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Abstract: Federated learning is an emerging machine learning technique
that enables clients to collaboratively train a deep learning model without
uploading raw data to the aggregation server. Each client may be equipped
with different computing resources for model training. The client equipped
with a lower computing capability requires more time for model training,
resulting in a prolonged training time in federated learning. Moreover, it may
fail to train the entire model because of the out-of-memory issue. This study
aims to tackle these problems and propose the federated feature concatenate
(FedFC) method for federated learning considering heterogeneous clients.
FedFC leverages the model splitting and feature concatenate for offloading
a portion of the training loads from clients to the aggregation server. Each
client in FedFC can collaboratively train a model with different cutting layers.
Therefore, the specific features learned in the deeper layer of the server-
side model are more identical for the data class classification. Accordingly,
FedFC can reduce the computation loading for the resource-constrained
client and accelerate the convergence time. The performance effectiveness is
verified by considering different dataset scenarios, such as data and class
imbalance for the participant clients in the experiments. The performance
impacts of different cutting layers are evaluated during the model training.
The experimental results show that the co-adapted features have a critical
impact on the adequate classification of the deep learning model. Overall,
FedFC not only shortens the convergence time, but also improves the best
accuracy by up to 5.9% and 14.5% when compared to conventional federated
learning and splitfed, respectively. In conclusion, the proposed approach is
feasible and effective for heterogeneous clients in federated learning.
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1 Introduction

Machine learning technologies have been widely applied to various applications with artificial
intelligence. In the Internet-of-Things (IoT) applications [1,2], cloud service providers have introduced
intelligent and customized personal services for each client by analyzing the sensing data collected from
IoT devices. In medicine and healthcare applications, machine learning models help doctors provide
suggestions for diagnosis and treatment decision-making (e.g., blurry retinal disorder [3], cancer [4,5],
and COVID-19 [6,7]). To train a model from scratch, the features are extracted and learned from a
dataset usually labeled with a set of known classes. According to a large amount of training data,
the training process of an entire deep learning model may be heavily loaded for a centralized server.
Distributed machine learning [8] approaches have been presented to enable model training among
multiple servers and reduce the training time. However, the consensus on data privacy is rising [9,10],
and raw data collected from clients are usually sensitive. Clients are concerned about data upload to a
remote training server. The challenge for deep learning applications is to accomplish model training
with a sensitive dataset residing at the participant client.

Federated learning (FL) [11,12] is an emerging technology for distributed machine learning. FL
enables collaborative learning among clients to locally train the resident data. In addition to uploading
the raw data, each client in FL only uploads the extracted features to the remote server. The server then
aggregates the collected parameters on average and produces a new global model. The gradient values
are calculated and sent back to the participant clients for the model parameter update. Therefore, the
server accomplishes the model training and prevents clients from violating the data privacy during the
training process. However, the time for model training could be varied when the computing capabilities
of the participant clients are heterogeneous. In this case, the server must wait for the client with a lower
computation to accomplish its local training and upload the results for aggregation. The local training
may also fail for the client because of the constrained resource for an out-of-memory. Hence, FL faces
the new challenge of accomplishing the model training among heterogeneous clients while reducing
the training time and retaining the test accuracy.

Split learning techniques [13,14] are applied to FL to overcome a client’s limited computation.
Using split learning, each client only takes a few layers of a deep neural network (DNN) model to train
the local data. The remaining model layers are offloaded to the server to concatenate the training.
In most of the previous works [15–18], each client in FL splits the DNN model at the same layer.
The cutting layer borderline must be set according to the less computing capability of a client. When
clients have heterogeneous computing capabilities, a powerful client only takes a few layers for the
model training, despite being equipped with a high computing resource. Consequently, computing
resources are wasted if the client cannot contribute its powerful computation to train more layers of
a DNN model. Therefore, FL faces another challenge of concatenating the training process when the
computing capabilities of clients are heterogeneous.

In view of this, previous works improved the FL efficiency with innovative methods [19–22]. A
few studies considered distinct clients, and rare ones explored the effect of different cutting layers.
The motivation of the present study is to accomplish FL considering heterogeneous computing for
participant clients. A novel approach involving the federated feature concatenate (FedFC) training in
FL is proposed. FedFC not only adopts the synergy of model splitting and feature concatenation into
FL, but also considers the heterogeneity of the computing capabilities among participant clients. Each
distinct client in FedFC can take different cutting layers of a DNN model for collaborative training.
In other words, a client with a lower computing capability takes fewer model layers, while a powerful
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one takes more for training. The FedFC server concatenates the intermediate model parameters from
different clients and takes the remaining model layers for federated training and aggregation.

In this way, FedFC accomplishes synchronous model training without any raw data uploads from
distinct clients. Heterogeneous clients in FedFC are responsible for different model layers according to
the local computing capability. To evaluate the effectiveness of FedFC, this study not only explores the
performance impacts of splitting different layers on a model training, but also examines different non-
independent and identically distributed (non-IID) cases of data and class imbalance among participant
clients in horizontal FL. The results show that FedFC outperforms other approaches in terms of the
test accuracy while reducing the computation loading for the constrained client and accelerating the
convergence speed. Overall, the major contributions of this work are threefold:

• The FedFC method is proposed for collaborative training in FL.
• The performance impacts of splitting different model layers for the participant clients are

investigated.
• The proposed FedFC is applied to shorten the overall training time while improving the test

accuracy.

