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Abstract: Short-term load forecasting (STLF) is part and parcel of the
efficient working of power grid stations. Accurate forecasts help to detect the
fault and enhance grid reliability for organizing sufficient energy transactions.
STLF ranges from an hour ahead prediction to a day ahead prediction. Vari-
ous electric load forecasting methods have been used in literature for electricity
generation planning to meet future load demand. A perfect balance regarding
generation and utilization is still lacking to avoid extra generation and mis-
usage of electric load. Therefore, this paper utilizes Levenberg–Marquardt
(LM) based Artificial Neural Network (ANN) technique to forecast the
short-term electricity load for smart grids in a much better, more precise,
and more accurate manner. For proper load forecasting, we take the most
critical weather parameters along with historical load data in the form of time
series grouped into seasons, i.e., winter and summer. Further, the presented
model deals with each season’s load data by splitting it into weekdays and
weekends. The historical load data of three years have been used to forecast
week-ahead and day-ahead load demand after every thirty minutes making
load forecast for a very short period. The proposed model is optimized using
the Levenberg-Marquardt backpropagation algorithm to achieve results with
comparable statistics. Mean Absolute Percent Error (MAPE), Root Mean
Squared Error (RMSE), R2, and R are used to evaluate the model. Compared
with other recent machine learning-based mechanisms, our model presents
the best experimental results with MAPE and R2 scores of 1.3 and 0.99,
respectively. The results prove that the proposed LM-based ANN model
performs much better in accuracy and has the lowest error rates as compared
to existing work.
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1 Introduction

Electric power load forecasting is essential for the planning and decision-making of power system
management. Electric load generation, transmission, and distribution utilities heavily depend on
load forecast. Therefore, these utilities need accurate methods to forecast electrical load to use their
infrastructure effectively, safely, and economically [1,2]. Typically, load forecasting is categorized into
four categories, i.e., very short-term (VSTLF), short-term (STLF), medium-term (MTLF), and long-
term (LTLF) load forecasting. These are hourly, daily, weekly, and yearly forecasting [3]. Among all
these, STLF is the most significant and challenging owing to its direct economic consequences. As
there is no method of storing electrical energy and generating it instantly, the amount of electricity
generated should be balanced with the amount used by the consumer. The producers’ economy could
face difficulties if anticipated energy production is not balanced. Energy companies lose a lot of money
due to imbalance load forecasting, e.g., a 1% increase in forecasted load due to miscalculation is
nearly equivalent to a $10 million increase in the operational cost of the power plants [4]. Therefore,
there is a need that power producers must generate balanced electricity in production, distribution,
transmission, and consumption. Thus, electrical companies require an accurate, efficient, short-term
load forecasting mechanism to balance supply and demand for producers and consumers.

Past research efforts focused on classical and computational intelligence techniques for load
forecasting [5]. Both methods have shortcomings; for example, the classical techniques have a limited
ability to handle nonlinear data. In contrast, computational intelligence techniques suffer from
inadequate feature engineering, inaccurate learning capacity, etc. Various machine learning techniques
have been introduced to alleviate these problems in the last few years. Due to their vital role in
the decision-making process of power management systems, these techniques have improved the
performance of the electric load forecast to some extent [6]. For example, Boroojeni et al. [7] modeled
off-line load data with different time periods (e.g., daily, weekly, quarterly, and annually) and used
an auto regressive and moving average (ARMA) components to demonstrate seasonal and non-
seasonal load sequences individually. Li et al. [8] explored ensemble subsampled support vector
regression (ESSVR) for STLF and estimation. Taheri et al. [9] investigated long short-term memory
(LSTM) to propose a short, mid, and long-term load forecasting model. Irfan et al. [10] developed
a DensetNet-121 based week-ahead load forecasting model with a support vector machine (SVM)
ensemble to contribute an integration approach for combining multiple networks. Undoubtfully, the
above ventures provide a thoughtful insight for electric load forecasting.

