraction on the colored
fundus images of the eye. Deep learning-based systems have an advantage over standard machine
learning systems due to the availability of vast amounts of data and transfer learning techniques.
Although the computer-aided diagnosis of DR has shown tremendous results, there are a few major
shortcomings that still exist. The first is that the current literature focuses on the diagnosis of only
two stages of Diabetic Retinopathy, i.e., No DR and DR. Early-stage detection of DR is necessary
to avoid complete blindness. Hence, accurate class-wise detection of DR is necessary especially in
the initial stages. Second is the imbalance of the dataset as it is highly skewed towards one class
(Class 0—No DR). This means that the model would be highly biased towards classes with a greater
number of images, leading to inaccurate prediction of the classes with lesser images. Third is the
high variability of the dataset. As these images were taken using fundus photography, they are
not uniform in terms of dimensions, intensity, etc. To address the above-mentioned issues, we have
proposed an extended ResNet model named ResNet2.0 to perform multi-class classification on the
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dataset. Sampling methods and data pre-processing steps have been adopted before training the model
to overcome the imbalance and variability of the fundus images. The methodology adopted and
contributions of this paper are listed down below:

e First, the images were normalized by resizing them and then applying pre-processing techniques
to the whole dataset.

e To address the imbalanced classes and normalize the dataset, classes with lower number of
images were up-sampled.

e ResNet2.0 model was built using transfer learning on ResNet152V2 and customizing it by
adding additional layers on top of it.

e The model was trained to perform five class classifications on the original and up-sampled
dataset.

e Lastly, the performance of the model was assessed and compared to previous related works.

2 Related Works

Gondal et al. [19] proposed a CNN model and performed binary classification on normal
and referable DR images. The publicly available Kaggle dataset was used for training the model
and DiaretDB1 was used to test it. They categorized normal and mild classes to be non-referable and
the rest as referable DR. This resulted in a specificity and sensitivity of 97.6% and 93% respectively on
the test dataset. Garcia et al. [20] increased the contrast of the fundus images during the preprocessing
and augmentation stages since the difference in appearance between the fundus images belonging to
each stage is minute. Then they applied CNN separately to the left and right eye images but did not
have a fully connected layer. Their model achieved an accuracy of 83.68%. One drawback of this study
is that they did not explicitly classify each stage of DR. A convolutional neural-based model having
13 layers was proposed by Pratt et al. [21] for detecting DR. They used the eyePACS DR dataset,
which is a publicly available dataset to train their model. A sensitivity of 95% was achieved on 5,000
test images. However, they were unable to correctly classify the mild stage, which is essential for the
timely detection of DR. Another drawback is that the dataset used in this study was highly skewed,
which resulted in high specificity at the expense of low sensitivity. So, although their model was good
at detecting actual cases of DR, it had a high false positive rate.

Zhuang et al. in their paper [22] used transfer learning to build deeper models, which led to an
improved accuracy, hence proving that deeper neural network models can classify the DR better.
Regarding Diabetic Retinopathy (DR) categorization, they offered two alternative approaches. A
superficial neural specification is introduced in the first approach. This model does a good job of
identifying the most common classes but fails miserably at classifying the less common ones. In the
second technique, transfer learning is used to retrain the deep neural network’s last changed layer in
order to improve the model’s generalization capacity to less frequent classes. It was also discovered that
the approach employed was unable to generalize adequately because of the usage of extremely deep
neural network models (overfitting scenario). This proved that too deep of a neural network is also
not capable of classifying the 5 stages of DR. Study [23] compared the results obtained by using fine-
tuned pre-trained model and a CNN trained from scratch for medical image classification. The result
of this study was that former performed better. Kassani et al. [24] evaluated the performance of pre-
trained models such as VGG16, VGG19, and InceptionV3, for binary and 5-class DR classification.
According to their observation, the accuracy of models is strongly proportional to the number of
convolutional and pooling layers. They used data augmentation to reduce the skewness of the dataset
which resulted in an accuracy of 80.4% (using the VGG19 model). Hence, the increased number of
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layers in the architecture and data augmentation helped them achieve an improvement in overall
accuracy.

