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Abstract: Pneumonia is an acute lung infection that has caused many fatal-
ities globally. Radiologists often employ chest X-rays to identify pneumonia
since they are presently the most effective imaging method for this purpose.
Computer-aided diagnosis of pneumonia using deep learning techniques is
widely used due to its effectiveness and performance. In the proposed method,
the Synthetic Minority Oversampling Technique (SMOTE) approach is used
to eliminate the class imbalance in the X-ray dataset. To compensate for
the paucity of accessible data, pre-trained transfer learning is used, and an
ensemble Convolutional Neural Network (CNN) model is developed. The
ensemble model consists of all possible combinations of the MobileNetv2,
Visual Geometry Group (VGG16), and DenseNet169 models. MobileNetV2
and DenseNet169 performed well in the Single classifier model, with an
accuracy of 94%, while the ensemble model (MobileNetV2+DenseNet169)
achieved an accuracy of 96.9%. Using the data synchronous parallel model
in Distributed Tensorflow, the training process accelerated performance by
98.6% and outperformed other conventional approaches.

Keywords: Pneumonia prediction; distributed deep learning; data parallel
model; ensemble deep learning; class imbalance; skewed data

1 Introduction

The acute pulmonary infection known as pneumonia can be brought on by a virus that affects
the lungs, causing inflammation and pleural effusion, which fills the lungs and makes breathing
difficult. The majority of cases of pneumonia occur in impoverished and emerging nations, where
there is a shortage of medical resources, excessive population, pollution, and unclean environmental
conditions. Therefore, preventing the disease from turning fatal can be significantly aided by early
diagnosis and care. The diagnosis of lung disorders typically involves radiological evaluation of
the lungs using various imaging techniques like Computed Tomography (CT), X-ray, and Magnetic
Resonance Imaging (MRI). Pneumonia is the leading cause of mortality attributed to respiratory
illnesses. Medical professionals examine X-rays [1] to identify this illness in clinical practice, which
is biased based on the radiologist’s experience and is highly time-consuming [2]. X-ray diagnostics
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are accurate when large-scale labeled datasets and deep learning algorithms are used. Deep learning
enables the extraction of hierarchical features from adequate training datasets [3,4]. However, X-
rays are misinterpreted due to the subjective variations in the investigation techniques used by health
specialists. The impact of artificial intelligence in the medical field is widely studied [5].

In the medical sector, machine learning methods have been reported for pneumonia, cancer
diagnosis, and real-time healthcare monitoring [6,7]. The robust feature extraction algorithms in Deep
learning have shown considerable promise in medical image segmentation and prognosis [8–11]. In the
medical and image domain, CNN is widely used and works effectively only with a large amount of
data. The amount of labelled data available in the medical sector is less since creating the manually
labelled dataset is highly time-consuming and requires much medical professionals’ experience. To
get around this problem, use transfer learning. In this method, network weights established by a pre-
trained model in a vast dataset are used to solve the problem in a small dataset. Many medical imaging
problems are too complex to be solved using a single algorithm. Ensemble models use many models
to tackle a particular problem. This technique aimed to overcome single models’ shortcomings and
solidify their strengths.

The final result of the ensemble method is an aggregate of the different single-model outputs.
Furthermore, the ensemble model reduces the variance for predictions and generalization error,
which considerably improves computational learning and allows for the use of a minimal quantity
of training examples. Typically, training these models on a standard processor takes weeks or months.
Even though training neural networks has become hundreds of times faster thanks to contemporary
Graphics Processing Units (GPU) and customized accelerators, training time still impacts both the
accuracy of these methods’ predictions and their applicability. Many significant application areas can
benefit from techniques that accelerate neural network training. By allowing professionals to train
more on data and reducing the experimental iteration time, faster training can significantly increase
model quality. This will enable researchers to test out new ideas and configurations more quickly.
Accelerated training effectively uses neural networks when models and datasets are updated. Data
parallelism is a simple and sound method for accelerated neural network training. Data parallelism
refers to the distribution of training instances among several processors to compute gradient updates,
followed by aggregating these locally computed updates. In this work, a data-parallel model accelerates
the training process, and an extensive experimental study is conducted on the X-ray images. Pneumonia
affects many people, especially children, and is most common in developing and impoverished nations,
known for risk factors such as congestion, unsanitary living conditions, and poverty, in addition to
the lack of adequate medical services. Most past studies focused on developing a separate network for
detecting infected patients, and the application of ensemble methods with parallelism has not been
explored.