The remainder of this paper is organized as follows: Section 2 discusses the most relevant works;
Section 3 introduces the proposed FedFC method and the corresponding algorithms in FL; Section 4
presents the performance evaluations and the empirical results; and Section 5 provides the concluding
remarks and future works.

2 Background and Related Works

This section presents the basis of technologies relevant to the proposed FedFC in terms of FL,
split learning (SL), and splitfed learning (SFL). The state-of-the-art works related to this study will
also be discussed.

2.1 Federated Learning

FL was first proposed by Google in 2017 and applied in the G-board application among mobile
devices [23–25]. The proposed solution enables collaborative training without uploading raw data from
clients. Each client in FL trains an entire ML model, with the raw data residing at the local. Only
the model parameters are uploaded from each client to a centralized server for the aggregation of
the model parameters on average (i.e., FedAvg). In the case of heterogeneous computing on different
clients, each client may be equipped with various hardware resources, resulting in time variants for the
model training among clients. The lowest computing capability of a client, called a straggler, generally
limits the complete time for model training in FL [26–28].

Many solutions have been proposed to overcome the abovementioned challenge via asynchronous
mechanism, client selection, grouping strategy, and neuron masking. Xie et al. [29] proposed the
asynchronous mechanism that enables the server to immediately aggregate the model parameters
without waiting for all uploads from constrained clients. However, the model of a constrained client
could be stale to prolong the time for the model convergence. Nishio et al. [30] proposed a client
selection strategy using collected information from the client (e.g., network bandwidth). To reduce
the training time, clients who are stragglers cannot participate in FL training. However, a straggler
may have a large amount of training data. The training model accuracy will be affected without the
participation of an informative straggler.
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Chai et al. [31] adopted the idea of grouping clients and proposed the adaptive selection mech-
anism for when stragglers have a large amount of training data. The adaptive selection mechanism
enabled each group of clients to take turns in joining the FL training to alleviate the impact of the
training time from stragglers. The authors further combined the idea of grouping clients and the
asynchronous mechanism in [32]. The clients in the same group adopted synchronous FL training,
while multiple groups adopted asynchronous FL training. When the server aggregates the model
parameters, the server only considers recent model parameter updates from each group. However,
the model may not be converged when the model parameters from the slower group are out-of-date.
Previous works did not consider a practical situation, in which the clients may not train an entire model
due to hardware resource limitations.

Meanwhile, Xu et al. [33] profiled the model training time for the hardware resource of each client
and exploited neuron masking to skip the partial neurons of the model and reduce the computational
cost for a client. However, the client still needs to have a complete model for the client-side training. The
training may fail if the memory space is insufficient for the client. In contrast, FedFC splits an entire
model into two parts. The client only needs to train a few layers of the DNN model. The remaining
layers are offloaded to the server.

2.2 Split Learning

SL [14,34] was first proposed to consider the hardware resource of a constrained client. The idea
behind splitting a model is to divide a DNN model into two sub-models allocated with different
portions of model layers. One sub-model, called the client-side model, is used to train the local data on
a client with the first few model layers. The other is the server-side model used to sequentially train the
remaining layers for the constrained client. In each iteration, each client trains the model parameters
with local data and uploads the smashed data, including the activation values of the cut layer, to the
server. The server then takes the remaining training of the server-side model with the smashed data and
computes the gradient value for the global model. The updated values for the smashed data gradient
are sent back to the client to update the client-side model.

During the SL training process, the data privacy is protected by the client because raw data are
transformed into smashed data after training on a client. The loading of training the deep learning
model is eliminated on a client because each client only takes the client-side model for local training
instead of training all layers of the entire model. However, traditional SL adopts sequential training,
resulting in only one client participating in the SL training at the same time. The training time becomes
longer when the number of participant clients increases [17,35,36].

Jeon et al. [37] adopted a parallel strategy for participant clients to accelerate the SL training time.
However, the server still sequentially inputs the smashed data from each client to train the server-side
model. When the number of clients becomes larger in training, the worst case is that it will be the same
as the traditional SL and result in a longer training time. Zhang et al. [38] also adopted the parallel
training strategy and trained the server-side model with the feature concatenate method. When the
server-side model training is finished, the server splits the gradient according to the smashed data size
of each client. The corresponding gradient is sent back to the client to update the client-side model.
However, each client in the previous works was allocated with the same model layers, resulting in the
wastage of computing resources for the client with a powerful computing capability.
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2.3 Splitfed Learning

Thapa et al. [18] introduced SFL to leverage the FL and SL advantages for training splitting
models to reduce the training time and computing loads on clients. SFL includes two kinds of training
processes: SFLv1 and SFLv2. All SFLv1 clients simultaneously train the client-side model and upload
the smashed data to the corresponding server-side models. The main server trains the server-side
models and averages the gradients of all server-side models. After finishing the client-side model
training, the client then uploads the parameters of the client-side model to another fed server. The fed
server aggregates the parameters of all client-side models and generates updated global parameters.
SFLv2 is similar to SFLv1, but with only one server-side model adopted in the main server. The
main server exploits institutional incremental learning [39] to train the server-side model. The training
proceeds until all of the smashed data of the participant clients had been input to the server-side model
for training. After finishing the server-side model training, the main server then updates the gradient
of the smashed data back to the client. Accordingly, the client can update the client-side model.