Tymchenko et al. developed a multi-stage transfer learning methodology as well as an automated
method for detecting the stage of DR using single fundus imaging [25]. They used the APTOS dataset
and achieved a kappa score of 0.92. It was noted that the authors were able to achieve high and stable
results due to the use of an ensemble of networks. The drawback was that they used unstable metrics
hence, hyperparameter optimization could have led to even better performance. Sikder et al. [26] used
the ensemble learning technique and created a complete pipeline for early identification of DR. Image
preparation, image pre-processing, feature extraction, and image classification are the four key phases
in their pipeline. They used the APTOS dataset in their study, but the results were not promising. They
achieved a precision, recall and F1-score of 90.4, 89.54 and 89.97 respectively. In the study [27], it
was proved that techniques that combine classification and segmentation had a higher performance
rate. In this research, the authors suggested FGADR, a substantial dataset of fine-grained labeled
DR. In addition, they carried out comprehensive experiments to investigate the lesion classification
tasks and evaluate the various state-of-the-art segmentation models. On the DR grading job, joint
classification and segmentation algorithms performed better. They also created the DSAA inductive
transfer learning approach to use their DR database for bettering the detection of many ocular
diseases. Finally, it was also mentioned that determining the precise difference between grades 3 and
4 was challenging.

3 Proposed Methodology

In this paper, we propose an extended ResNet based deep learning model named ResNet2.0.
Transfer learning was used to enhance the performance of the network i.e., ResNet152V2 was used as
the base model. This was done by freezing the top layer of the pre-trained network and custom layers
were added to it which resulted in the custom deep learning model ResNet2.0. Image pre-processing
steps were then performed on the dataset to improve the quality of the images. Then the entire dataset
was split into train and test sets. On the training set images, data augmentation such as rescaling,
horizontal flip, vertical flip, rotation, shifting width and height wise were applied. The classes with
comparatively lower numbers of images were up-sampled so that each class had the same number
of images. This data was then fed into the proposed model. Sections 4 and 5 explain the individual
aspects of the methodology used in this study. Sections 5.1 and 5.2 depicts the pre-trained model and
the additional layers used. Fig. | summarizes the methodology adopted.

3.1 Pre-trained Model

In computer vision, a popular time efficient approach to building models is by using transfer
learning techniques [28]. Instead of starting the learning process from scratch, transfer learning begins
with patterns gained while tackling a separate problem, drawing on prior knowledge rather than
beginning from scratch. Transfer learning is commonly demonstrated in computer vision using pre-
trained models. A pre-trained model is one that has been trained on a big benchmark dataset. Typically,
when we train a convolutional neural network on image dataset, we extract general features, and when
we move further into the network, we extract specialized features which might result in significant
processing costs. However, since pre-trained models already know how to extract features, transfer
learning does not start training from scratch. Therefore, it is more effective to import and use models
from the existing literature (e.g., VGG, Inception, ResNet).
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Figure 1: Proposed methodology

Canziani et al. [29] offer a detailed assessment of the pre-trained model’s performance on
computer vision tasks using data from the ImageNet challenge 2016. Transfer learning is used on pre-
trained models except for the final layer, which will be replaced by customs layers. In this study, we
have used ResNet152V2 which belongs to the family of ResNets or residual networks, which was first
proposed by Microsoft. The residual network has residual blocks that skip connections between layers
and solve the vanishing gradient problem, which is a common problem with very deep networks [30].
The purpose of residual blocks is to connect the input of the first block to the second output of the
second block. This aids the residual block in learning the residual function and preventing grading
explosion by using regularization. ResNetV2, also known as ResNet version 2 uses pre-activation
of weight than post-activation. ResNet V2 applies Batch Normalization and ReLu activation to the
input before the weights are multiplied. ResNet152V2 has 152 layers and 60,380,648 parameters. As
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discussed in the related works, deeper neural networks have been proven to improve the accuracy of
the models while causing the opposite effect if the network is too deep.