Besides the above, making accurate electrical load forecasting while considering seasons as well as
the variations of weekdays and weekends is a challenging task. The load can act differently on different
weekdays, such as Mondays and Fridays may have substantially distinct demands than Tuesdays
and Thursdays due to the proximity of weekends. Furthermore, various parameters, i.e., time factors
(hours, days, months, years), weather data, customer class, past required load, region expansion,
increased load, etc., also affect load demands significantly [11]. However, the recent work on STLF
either does not collectively consider weather and time parameters with historical load demand or lacks
accuracy. Thus, the cruciality of weather parameters and the criticality of load demand variations (for
weekdays, weekends, and variations within a day) call for a valid mapping between these influential
factors and load differences simultaneously.

This paper aims to develop a generalized deep learning-based model for STLF to address the
challenges described above. The objective is to deal with weather parameters and load demand
variations due to seasons, weekdays, and weekends in a better, more precise, and more accurate manner.
In this regard, an artificial neural network (ANN) is proposed that contemplates historical load data
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grouped into winter and summer seasons. Each season is further sorted into weekends and weekdays
independently, with each weekday sliced into 48 slabs while considering the variation within a single
day. As the load profile is dynamic with temporal, seasonal, and day-to-day variations, thus, the
proposed model forecasts the week-ahead electric load demand by predicting each weekday’s load
after every thirty minutes. The prediction for a very short period attempts to make the load forecast
more interactive for the reliable working of power systems. We use one of the best optimization
techniques, i.e., the Levenberg-Marquardt (LM) backpropagation algorithm, to train the proposed
model and optimize its performance. The performance of the proposed model is tested on the USA
power industry’s historical hourly load data that is available publicly. Regression analysis is carried out
through training, testing, and validation against the target vector to demonstrate correlation among
them. The proposed LM-based ANN model intends to perform highly accurate STLF with significant
convergence speed for improved power grid management and operations.

The main contributions of the paper are as follows.

1. We developed a model that deals with historical load data by separating it into different seasons
(i.e., winter and summer). Further, each season is split into weekdays and weekends, with each
day sliced into 48 slabs.

2. The LM backpropagation technique is adapted for optimized training of our proposed model,
which is empowered via training to predict the day-ahead and week-ahead load demand after
every thirty minutes.

3. We verify the proposed LM-based ANN model on past load data. The empirical results of
RMSE and MAPE values indicate that the proposed model achieves better load forecast
accuracy and convergence rate.

4. Regression analysis is performed after training to validate the model’s performance in terms
of R2 (coefficient of determination) and R (correlation) between actual and forecasted load
demand.

The rest of the paper is arranged as follows: Section 2 reviews the related work. The proposed LM-
based ANN technique is elaborated in Section 3. Section 4 presents results and discussions. Finally,
the paper is concluded in Section 5.

2 Related Work

Generally, STLF includes the load forecast for hours to a week and is essential in the planning
and management process of the power grid operations. Previous literature indicates that statistical
methods and machine learning models are standard techniques for forecasting electric load of short-
term nature.

Since the last decade, STLF has been performed using several machine learning techniques that
provide realistic prediction accuracy [12]. Regression is the most prominent and simpler model used
up so far among these techniques. The various kinds of regression used for load forecasting are
linear, multiple, exponential, etc. For example, Jiang et al. [13] used support vector regression to
predict the short-term load using historical data. Similarly, random forest regression is also used
for modeling the Chinese society of electrical engineering dataset and getting the best prediction
performance [14]. Abu-Shikhah et al. [15] implemented a multivariable regression comprising three
regression models, i.e., linear, polynomial, and exponential power, on Jordanian electric load data.
Siami-Namini et al. [16] integrated Auto-Regressive Moving Average (ARMA) with Auto-Regressive
(AR) and Moving Average (MA) models. The authors claimed that LSTM outperformed ARIMA.
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Further, the findings indicate that the LSTM-based prediction was five to eight percent more accurate
and robust than the ARIMA model’s prediction.