Based on the SFL solutions, many works have proposed enhanced methods to improve the training
communication in-between clients and servers. He et al. [16] adopted a similar model between the
client and the server. The client-side model was responsible for the shallower layers of the ResNet
[40] architecture, while the server-side model was responsible for the deeper layers. Both the client-
and server-side models output their predicted results. Subsequently, the client and the server exchange
results with each other. In this way, the client- and server-side models can learn from each other through
knowledge distillation [41]. However, the server trains the server-side model in a sequential order. The
training time will be longer when many clients join the training.

In the work of Pal et al. [17], the server-side model in SFL was updated with the smashed data of all
clients, while the client-side model was updated with the smashed data of the client itself. An updating
imbalance occurred between the client- and server-side models when they were set to the same learning
rate. The authors revealed that the learning rate for the server-side model training must be adjusted
according to the number of clients. Han et al. [15] claimed that the client-side model of existing SFL
architecture must wait for the server to calculate the gradient of the smashed data before updating
the client-side models. Massive data transmissions were involved during the SFL training procedures,
resulting in an increase in communication loadings. Therefore, the authors proposed locally generated
losses to add an auxiliary network layer to the client-side model. The smashed data are input to the
auxiliary network for prediction and uploaded to a server for the server-side model training. After the
local training completion, the client uploads the client-side model parameters to the fed server, which
then aggregates the parameters from the participant clients and updates the result back to each client.

State-of-the-art works have achieved some improvements in SFL; however, only a few have consid-
ered the heterogeneous computing of participant clients [42,43]. The effect of splitting different model
layers on the training performance is rarely explored. This study intends to conduct a collaborative
training of participant clients assigned with different cutting layers of the client-side model. A novel
FedFC method is proposed herein to concatenate the output features of different layers from distinct
clients. Compared to SFL, FedFC only facilitates a single server-side model to concatenate the learning
features. A mixed layer approach is presented for FL among heterogeneous clients. Each client can
participate in the collaborative training with different model layers; therefore, clients can make good
use of their computing resources. Other works have not considered the solution for heterogeneous
clients. The results show that FedFC reduces the computation loading for the constrained client while
improving the convergence speed and the test accuracy.
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3 Federated Feature Concatenate

In the image segmentation task, the deep layer output in a model classifies each image pixel to
a specific class. However, the classification result may not be identical because the deep layer output
lose information from the shallow layer. To solve this problem, U-Net [44] is applied to the image
segmentation task. The U-Net model adopts an encoder–decoder architecture. The input of each
decoder block refers to not only the output of the previous layer in the model, but also to that of
the corresponding encoder block. These two features are concatenated at the channel dimension. The
concatenated result is then finally input into the decoder block, forming a U-shape architecture. FedFC
is inspired by U-Net and adopts the feature concatenate method in the training procedure. Therefore,
it collaborates with each client, which may be split with different model layers in FL.

3.1 Overview of the FedFC Method

For the effective utilization of the computing resource of each client, FedFC enables clients to
determine the number of model layers according to their computing capability. It also leverages the
split model and tfeatures concatenate methods to reduce the training time on the local client. In
FedFC, only a server-side model is necessary to process the smashed data from each client-side model.
Therefore, the server storage maintenance is alleviated. Fig. 1 depicts the workflow for detailing the
training processes of an FL model using FedFC.

• At the initial stage, each client requests for an initial training model from the server.
• Step 1: Each client starts training the client-side model using local data and uploads the smashed

data to the server.
• Step 2: Before training each layer of the server-side model, the server checks if smashed data

have been uploaded from a client. Through the training process for the server-side model, the
server executes the feature concatenate if any layer has uploaded with the smashed data from a
client; otherwise, the server keeps training the next layer of the server-side model.

• Step 3: After finishing the server-side model training, the server sends the gradients back to
the client who uploaded the smashed data, such that the client-side model can be updated
accordingly.

• Step 4: After finishing a round of local training, each client uploads its local parameters of the
client-side model to the server and waits for the model parameter aggregation in FL.

• Step 5: Upon receiving all the model parameters from the participant clients, the server records
the in-place parameters of the client- and server-side models within an original model. To
this end, the server adopts FedAvg algorithms to generate a new global model. Both of the
parameters collected from the client- and server-side models are aggregated on average.

• Step 6: The server updates its server-side model with the new global parameters and sends out
the new global parameters back to each client for the client-side model update.