3.2 Custom Layers Added

The last layer of the ResNet152V2 was frozen and its architecture was extended by adding custom
layers. Following this, a dropout layer with a ratio of 0.4 was added. Then a flatten layer, batch
normalization layer, dense layer consisting of 312 neurons, another batch normalization layer, and
activation layer (with activation function ReLLU) were added. Following this, there was a second
dropout layer of a dropout ratio of 0.6. Succeeding this was a dense layer consisting of 132 neurons,
a batch normalization layer, and an activation layer (with activation function ReLU). Then there
was a third dropout layer with a dropout ratio of 0.5. Following this was a dense layer consisting
of 32 neurons, a batch normalization layer, and an activation layer (with activation function ReLU).
Finally, a dense output layer was added consisting of 5 classes (3 classes which perform the 3-class
classification), L2 regularizer of 0.01, and activation function SoftMax. Lastly, the batch size, learning
rate, and optimizer used are 32, 1e-4, and Adam optimizer. The mathematical expression for the ReLU
is depicted in Eq. (1) where x refers to the data point and for SoftMax is depicted in Eq. (2) where z
represents the values from the neurons from the output layers. Fig. 2 summarizes the architecture of
our model.

F(x) = max(0, x) (D
softmax(z;) = exp(z;) / Z exp(z;) (2

3.3 Model Training

Prior to training the extended ResNet architecture, the dataset was split in the ratio of 80:20. 80%
of the images were used for training and 20% were used to test the accuracy of the model. The original
dataset consisting of 3662 images and the up-sampled dataset consisting of 9025 (1805 in each class)
were individually fed into this model which classified the data into the following classes: Class 0—No
DR, Class 1-Mild DR, Class—2 Moderate, Class 3—Severe and Class 4-Proliferative. Furthermore,
Adam was used as the optimizer, and SoftMax as the activation function in the output layer.

4 Dataset Description

The dataset used in this paper belongs to the Asia Pacific Tele-Ophthalmology Society’s APTOS
2019 diabetic retinopathy categorization challenge [31]. The objective of this challenge was to create
machine learning models that can autonomously filter fundus pictures for early identification of DR
especially in rural regions where medical screening is complex, time-consuming and requires a lot of
resources. The dataset comprises of 3662 retina pictures obtained from different clinics using fundus
imagery from the Aravind Eye Hospital in India under a range of controlled circumstances. Table |
summarizes the distribution of images in the APTOS dataset. The DR is evaluated by the clinician
on a scale of 0 to 4. These fundus images were divided into five categories: no DR (Class 0), mild DR
(Class 1), moderate DR (Class 2), severe DR (Class 3), and proliferative DR (Class 4). Fig. 3 illustrates
eye images belonging to each stage of DR.
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Table 1: Distribution of images in the dataset

Class Number of images
0-No DR 1805

1-Mild 370

2-Moderate 999

3-Severe 193

4-Proliferative 295

(b)

(d) (e)

Figure 3: Images of the eye at each stage of DR. (a) No DR-Class 0, (b) Mild—Class 1, (¢) Moderate—
Class 2, (d) Severe—Class 3 and (e) Proliferative—Class 4

5 Dataset Preparation

Previous efforts on the DR categorization problem may be divided into two groups-binary DR
classification and stage-wise DR classification. In binary DR classification, patients are classified as
having DR or not. The drawback with this technique is that even after determining that a patient
has DR, we are unable to determine the severity of the illness. Hence, multiclass classification needs
to be performed in order to determine the severity of the disease. In this study, 5 stages of DR were
considered for classification i.e.,, no DR, mild DR, moderate DR, severe, and proliferative DR.