ANN is also widely used for predicting different types of load forecasting, proving itself a
valuable, general-purpose method for identifying patterned classification [17–19]. The authors in
[20] investigated the performance of STLF using deep residual networks and concluded that these
networks are typically suitable for STLF giving reasonable prediction accuracy compared to LTLF.
Elgarhy et al. [21] claimed that an improved ANN technique performed better than the regular ANN.
They used 10-year historical electric load data to forecast short-term load for New England and
demonstrated that the model helped to reduce ambiguity. Deep neural networks (DNN) have recently
been employed for load forecasting [22,23]. For example, DNN is used for STLF and probability
density forecasting. The authors in [24] experimented with the electricity consumption data of three
Chinese cities. The results illustrated that the DNN model outperforms the random forest and gradient
boosting approach. In [25], the authors used different kinds of recurrent neural networks (RNNs)
to predict hourly load for residential consumers. The results indicated that the prediction accuracy
of LSTM-based RNN is far better than simple RNN. Hossen et al. [26] trained Google’s machine
learning TensorFlow platform for the Iberian electric market to forecast the load by considering the
weekend and weekdays differences. Similarly, the researchers in [27–29] employed long short-term
memory (LSTM), considering its recurrent nature to predict STLF for small regions, and achieved
noticeable accuracy. It is observed that electricity consumption is largely affected by weather and
other ecological parameters [4]. The techniques described above usually employ a single model that
undergoes fast converging behavior; however, these models suffer from low forecast accuracy, which
is not up to the required level.

Researchers have also combined various classical models and deep learning techniques to develop
a hybrid model and found significant improvement in forecast accuracy for power system applications,
especially for predicting time series data. For example, Eapen et al. [30] employed neural networks with
backpropagation to reduce predictive inaccuracies. The authors presented a sequentially hybridized
neural network model. The backpropagation is used in two phases, and the model is tested on hourly
electric load data by achieving noticeable accuracy. Zhang et al. [31] proposed a hybrid model for
STLF based on three techniques, i.e., empirical mode decomposition, ARIMA, and wavelet neural
network (WNN). The model is evaluated based on the historical load data of the Australian and New
York electricity markets. The empirical results demonstrated an improvement in the model prediction
accuracies compared to existing techniques. The authors in [32] suggested a hybrid model consisting of
signal decomposition and correlation analysis techniques for STLF. An LSTM-based hybrid model
presented in [33] considered climate factors in addition to the historical load demands of different
states of the USA and claimed to achieve better load predictions. Massaoudi et al. [34] projected a
stacked generalization approach that combined a light gradient boosting machine (LGBM), extreme
gradient boosting machine (XGB), and multilayer perceptron (MLP) to predict STLF. Simulation
results showed that the suggested model prediction is more accurate than the existing models.

Different researchers have done much work to predict STLF; however, standardized accurate
forecasting models are still lacking that can be used for all types of purposes and conditions. STLF
is challenging as many other influencing parameters affect electricity load besides historical load
demand, such as time of day, weekdays or weekends, climate factors, social variables, different seasons,
etc. To resolve these problems and improve forecasting accuracy, in this paper, we have proposed a
novel hybrid STLF model that organizes load data into different seasons (i.e., winter and summer).
Further, the proposed model considers weekdays and weekends separately for every month of each
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season. Additionally, the time within each day is sliced into 48 slabs to forecast the load demand of
the next day more accurately.

3 The Proposed LM-Based ANN Model

This work proposes an LM-based ANN model for STLF that simultaneously works on linear
and nonlinear time series load data. Fig. 1 depicts the systematic flow of the proposed model. This
work accurately forecasts the day-ahead and week-ahead load demands while considering the most
influencing parameters, e.g., weather, weekdays, weekends, etc.

Figure 1: Proposed LM-based ANN system model

For accurate load forecasting, data is first fed to the preprocessing phase for cleaning purposes.
The preprocessed data is inputted into the data classification phase to separate the load data into
winter and summer seasons. Further, it is divided into weekends and weekdays, with each day’s data
sliced into 48 splits. Next, the output of the data classification phase is passed to the proposed LM-
based ANN model for training. We use an adaptive learning algorithm to train the model and use past
load data for training to find the best possible weights. Afterward, the trained model is verified, and
the next day’s load demand is forecasted for a very short period, i.e., thirty minutes. Following is the
detail of each of these phases.
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3.1 Dataset Description

We have used the USA power industry’s publicly available electrical hourly load dataset1. The
period of the dataset used in this work is from January 1, 2019, to December 31, 2021. The dataset
comprises 50,784 samples, each consisting of seven attributes (i.e., load, time, temperature, humidity,
sunrise, sunset, and holiday). The ratio for the training dataset is 70% of the total dataset, and the
remaining 30% is used for validation and testing. Data samples from January 2019 to September 2021
are taken for training, and load samples from October 2021 are used to evaluate the model’s perdition
accuracy.