3.2 Model Training in FedFC

This section elaborates on the training processes in FedFC from the perspectives of forward and
back propagation. Fig. 2 illustrates the forward propagation procedures for the server-side model,
where the 4-tuple of (B, C, H, W) represents the values of the batch size, channel, height, and width
of the smashed data, respectively.
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Figure 1: FedFC training workflow
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Figure 2: Forward propagation for the server-side model in FedFC

Let us assume that the input of the server-side model is the smashed data of Client 3. After the
�1 layer calculation, new smashed data are generated with the values of (1, 1, 3, 3). At this time, the
server checks that the values of the smashed data from Client 2 are the same as (1, 1, 3, 3). It then
concatenates the �1 layer output with the smashed data of Client 2. New values of (2, 1, 3, 3) are
generated, and a tensor.detach() attribute is added at this step. The attribute is noted for stopping the
gradient calculation when the server performs the backpropagation at this step. Next, the server inputs
the values of the smashed data with (2, 1, 3, 3) for the �2 layer calculation. After the calculation, new
smashed data are generated with the values of (2, 1, 2, 2). At this time, the server checks that the value
of the smashed data from Client 1 is also (1, 1, 2, 2). It then concatenates the �2 layer output with the
smashed data of Client 1. The new value of (3, 1, 2, 2) is generated, and a tensor.detach() attribute is
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added at this step. Hereafter, the server inputs the values of the smashed data with (3, 1, 2, 2) to the �3

layer and so on until the forward propagation of the server-side model is finished.

After completing a forward propagation to train the server-side model, the server must calculate
the loss value between the predicted results and the actual labels. The gradient is calculated, and
the server-side model parameters are updated throughout the backpropagation. Fig. 3 illustrates
the backpropagation for the server-side model. When the server executes the backpropagation to
calculate the �3 layer gradient, the procedure stops because the attribute of this step is noted with
a tensor.detach(). The server must split the gradient value of (3, 1, 2, 2) into two portions, namely (2,
1, 2, 2) and (1, 1, 2, 2). The gradient value of (1, 1, 2, 2) will be sent back to the smashed data of Client
1, while the other (2, 1, 2, 2) is used to proceed with the backpropagation. When calculating the �2 layer
gradient, the server also detects that the attribute is noted with a tensor.detach(). The server splits the
gradient value of (2, 1, 3, 3) into two portions similar to (1, 1, 3, 3). One portion of the gradient values is
sent back to the smashed data of Client 2. The other is used to proceed with the backpropagation until
that of the server-side model is finished. Finally, the server sends the gradients of the corresponding
smashed data to each client for the client-side model update. The subsequent section will introduce
detailed FedFC algorithms for the participant client and the server. The model parameter aggregation
in FedFC is presented hereafter.

(B, C, H, W)
(1, 1, 4, 4)

(2, 1, 3, 3)(1, 1, 3, 3)

(1, 1, 3, 3)

(2, 1, 2, 2) (3, 1, 2, 2)

(1, 1, 2, 2)

client 1client 2

client 3

split tensor split tensor

Server-side model

backward stop backward stop

startstart

Figure 3: Backpropagation for the server-side model in FedFC

In view of this, FedFC can alleviate the computing loads for distinct clients to train the client-side
model. Let Ph,weight denote the weight parameters of the h layer and Ph,bias denote the bias parameters of
the h layer. The total parameter Ptotal of a DNN model with L layers is calculated as follows:

Ptotal =
L∑

h=1

(
ph, weight + ph,bias

)

Therefore, a client with fewer layers of a DNN model represents fewer calculations for the client-
side model training. The overall computing load is lower for the client with a constrained resource.

3.3 FedFC Algorithms

Assume the total number of the K clients participating in a round of FedFC training, and that each
client k trains a single local epoch. The server splits the initial model into the client- (wc) and server-
side (ws) models, where wc has a different number of layers for each client k. Clients are responsible for
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training the client-side models wc, whereas the server is responsible for training the server-side model
ws. Algorithm 1 depicts the training procedures for the participant clients.

Algorithm 1: Client-side training in FedFC
Input: Training data x and labels y
Output: w∗

c

1: Get initial client-side model wc from the server
2: for epoch e = 1, 2, . . ., to E do
3: for local batch (xk, yk) in total batch do
4: Sk ← Forward Propagation xk

5: Send smashed data Sk and labels yk to server
6: Get gradients gc·k from server
7: Update the client-side model with learning rate η: wc·k ← wc·k − η · gc·k
8: end for
9: end for

10: Send wc·k to server and get w∗
c by Algorithm 3

First, each client k requests an initial model wc from the server. Next, each client uses the local
data xk and actual labels yk to train the client-side model until a specified local epoch E is finished.
In each iteration, each client uploads the smashed data Sk and the corresponding yk to the server to
train the server-side model. After receiving the corresponding gradients of Sk from the server, each
client updates the client-side model with the learning rate η and the gradient gc,k. When each client
approaches the specified local epoch E, all clients upload their model parameters wc,k to the server
and wait for the new parameters w∗

c after applying Algorithm 3. To this end, a single training round is
completed in FedFC.

Algorithm 2 shows the procedures for each iteration to train the server-side model on a server. The
server initially splits the initial model into wc and ws, in which the number of layers in ws is determined
according to the last layer of wc. The server must process the smashed data for different layers of the
participant clients. The forward propagation procedures are presented from lines 5 to 15. At each layer,
the server first checks if any client uploads the smashed data before the server-side model training. If
a client uploads the smashed data, and the input feature X m

s of the current layer is null, the server
concatenates the smashed data S and assigns the result to X m

s ; otherwise, the server concatenates the
feature X m

s of a previous layer with the smashed data S of the client. Subsequently, the server assigns
the result to X m

s and adds the attribute with a tensor.detach(). The addition of the tensor.detach()
attribute to X m

s is a note for the server to identify that the client has uploaded the smashed data at this
step. Next, the server inputs the new X m

s to the current layer for training. If none of the clients upload
the smashed data, the output feature of the previous layer will be input to the next layer for training.
When the forward propagation is finished, the server concatenates the actual labels y1, y2, . . . , yK to
form Y and proceeds with the backpropagation updates in the next procedures.