5.1 Addressing Dataset Imbalance Problem

The APTOS dataset is imbalanced and highly skewed towards the No DR class (class 0), which
had around 1805 images. This leads to high specificity at the expense of low sensitivity when predicting
the output. The imbalance in the dataset was addressed by up sampling the dataset [32,33]. While up-
sampling, images were synthetically augmented into respective classes with lower number of images to
normalize the class-wise images. The normal and the up-sampled dataset was used to train the custom
model. Table 2 summarizes the total number of images in each class after up-sampling.
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Table 2: Total number of images in each class after up-sampling

Class Number of images after up-sampling
0 No DR 1805
1 Mild 1805
2 Moderate 1805
3 Severe 1805
4 Proliferative 1805

5.2 Image Pre-processing

The images in the APTOS dataset were taken using various cameras from different clinics and
hence, they were not uniform. As a result, we used a variety of pre-processing techniques to improve
the training process. The steps adopted in this paper have been listed down below:

e First the image was loaded and converted RGB as shown in Fig. 4.

Figure 4: (a) The original image and (b) Image after converting to RGB

e Next, positive and negative weighted Gaussian filter were combined to form a custom Gaussian
based mask. Gaussian blur or Gaussian smoothing is used to blur the images using a Gaussian
function [34]. This is used in order to remove noise from the images. Weights (5, —5) were used
on the first mask and (-5, 5) on the second mask, these were then added together to form the
custom mask which was applied to the fundus images. This has been illustrated in Figs. 5a to
Sc.

e This image was then run through a RGB to RED function. This sets the green and blue channel
of the image to zero, while only the red channel remains. As seen in (d), the areas of the original
image (c) that were red are lighter in the red channel image. This means that areas that contribute
more to the red color of the original image are lighter in the red channel’s grayscale image. And
the areas that contribute little or nothing at all are dark. As shown in Fig. 5d.

e This image was converted back to RGB scale. Finally, this image was used to train the model.
This is displayed in Fig. Se.
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Figure 5: (a) Image after Gaussian blur with weights (—5, 5) was applied to the original image, (b)
Image after Gaussian blur with weights (5, —5) was applied to the original image, (c) Image after (a)
and (b) were added, (d) Image after applying RGB to Red function and (¢) Final image after converting
back to RGB

5.3 Data Augmentation

A convolutional neural network’s invariant property indicates that it can categorize an item even
if it is placed in a different location. Translation, size, perspective, lighting (or any other effect) have
no effect on CNN [35]. Unseen data may be distorted when compared to the original data fed into
the model, hence, to make it robust, data augmentation is a necessary step. In this study, the images
were rescaled, horizontally flipped, vertically flipped, rotated, and shifted widthwise and height-wise
before they were used for training.

6 Results and Discussions

The model was evaluated based on the final accuracy achieved as well as the class-wise F1 scores.
The following metrics were used for this purpose: accuracy, F1 score, recall, precision, area under
curve (AUC) and receiver operating characteristics curve (ROC). These results were then compared.
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6.1 Results Achieved for Original Dataset

The model achieved an overall accuracy of 89.8% and an AUC of 93.1%. Classes 0, 1, and 2
performed better than classes 3 and 4 in terms of recall and F1 scores. This is due to the imbalance in
the dataset, classes 3 and 4 had inadequate amounts of data for the model to train on. The accuracy,
loss, ROC curve, and confusion matrix plots have been summarized in Fig. 6. Table 3 summarizes the
class-wise performance of the model.
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Figure 6: (a) Accuracy vs. epoch graph, (b) Loss vs. epoch graph, (¢c) ROC curve and (d) Confusion
matrix for 5 class classification on the original dataset

Table 3: Class-wise performance metrics of the model when trained on the original dataset

Class Train accuracy Val accuracy  Train AUC Val AUC Precision Recall F1 score
0 90.1% 89.8% 93.3% 93.1% 92% 97% 94%

1 52% 52% 52%

2 61% 82% 70%

3 55% 16% 24%

4 0% 0% 0%
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6.2 Results Achieved for Up-Sampled Dataset