3.2 Data Preprocessing

The load profile for weekdays and weekends differs significantly; therefore, a separate analysis
is conducted for weekdays and weekends. Data is processed on a daily, 5-days, and week-by-week
basis. Since the load demand for any given hour of the day is like previous days’ loads, thus, the LM-
based ANN model is trained on the historical load data. The data is preprocessed to obtain accurate
forecasts after training. There is a strong association between data appropriateness and convergence
of the model, i.e., the more the data is finetuned, the early the model will converge. Therefore, data is
first fed to the cleaning phase, replacing the faulty and missing fields with the average values of the
previous days’ load data. As electric load data always contain outliers, thus, normalization follows the
cleaning phase to limit the weighted sum within the bounds of the activation function.

3.3 Data Organization

For best prediction results, dataset organization is carried out according to the following criteria.

• Load data is first organized based on seasons, i.e., grouping into summer and winter. The winter
season is spread over three months, i.e., December, January, and February, whereas the summer
comprises May, June, and July. The remaining months have the usual load demands.

• Each month’s load data is further separated into weekdays (5 working days) and weekends
(Saturday and Sunday). Working days and weekends are worked separately as the load demand
for weekends is less than for working days. Thus, weekend load data is not used to forecast load
demand for working days and vice versa. We worked on weekly five days load data to predict
next week’s working days load forecast.

• Considering the fluctuating criticality of the load demand, each hourly load sample is divided
into two equal halves, with each half containing the load data for half-hour. It helps predict
STLF more precisely and accurately for a short period.

3.4 The Proposed LM-Based ANN Model Architecture

The proposed model uses multilayer perceptron (MLP) architecture with two layers, i.e., a hidden
layer and an output layer, as described in Table 1. It is a feedforward neural network where the set of
Pn inputs from the input layer are multiplied to weights wn, connected with each unit of a single hidden
layer, which is connected to the output layer. The weighted summation X is described in Eq. (1).

X = P1w1 + P2w2 + . . . + Pnwn =
k∑

n=1

Pnwn (1)

1https://www.eia.gov/

https://www.eia.gov/
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Table 1: Proposed LM-based ANN model architecture

Parameters Values

No of layers 3 (Input layer, hidden layer, output layer)
Hidden layer neurons 100
Input layer neurons 5
Output layer neurons 1
Number of hidden layers 1
Activation function Sigmoid function
Training algorithm Levenberg Marquardt backpropagation
Number of epochs 1000 (default)

An activation function is used to achieve the desired outputs from the hidden layer. The activation
function is required to be nondecreasing and differentiable for accurate training of ANNs. Thus, the
log-sigmoid function f (X), is applied on weighted summation X at the hidden layer of our proposed
LM-based ANN model and calculated as follows.

f (X) = 1
(1 + e−X)

(2)

The Purelin transfer function is used as an activation function at the output layer, which is a linear
transfer function that calculates a layer’s output from its net input.

The proposed model uses the Levenberg-Marquardt (LM) backpropagation algorithm, one of
the best optimization functions with a better learning rate than the other functions available for
forecasting. The LM algorithm was designed by Hagan et al. [35] to address the shortcomings of
gradient descent and the Gauss-Newton (GN) method. GN method converges very fast due to its
quadratic properties, but it depends on initial weight values. In contrast, predicting suitable initial
values in real-world problems is impossible. Similarly, gradient descent algorithms typically have a
slow convergence speed. However, LM combines the benefits of both algorithms to present a hybrid
optimization mechanism, making it appropriate for most prediction problems.

Initially, the model uses default values for the number of epochs and learning rate, which are
adjusted later for model convergence during training. Moreover, the predicted load output is compared
to the actual load data for performance evaluation, and different performance metrics have been
applied. First, we calculated the mean absolute percentage error (MAPE) to check the accuracy of
the proposed approach, which is defined as follows.

MAPE = 1
N

N∑
t=1

∣∣∣∣
Lt − Ft

Lt

∣∣∣∣ × 100% (3)

In Eq. (3), Lt is the actual load at time t, N is the number of samples (48-time slabs for 24 h load
forecast) and Ft is the forecasted load at time t.
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The second performance metric is the root mean squared error (RMSE), a performance assess-
ment indicator that estimates the errors of the predicted load forecast. It is defined as follows.