Algorithm 2: Server-side training in FedFC
Input: Smashed data S1, S2, . . . , SK and labels y1, y2, . . . , yK

Output: w∗
s

1: Initialize:
2: Server splits the initial model into client-side model wc and server-side model ws

3: Server sends the client-side model wc to clients
(Continued)
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Algorithm 2: Continued
4: Server uses the server-side model ws to training

// Forward Propagation
5: for Server-side model layer m = 1, 2, . . . to M do
6: if any clients upload the smashed data at current layer m then
7: if X m

s is ∅ then
8: X m

s = Concatenate the smashed data S of clients
9: else

10: X m
s = Concatenate X m

s and the smashed data S of clients
11: end if
12: Add tensor.detach() attribute at X m

s

13: end if
14: X m

s ← Forward Propagation X m
s

15: end for
16: Y ← Concatenate labels y1 ⊕ y2 ⊕ y3 . . . ⊕ yK

// Back Propagation
17: for Server-side model layer m = M, M − 1, . . . to 1 do
18: if m == M then
19: gm

s = ∇l
(

Ŷ , Y
)

20: else
21: Compute gradients gm

s at current layer m
22: end if
23: if the tensor.detach() attribute is added at layer m then
24: g′m

s , g′ ← Splits gradients by the number of clients who uploaded
25: Send g′ to the client who has uploaded the smashed data at layer m
26: Use g′m

s to calculate gradients for next layer
27: end if
28: end for
29: Update the server-side model w∗

s

The backpropagation procedures are presented from lines 17 to 28. First, the server calculates
the loss value between Ŷ and Y for the updated gradients of the model parameters throughout the
backpropagation. When updating the gradient gm

s for each layer of the server-side model, the server
checks if the tensor.detach() attribute is added at the current layer. If the attribute exists, the server must
split the gradients into g′m

s and g′ according to the number of clients. If it does not, the server proceeds
with updating the backpropagation. After the backpropagation, the server updates the server-side
model parameters w∗

s and sends the gradients of the smashed data back to the corresponding clients
for the client-side model update.

After each client k completes its local training, all clients must upload the model parameters wc,k

from the client to the server. The server aggregates the model parameters from the participant clients
and sends the updated global parameters back to the clients. During this time, FedFC completes the
model training for one round. Algorithm 3 shows the FedAvg algorithm used in FedFC. After each
client uploads the model parameters, the server checks if the amount of parameters of each wc,k is
equal. If it is, then the numbers of the layers of the distinct client-side models are similar with each
other. As a result, the server can average the model parameters from all clients to generate new global
parameters w∗

c for the client-side model. The updated w∗
c will be sent back to the participant clients.
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Each client then proceeds with the model training with the updated parameters of the client-side model
at the next round.

Algorithm 3: FedAvg algorithm in FedFC
Input: Model parameters of each client wc·1, wc·2, . . . , wc·K
Output: w∗

c , w∗
s ,

1: if wc·1, wc·2, . . . , wc·K have the same amount of parameters then
2: w∗

c ← ∑K

k=1

nk

N
wc,k

3: Send w∗
c to all clients

4: else
5: for each layer in the original model do
6: A ← Get parameters from {wc·1, wc·2, . . . , wc·K} at current layer
7: if ws contains partial parameters of the client-side model then
8: Average A and partial ws parameters at current layer
9: else

10: Average A at current layer
11: end if
12: end for
13: Update w∗

c and w∗
s

14: Send w∗
c to all clients

15: end if

If the amount of parameters of each client-side model is not equal, which means that the numbers
of the layers of the distinct client-side model are different, the server must average the parameters per
layer of the client-side models. In this case, the server must exploit the smashed data of different layers
to train the server-side model. Therefore, the server averages the partial parameters of the server-side
model with those of the client-side models overlapped at each layer, as shown in Line 6. Next, the server
checks if the ws parameters are intersected with the client-side model. If this is the case, it averages Set
A and the partial parameters of the server-side model at the current layer and updates the overlapped
server- and client-side model parameters; otherwise, it only averages Set A and updates the client-side
model parameters. Finally, the server generates the global parameters w∗

c for the client-side model and
the parameters w∗

s for the server-side model. w∗
c is sent back to the participant clients according to the

corresponding layers of the client-side model.

4 Performance Evaluations

The experiments were conducted on a workstation with GTX 1080 GPUs for emulating four
clients and one server. The VGG16 [45] model used for FL was composed of 13 convolution layers
and three fully connected layers, each with a kernel size of 3 × 3. The programs were written in Python
3.6 with PyTorch 1.5, cudatoolkit 10.2, and flask 2.0. CIFAR-10 was adopted for the dataset, where
50,000 images were categorized for training, and the other 10,000 images were used for testing. The
batch size was 32. The learning rate was 0.001. The optimizer adopted stochastic gradient descent and
momentum. The experiments also considered different dataset scenarios, including the data and class
imbalance for the participant clients. In the data imbalance experiment, four clients were allocated
40%, 30%, 20%, and 10% of the training data. For the class imbalance case, classes 0–2 were dispatched
to Client 1; classes 2–4 were dispatched for Client 2; classes 4–6 were dispatched for Client 3; and
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classes 7–9 were dispatched for Client 4. The compared methods included centralized learning (CL),
FL, SFLv1, SFLv2, and FedFC. The performance metrics were the test accuracy and the convergence
time required to achieve a specified test accuracy. All experiments were performed for 200 rounds, with
an epoch of 10 per round.