The model was trained on the up-sampled dataset, which consisted of 1805 images in each class.
When compared to the model’s performance on the original dataset, it achieved better results in terms
of the overall accuracy of 91% and AUC of 95.1%. Furthermore, the class-wise performance had
significantly improved for classes 3 and 4. The accuracy, loss, ROC curve, and confusion matrix plots
have been summarized in Fig. 7. Table 4 summarizes the class-wise performance of the model.
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Figure 7: (a) Accuracy and loss vs. epoch graph, (b) ROC curve and (c) Confusion matrix for 5 class
classification on the up-sampled dataset

Table 4: Class-wise performance metrics of the model when trained on the up-sampled dataset

Class Train accuracy Val accuracy  Train AUC Val AUC Precision Recall F1 score
0 91% 91% 95.4% 95.1% 90% 94% 92%
1 82% 82% 82%
2 77% 58% 66%

(Continued)
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Table 4: Continued

Class Train accuracy  Val accuracy  Train AUC Val AUC Precision Recall F1 score
3 89% 89% 89%
4 73% 88% 80%

6.3 Comparing the Model Performance

The proposed model achieved a maximum accuracy and AUC of 91% and 95% respectively when
trained on the test data. The overall precision, recall and F1 scores when trained on the up-sampled
dataset were 82.2%, 82.2% and 81.8% respectively. Table 5 summarizes these results.

Table 5: Comparison of the results for original and up-sampled dataset

Dataset used  Train Validation Train AUC Validation Precision Recall F1 score
Accuracy  Accuracy AUC

Original 90.1% 89.8% 93% 93.1% 52% 49% 48%

Up Sampled  91% 91% 95% 95% 82.2% 82.2% 81.8%

The proposed model was compared to the existing models, which has been summarized in Table 6.
The comparison was done based on the maximum accuracy. The proposed model achieved an accuracy
of 91% for five class classifications, outperforming the Simple CNN, VGG16 and DenseNet models
used in [34] which had an accuracy of 81.7%. The proposed extended ResNet model performed around
10% better when compared to the Modified Xception model proposed in [24] and ensemble of CNN
model [36].

Table 6: Comparison of the performance of proposed model and previous models

Year Classifier No. of classes ~ Accuracy
2016 CNN [21] 5 75%
2018 GoogleNet and AlexNet [37] 4 57.2%
3 67.7%
2018 Ensemble of CNN [36] 4 83%
2019 Modified Xception [24] 5 83%
2021 Simple CNN [34] 73%
VGG16 [34] 5 81.9%
DenseNet [34] 81.7%
2022 Proposed ResNet2.0 5 91%

7 Conclusion

In this study, we proposed an Extended ResNet model for the class-wise classification of Diabetic
Retinopathy. For this purpose, the APTOS 2019 dataset was used, which consists of stage-wise DR
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fundus images, namely No DR, Mild DR, Moderate DR, Severe DR, and Proliferative DR. Due
to the variability and randomness of the data, various pre-processing techniques like resizing the
images, converting to RGB, etc., were used. A custom Gaussian-based mask was implemented by using
negative and positive weighted Gaussian blur filters to remove the noise in the data. This was done to
normalize the images. The imbalance in the dataset was addressed by up-sampling the classes with a
lower number of images. The proposed model was built by modifying the ResNet152V2 architecture
and adding additional layers. It was observed that up-sampling led to better performance of the model
in terms of overall accuracy as well as class-wise performance. The maximum accuracy achieved was
91% and the AUC score was 95%. The class-wise F1 score for No DR was 92%, Mild DR was 82%,
Moderate DR was 66%, Severe DR was 89%, and Proliferative DR was 80%. The model was hence
able to detect DR at the initial stages of mild and moderate DR. Overall, it outperformed previously
proposed Deep Learning models by 10%. For future research direction, a tailor-made DR detection
product can be implemented to aid doctors. Another approach can be to reduce the complexity of the
ResNet model while maintaining its ability to achieve excellent results. Furthermore, the training data
set was limited; hence, extending the size might give better results.
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