RMSE =
√√√√ 1

N

N∑
t=1

(Lt − Ft)
2 (4)

where Lt, is the actual load at time t, N is the number of samples, and Ft , is the forecasted load at
time t.

The third performance metric is regression analysis, where we calculated the values of R2 and R.
R2, also called goodness of fit, which measures the extent that variability in the actual load is explained
by variability in the forecasted load values. At the same time, R measures the correlation between actual
and forecasted load demand. The formulae for R2 and R are as follows:

R2 = 1 −
∑N

t=1 (Lt − Ft)
2

∑N

t=1

(
Lt − Ft

)2 (5)

where Ft, is the mean value of the forecasted load Ft, at time t with the actual load Lt. When the values
of R2 and R are closer to 1, it indicates the high accuracy of forecasted results.

R = ±√
R2 (6)

3.5 Training Process

In the model’s training process, we used the predictor and target datasets for training. The actual
load values for a specific predictor dataset make up the target dataset. The training algorithm tries to
minimize the difference between the expected output and actual output (loss function) and settles
the weights and biases accordingly. The training goal is set at 0 to ensure zero tolerance for loss
function. The training progresses to minimize the loss and enable the model to forecast the electric
load accurately. The weights and biases are updated using backpropagation to reduce loss function.

Further, the movement of the error signal back to the input layer through the hidden layer can be
generalized through the delta rule. The loss minimization procedure is repeated on an epoch-by-epoch
basis until the model converges to a minimum or some stopping criteria meets, e.g., the total number
of epochs. Initially, the number of epochs is 1000 (default value), which is later reduced to a maximum
of 7 due to the early convergence of the model. An epoch is a comprehensive depiction of the ideal
training regimen. The training procedure permits the LM-based ANN model to learn the relationship
between inputs and outputs. It keeps learned information in the parametric form so that model can
perform subsequent operations without retraining.

3.6 Optimization

The model is trained to provide desired outputs using historical data as input signals. Typically,
every input after some processing generates an output signal in a system. The ultimate goal of the
model is optimization, i.e., to minimize the loss function. Thus, the Levenberg Marquardt (LM)
backpropagation algorithm is employed to get the desired output by iteratively modifying the internal
weight and bias parameters of the ANN hidden layer. Initially, these parameters are given random
values, and the sum of square error Cn is used to compute the network error from the initial parameters
according to the following equation.
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n = 1
2

∑
1 ≤ p ≤ P
1 ≤ k ≤ K

r2
p,k (7)

In the above equation, rp,k is training error with P is the total number of patterns and k is the total
number of outputs. rp,k can be calculated as follows.

rp,k = Yp,k − Ŷp,k (8)

where Yp,k and Ŷp,k are the actual and predicted values of the kth output and pth pattern, respectively.
Afterward, the LM algorithm updates the weights parameters by using the following equation.

wn+1 = wn − ( )
−1 J n (9)

In the above equation, wn+1 is the value of the updated weight and wn is the prior value of weights,
and J is the Jacobian matrix that contains the first derivatives of network error with respect to weights.

is the Hessian matrix that can be expressed as:

= JTJ + (μI) (10)

where I is the unity matrix and μ is the combination coefficient. When coefficient μ is zero, it reduces
to just Newton’s method. Newton’s method is more efficient and faster; thus, it tried to move toward
newton’s method as rapidly as possible. Therefore, it is intended to decrease μ′s value in every step.
LM consider μ′s value only when updated error n+1 value is smaller than current n value. If updated
error n+1 gets a larger value than prior n, then the process will be restarted from the first step of initial
random weights initialization [36,37]. The systematic flow of the LM algorithm is described in Fig. 2.

Figure 2: Workflow of Levenberg–Marquardt algorithm
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Finally, validation and testing followed the training. After the network has been trained, it is put
to the test by feeding it test load forecast data. The anticipated load output is compared to the actual
load output to calculate the inaccuracy.

4 Results and Discussion

The proposed LM-based ANN model is empowered with training to forecast future load demands
with acceptable accuracy. The results for the winter and summer seasons are obtained separately,
with the summer season consisting of May, June, and July, while the winter season comprises
December, January, and February. Moreover, the load demand within a month is forecasted separately
for weekdays and weekends. Further, each day is sliced into 48 slabs to predict STLF for a very
short period. Afterward, the following performance metrics are calculated to evaluate the model’s
performance.