4.1 Effect of the Model Cutting Layer

This experiment evaluated the effects of the model cutting layers and compared the best test
accuracy with CL. In FedFC, the model was split into different model layers (i.e., second, fourth,
seventh, and 10th layers). Fig. 4 shows the training results of the data imbalance case. The training
result of FedFC was closer to the that of CL when the cutting layer was two for each client-side model.
The test accuracy gradually decreased as the number of layers of the client-side model increased. It
exceeded the result of the seventh layer when the number of layers of the client-side model was assigned
with the 10th layer.

Figure 4: Model layer effect of the data imbalance

Table 1 records the best accuracy and convergence time for the data imbalance case. The best
accuracy decreased when the client-side model increased from the second to seventh layer. It increased
to 86.63% when the client-side model had 10 layers. The performance of different cutting layers in
FedFC was slightly degraded when compared to CL. Similar trends were found in the perspective of
the convergence time. The number of training rounds became longer when the number of layers of the
client-side model increased, but significantly reduced again for the 10th layer. The phenomenon only
occurred when the features were extracted before and after the middle layer of the DNN model.

Table 1: Best accuracy and convergence time of the data imbalance

Best accuracy Convergence time (85%)

CL 89.62% -
2 conv 88.21% 7 rounds
4 conv 87.08% 13 rounds
7 conv 85.74% 55 rounds
10 conv 86.63% 18 rounds
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This study referred to the work of [46] to explore the reason behind the phenomenon and expose its
critical impact. The shallow layers in the model generally learned the general features suitable for the
distinct learning tasks. For example, the features of the shallow layers of the model were extracted for
the edge features in the images. These general features are expected to be applicable to other image
classification tasks. The deep layers in the model also learned specific features to identify specific
data classes. Finally, the middle layers in the model learned the co-adaptation of features affected
by the general and specific features. Hence, the co-adapted features were the key point to the accurate
classification of the DNN model. In our experiments, feature co-adaptation occurred in the seventh
layer, while specific features occurred in the 10th layer. Accordingly, the test accuracy in the 10th layer
increased because a few co-adapted features were extracted while growing from the seventh to the 10th
layer. Consequently, the features learned by the server-side model were more specific in improving the
test accuracy.

Fig. 5 shows the training result for the class imbalance case. The best accuracy of the second layer
was 77.3%. A total of 122 rounds were needed to achieve the test accuracy of 75%; however, that
of the 10th layer reached 78.1% and took a shorter convergence time. Table 2 lists the best accuracy
and convergence time for achieving 75% test accuracy. When the number of layers of the client-side
model increased, the test accuracy increased, while the convergence time decreased. The gap in the
convergence speed between the seventh and 10th layers was significant in this experiment. The model
started to learn feature co-adaptation since the seventh layer. Meanwhile, the client-side model tended
to identify the local data by the client itself. The output features became more specific when the number
of layers of the client-side model increased. Therefore, the test accuracy gradually increased when fewer
parameters were offloaded to the server-side model.

Figure 5: Model layer effect of the class imbalance

Overall, the cutting layer (10th layer) in this experiment performed better than the others in
terms of the test accuracy and convergence time. However, not all the participant clients can train
a DNN model for 10 layers on the client-side. The proposed approach must complete the model
training according to different cutting layers of the client-side model. Hence, FL can be accomplished
considering heterogeneous computing and class imbalance among the participant clients in FedFC.
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Table 2: Best accuracy and convergence time of the class imbalance

Best accuracy Convergence time (75%)

2 conv 77.3% 122 rounds
4 conv 77.66% 114 rounds
7 conv 78.12% 100 rounds
10 conv 78.1% 66 rounds

4.2 Method Comparisons

This section compares the test accuracies of FL, SFLv1, SFLv2, FedFC, and mixed of the client-
side model for FedFC (FedFC-mixed layer). According to the configuration in SFL [18], SFLv1,
SFLv2, and FedFC split at the fourth layer. The FedFC-mixed layer considered the mixing of the
training layers of (2, 4, 7, 10), in which the second, fourth, seventh, and 10th layers were allocated to
distinct clients. Fig. 6 illustrates the experimental results of the data imbalance case. Table 3 highlights
the best accuracy and convergence time of FL, SFLv1, SFLv2, FedFC, and FedFC-mixed layer. The
test accuracies of FedFC and FedFC-mixed layer were improved by 1.09% and 1.03%, respectively,
compared to that of SFLv1. Compared to SFLv2, FedFC and FedFC-mixed layer showed improved
test accuracies of 2.62% and 2.56%, respectively. In terms of the convergence time, FL took six rounds
to achieve 85% of test accuracy. By contrast, SFLv2 did not achieve 85% test accuracy in 200 training
rounds. Compared to SFLv1, FedFC and FedFC-mixed layer outperformed SFLv1 by 63.89% and
52.78%, respectively.