4.1 Regression Analysis

The regression analysis determines the values of R2 and R to measure the goodness of fit and
correlation between actual and predicted load demand of the proposed model on test data. Fig. 3
shows the plots for May, June, and July, depicting the regression analysis for the summer season.
Similarly, Fig. 4 shows the plots for December, January, and February describing the regression
analysis for the winter season. In each regression plot, the solid line is the best-fit line indicating the
linear regression between outputs and targets. The light-colored band represents the 95% confidence
band, while the dark band represents the 95% prediction band denoting the relationship between the
actual and predicted load demand.

(a) May (b) June

Figure 3: (Continued)
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(c) July

Figure 3: Regression analysis (predicted vs. actual load) for the summer season

All these plots estimate the accuracy with which the trained model forecasts the future load.
These plots also depict the model’s capacity to learn the complex relationship between historical load
demand, weather, and time data for accurate load forecasts. In each plot of Figs. 3 and 4, the values R2

and R are calculated; the closer the value of R2 to 1, the more accurate the model results are. Similarly,
R = 1 indicates an exact linear relationship between actual and predicted load, whereas its close to zero
value means no linear relationship. It is seen that for all months of the summer and winter seasons,
R2 and R values are close to 1, leading to an excellent response and validating the proposed model’s
accuracy.

(a) December (b) January

Figure 4: (Continued)
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(c) February

Figure 4: Regression analysis (predicted vs. actual load) for the winter season

4.2 Error Evaluation (RMSE and MAPE)

Another way to represent the model’s performance on training and testing datasets is to measure
the error rate across varying epochs. The model training is poor when there is high variance and bias. It
indicates that the model is storing training dataset information instead of learning. High bias signifies
a high rate of error during training and testing, whereas high variance indicates the noticeable gap
between the prediction accuracy of training and testing of the model. In either case, the model performs
poorly and results in vague generalization. Another problem is overfitting, which occurs when a model
performs well in training but does not show good performance on testing. Such a model memorizes
the dataset parameters instead of learning from them, leading to a lousy generalization.

Table 2 depicts the performance measure of the proposed LM-based ANN model, demonstrating
the relation among RMSE, MAPE, and the number of epochs for the different months of the
summer and winter seasons. It also shows a set of experimented network parameters and their results.
The model is tested with varying sets of hyperparameters, i.e., the number of neurons used at the
hidden layer, the number of hidden layers, the choice of transfer functions used at each layer, model
architecture, training and learning functions, etc. A trial-and-error approach is investigated with the
model until the best set is attained. It can be seen that with the increased number of neurons at the
hidden layer, the model gets improved RMSE and MAPE results.

Table 2: LM-based ANN model’s error evaluation with different sets of parameters

Layers Month Hidden
neurons

Learning
function

Training
function

RMSE MAPE% Epoch

2 Dec 100 LEARNGDM TRAINLM 121.4 1.88 7
2 Dec 200 LEARNGDM TRAINLM 116.5 1.72 4
2 Dec 300 LEARNGDM TRAINLM 112.02 1.65 7
2 Jan 100 LEARNGDM TRAINLM 213.3 3.04 6

(Continued)
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Table 2: Continued
Layers Month Hidden

neurons
Learning
function

Training
function

RMSE MAPE% Epoch

2 Jan 200 LEARNGDM TRAINLM 120.15 1.84 7
2 Jan 300 LEARNGDM TRAINLM 105.4 1.74 5
2 Feb 100 LEARNGDM TRAINLM 186.6 2.7 7
2 Feb 200 LEARNGDM TRAINLM 110.8 1.62 5
2 Feb 300 LEARNGDM TRAINLM 97.9 1.3 6
2 May 100 LEARNGDM TRAINLM 154.3 1.9 7
2 May 200 LEARNGDM TRAINLM 107.73 1.5 5
2 May 300 LEARNGDM TRAINLM 73.56 1.08 6
2 June 100 LEARNGDM TRAINLM 254.6 3.89 6
2 June 200 LEARNGDM TRAINLM 205.83 2.71 7
2 June 300 LEARNGDM TRAINLM 117.34 1.8 6
2 July 100 LEARNGDM TRAINLM 297.5 3.7 7
2 July 200 LEARNGDM TRAINLM 105.3 1.42 5
2 July 300 LEARNGDM TRAINLM 98.45 1.4 6