Figure 6: Method comparisons of the data imbalance

The abovementioned results can be attributed to each client uploading the smashed data to the
corresponding server-side model for each SFLv1 iteration. SFLv1 must maintain multiple server-side
models and adopt an oversampling method to ensure that each iteration can obtain the smashed data
from the client-side model. In addition, SFLv2 exploited a sequential approach to train the server-
side model, which resulted in a high probability for the server-side model to a local optimum. In other
words, in an unbalanced data distribution, clients with a few training data only oversampled the limited
training data and uploaded similar smashed data for the server-side for model training. The server
repeatedly learned the same features from the client; hence, the gradient should be a very small value.
Consequently, the small gradient slowed down the update ratio of the server-side model. FL needed
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the least number of rounds to achieve a specified test accuracy of 85%, but it assumed that all clients
should be homogeneous and affordable for the entire model training on the client-side. In contrast,
FedFC proposed the feature concatenate method to concatenate the smashed data uploaded from
the distinct clients before inputting the features to the server-side model for training. Hereafter, the
server calculated the loss values according to the smashed data and updated the gradients of the model
parameters throughout the backpropagation.

Table 3: Best accuracy and convergence time for method comparisons of the data imbalance

Best accuracy Convergence time (85%)

FL 89.75% 6 rounds
SFLv1 (4 conv) 85.99% 36 rounds
SFLv2 (4 conv) 84.46% -
FedFC (4 conv) 87.08% 13 rounds
FedFC (2 4 7 10 conv) 87.02% 17 rounds

Fig. 7 depicts the results of the class imbalance case. The best accuracies of FL, SFLv1, SFLv2,
FedFC, and FedFC-mixed layer were 79.29%, 74.66%, 63.15%, 77.66%, and 77.48%, respectively.
Compared to SFLv1, the test accuracies of FedFC and FedFC-mixed layer increased by 3% and 2.82%,
respectively. Even FedFC outperformed SFLv2 by up to 14.5% in the test accuracy. Table 4 presents
the best accuracy and convergence time for achieving a specified test accuracy for each method. FL
took 105 rounds to achieve 75% test accuracy, while FedFC and FedFC-mixed layer must train for
114 rounds. SFLv1 and SFLv2 did not reach the desired test accuracy in 200 rounds because FedFC
used a feature concatenate method to train the server-side model.

Figure 7: Method comparisons of the class imbalance

To update the server-side model in FedFC, the input of the server-side model was concate-
nated with the smashed data uploaded from the participant clients. However, SFLv1 maintained
multiple server-side models, and each client-side model corresponded to a server-side model. When
all the server-side models in SFLv1 accomplished the training in one iteration, the server averaged the
gradients of all server-side models and updated the gradient values to all server-side models. In the
class imbalance case, the gradient value calculated by SFLv1 was biased toward the training data of
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the client itself, resulting in a deviation of the server-side model update. Meanwhile, SFLv2 exploited
the sequential approach to train the server-side model with the smashed data uploaded from the
clients. In the class imbalance case, SFLv2 suffered from a catastrophic forgetting problem [47];
hence, the server-side model only remembered the smashed data from the latest client and forgot the
previously learned features. Overall, FedFC enabled heterogeneous clients for collaborative training
with constrained resources on the client-side and offloaded the training burden to the server-side
model.

Table 4: Best accuracy and convergence time for method comparisons of the class imbalance

Best accuracy Convergence time (75%)

FL 79.29% 105 rounds
SFLv1 (4 conv) 74.66% -
SFLv2 (4 conv) 63.15% -
FedFC (4 conv) 77.66% 114 rounds
FedFC (2 4 7 10 conv) 77.48% 114 rounds

4.3 Extreme Class Imbalance

In the previous experiments, the data classes assigned to the participant clients were overlapped
in the class imbalance case. This section further considers an extreme data class imbalance among
the participant clients to train an FL model. The data classes were allocated without an intersection
between any two clients. The experiment was configured with five clients, with each client being
responsible for training the first four layers of VGG16. The data classes in CIFAR-10 were equally
allocated to these five clients, in which classes 0 and 1 were allocated to Client 1; classes 2 and 3 were
allocated to Client 2; classes 4 and 5 were allocated to Client 3; classes 6 and 7 were allocated to Client
4; and classes 8 and 9 were allocated to Client 5.

Fig. 8 shows the experimental results for the extreme class imbalance case. In terms of the best
accuracy, FedFC outperformed SFLv1 and SFLv2 by up to 6.89% and 10.63%, respectively. FedFC
also enhanced the test accuracy by 5.88% when compared to FL. Table 5 shows the best accuracy
and convergence time for achieving 60% test accuracy for each method. The results show that SFLv2
cannot reach the desired 60% accuracy within 200 training rounds. On the contrary, FedFC only spent
62 rounds to achieve the specified test accuracy, saving 55.39% and 59.47% of the convergence time
compared to FL and SFLv1, respectively.