Similarly, the log-sigmoid transfer function turns out to be good, giving better RMSE and MAPE
values than the tan-sigmoid function used at the hidden layer neurons of the LM-based ANN model.
It is also observed that the size of the dataset also contributes to the model’s performance, i.e., the
larger the size of the dataset, the better the model’s performance. The table shows that the model gets
the best results at very early epochs. Thus, our proposed LM-based ANN model resolved the problem
of overfitting. Moreover, from the empirical results, it can be concluded that the network is trained to
forecast with high accuracy.

4.3 Forecasted and Actual Results Evaluation

The ultimate goal of this paper is to forecast the next day’s load with maximum accuracy. For which
the LM-based ANN model is trained using the best hyperparameter values and optimized weights
that give the best prediction results for the target load data. Finally, the best hyperparameter values
of the model training are documented, and the model is tested with test data to check its prediction
performance on unseen data.

Fig. 5 shows the difference between the forecasted load and actual load demand for 1st five
weekdays, with each day sliced into 48 slabs (total of 240 slabs) during different months of the summer
season. Similarly, Fig. 6 shows the difference between the forecasted load and actual load demand for
1st five weekdays during different months of the winter season. The plots of both figures depict that the
forecasted load is very close to the actual load demand. Thus, our proposed LM-based ANN model
is robust enough to predict STLF for the next week.

4.4 Comparison with Other Techniques

We forecasted the load for the next day, with each day sliced into 48 slabs bearing maximum
accuracy. Compared with other state-of-the-art machine learning techniques [19,33,36], which fore-
casted the load for the next day and the next hour, we predicted the load for the next thirty minutes
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with comparable high accuracy. It makes the load prediction according to the need of the hour for
the power system enabling them to generate load according to the forecast for a very short period.
Moreover, in [33], their RMSE and R values are for the whole summer or winter season, whereas we
calculated the result for every month for MAPE and R performance metrics with almost identical
best scores. Though they forecasted the hour-ahead load, they depicted it for a whole day. Thus, it is
difficult to consider it as an hour-ahead prediction, whereas we calculated the load forecast for every
thirty minutes (240 slabs) and depicted it graphically very clearly. Thus, it can be concluded that our
LM-based ANN model outperforms the state-of-the-art techniques for predicting load for a very short
period with comparable high accuracy and the lowest error rates.

Figure 5: Load forecast plots for weekdays during months of the summer season
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Figure 6: Load forecast plots for weekdays during months of the winter season

5 Conclusion

Power load prediction is essential for an effective energy system operation and scheduling. This
paper proposed an LM-based ANN model to forecast short-term electricity load. We collected the
USA Power Industry’s electric load dataset for model training from 2019 to 2021. Weekdays and
weekends are separated for the winter and summer seasons, considering the significant variation of
load demands for different seasons as well as for weekends and weekdays. Owing to the dynamic and
temporal nature of the load profile, each day’s load is further divided into 48 slabs, each consisting
of 30 min. We take time and weather data with historical load demand simultaneously as input to the
LM-based ANN model due to the great impact of meteorological parameters on the next day’s load



1798 CMC, 2023, vol.75, no.1

demand. The Levenberg-Marquardt optimization technique is used as a backpropagation algorithm
in the LM-based ANN model to optimize its performance. The model’s performance is evaluated
using statistical measures, i.e., RMSE, MAPE, R, R2. The RMSE and MAPE give lower error rates,
whereas R2 and R produce optimal values that prove the robustness of the LM-based ANN model.
The empirical results show that the proposed electric load forecasting model outperforms in terms of
forecast accuracy with the lowest error rates.

Although the LM-based ANN model is robust in processing time series data, its parameters still
have some room for optimization (i.e., finetuning of significant parameters) to improve the computing
efficiency. Moreover, forecasting accuracy can be further enhanced by considering other important
factors, such as locations, social variables, etc. Our future work will investigate other deep learning-
based forecasting mechanisms like convolutional neural networks and recurrent neural networks to
deal with more complex and larger datasets.
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