FedFC outperformed the others because the proposed approach adopted a feature concatenate
method for the heterogeneous clients to retain a better test accuracy with a shorter convergence time.
By contrast, SFLv1 averaged the gradients of all the server-side models before updating the model
parameters. In this case, the gradient calculations were more fitting to the training data of the client
itself, such that the bias value of the model update was increased. SFLv2 dramatically suffered from
catastrophic forgetting in the extreme class imbalance case. More local epochs were training in FL;
hence, the client-side model will head toward only identifying the data classes residing at the client.
The test accuracy also dramatically decreased in the extreme class imbalance case.
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Figure 8: Method comparisons of the extreme class imbalance

Table 5: Best accuracy and convergence time for method comparisons of the extreme class imbalance

Best accuracy Convergence time (60%)

FL 64.24% 139 rounds
SFLv1 (4 conv) 63.23% 153 rounds
SFLv2 (4 conv) 59.49% -
FedFC (4 conv) 70.12% 62 rounds

4.4 Training Time Evaluations

This experiment considered four clients with different computing capabilities of CPU i7-8700,
GPU 1080, GPU 1660ti, and GPU 2080ti to evaluate the performance in a more practical environment.
Client 1 equipped with CPU i7-8700 was assigned with the second layer for the client-side model
training. Client 2 equipped with GPU 1080 was responsible for the fourth layer. Client 3 with GPU
1660ti was responsible for the seventh layer. Lastly, Client 4 equipped with GPU 2080ti was responsible
for the 10th layer. The model was trained for 200 rounds. The local epoch was set to five for each round.
The data distribution was allocated as class imbalance. The SFL approached were not comparable in
this experiment because the released codes were only targeted to the simulation on a single machine,
rather than a real deployment on multiple machines. Therefore, this experiment compared only FL,
FedFC, and FedFC-mixed layer. FedFC was split at the fourth layer for each client-side model. The
FedFC-mixed layer considered the mixed layers of (2, 4, 7, 10).

Fig. 9 shows the practical results of the realistic training time in seconds. The best accuracies of
FedFC and FedFC-mixed layer were found as 76.6% and 77.47%, respectively, whereas that of FL was
only 70.47%. The results illustrate that the proposed FedFC approaches outperformed FL by up to 7%
when the computing capabilities of the participant clients were heterogeneous. For FL, each client must
train an entire model, and the server must wait until all clients have uploaded the model parameters
before the aggregation. In this practical training, the client equipped with the CPU-only resource spent
the longest time training the model when compared to other clients with GPU resources. Regarding
the convergence time for achieving 75% test accuracy, FL failed to converge the model within the
training time of 120,000 s. By contrast, FedFC and FedFC-mixed layer trained the server-side model
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by concatenating the smashed data uploaded from the clients. The server-side model can learn all client
features and reduce the computation cost of the client-side model by splitting the entire model. The
FedFC-mixed layer performed better than FedFC because each client provided empirical features for
the different layers of the client-side model. The server-side model can learn not only the smashed
data from the current client, but also other feature information learned from the previous layers of the
other clients. Consequently, the specific features learned in the deeper layer of the server-side model
were clearer when identifying the data classes. Therefore, FedFC can accelerate the convergence speed
while improving the test accuracy for the heterogeneous computing in FL.

Figure 9: Training time of the heterogeneous clients with CIFAR-10

5 Conclusion

In federated learning, the client with limited computing resources may prolong the convergence
time for model training. The model may not even finish due to being out-of-memory on the constrained
client. This study proposed the FedFC method for heterogeneous clients in FL by using the split
model. The participant client took a few model layers for training on the client-side. The other model
layers were offloaded to the server for the remaining training. This study not only investigated the
impact of different cutting layers in FedFC, but also introduced a mixed layer approach for FL among
heterogeneous clients. Beneficial from the split model and the feature concatenate methods, the specific
features learned in the deeper layer of the server-side model were more identical for the data class
classification. Therefore, FedFC can reduce the computation loading for the constrained client and
accelerate the convergence speed. The experiment results showed that FedFC showed an improved
best accuracy of approximately 1% and 2.6% when compared to SFLv1 and SFLv2, respectively,
when the data volume distribution was unbalanced among the participant clients. The convergence
time of FedFC was also shortened better compared to that of SFLv1 when achieving the specified test
accuracy of 85%. In the case of a class unbalanced distribution, FedFC improved its best accuracy
by up to 3% and 14.5% compared to SFLv1 and SFLv2, respectively. Moreover, in the extreme class
imbalance experiment, it outperformed the best accuracies of FL, SFLv1, and SFLv2 by 5.88%, 6.89%,
and 10.63%, respectively.

In conclusion, the proposed approach is suitable for heterogeneous clients in FL because it
shortens the convergence time and improves the test accuracy. The co-adapted features play a critical
role in the adequate classification of the deep learning model. The client with powerful computing
resources may take half of the model layers, while the constrained client should consider fewer layers
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based on the capability of its local resources. An interesting topic for future research would be how
to determine the minimum required layers for a client according to the capability of its computing
resources, dataset data distributions, and its network connectivity. The limitation of the current FedFC
is the resource consumption of server resources suitable for the linear model [48] in deep training. How
to adapt FedFC with varied training loads and dynamically allocate the memory for the DNN in FL
are also interesting topics for future works. The privacy issue of the smashed data in secure federated
learning [49–51] remains an open topic for research directions.
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