Parallel and distributed implementation of medical models are the need of the hour due to the
enormous size of the medical data. Medical data is growing daily, and these applications are inherently
parallel since the data is stored locally at hospitals and cannot be shared due to security and ethical
issues. So, the model needs to be parallelized to process the data locally and share only the results;
this, in turn, makes the model faster than centralized processing, which needs to share data and
is subjected to node failure. The memory footprint is almost the same when the data is processed
parallelly among the nodes rather than sequentially. The model is replicated among nodes which
is the only additional memory requirement, but it helps achieve faster and more accurate results.
The computational complexity in the data parallel model is lesser than in the sequential model.
Now healthcare applications are even developed using the 6G framework and the Internet of Things
[12] with data security [13]. Existing methods are focused on a sequential approach and improving
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efficiency. The model improves efficiency using ensemble methods and is parallelized among multiple
nodes for accelerated disease prediction.

The significant contributions in this work are listed below:

1. Three fined-tuned transfer learning models were implemented for the pneumonia prediction
2. An ensemble model using the three transfer learning models
3. Using regularization and augmentation techniques like SMOTE to reduce overfitting and

remove the minority class imbalance problem that exists in the pneumonia dataset
4. Learning bias is reduced when anomalies and class imbalance are managed.
5. Data parallel model to reduce the training time and accelerate the training process

2 Related Study

Detecting pneumonia using X-ray has been an unresolved issue for a long time, with a lack of
publicly available data being the most significant obstacle. Chandra et al. [14] separated the pulmonary
regions using the input lung images. They obtained eight characteristics from these areas to classify
these. Using the Multi-Layer Perceptron (MLP), the technique was evaluated on 412 photographs
and obtained a performance accuracy of 95.39%. Kuo et al. [15] used eleven variables for pneumonia
detection in schizophrenia patients. Sharma et al. [16] created virtual CNN networks for categorizing
pneumonic lung X-ray images. Stephen et al. [17] also developed a similar model. They used data
enhancement to compensate for the absence of data. Janizek et al. [18] introduced an approach
focused on adversarial evaluation to minimize models’ dependence on the origin of datasets and
deliver accurate findings. In the source domain, they earned a Receiver Operating Curve (ROC) of
74.7%, while in the target domain, they achieved a score of 73.3%. Zhang et al. [19] designed a one-
class, confidence-aware anomaly detection module for X-ray data. Their dataset achieved a ROC of
83.61 percent. Tuncer et al. [20] taught a computer an approach that performed the images’ fuzzy
tree transformation and exemplar division. After retrieving features with a multichannel local binary
pattern, the data were classified using standard classifiers. On a small dataset consisting of COVID-19
and pneumonia data, they established a 97.01 percent accuracy rate for the approach. The weights
and model parameters learned from massive datasets are used for training the small dataset models in
transfer learning. This method is mainly used to overcome the data shortage in the medical domain
and make data processing faster and more efficient. The major existing works are shown in Table 1.

Table 1: Related CNN models

Algorithms Details Reference

Inception ResNet-V2 Transfer learning, Low performance [21]
ResNet-50 Transfer learning, Low performance [22]
ResNet-152+Generative adversarial
network (GAN)

Transfer learning, Low performance [23]
Data augmentation, Low accuracy

CovFrameNet Region CNN [24]
Image Net and SqueezeNet Transfer learning, Improved BoxNet [25]
CNN model Automated feature learning, High

computational cost
[26]

CNN Model High computational cost, Seven-layer
custom built CNN

[17]

(Continued)
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Table 1: Continued
Algorithms Details Reference

Mask-RCNN Segmentation using RCNN, Ensemble
model

[27]

Inception-ResNetv2, Xception Net,
DenseNet-169

Ensemble model [28]

Custom built VGG16 Accuracy of around 94% [29]
DenseNet-121 Using X-rays to predict cancer in the lungs

with an accuracy of around 80%
[30]

Xception and VGG16 The Xception layer gave an accuracy of
around 82% and VGG 16 at 87%

[31]

VGG19, MobileNet, Inception and
XceptionNet

Transfer learning, Small data size 1427
X-ray with an accuracy of around 96%

[32]

VGG-16, ResNet-50, Xception,
MobileNet, Inception and SqueezeNet

Transfer learning, Ensemble model for
paediatric pneumonia with AUC 95.21

[33]

InceptionV3, DenseNet121, and VGG19 Transfer learning with fuzzy logic [34]
DenseNet169, MobileNetV2, Vision
Transformer

Fine-tuned transfer learning model with a
transformer with 93.9% accuracy

[35]

3 Proposed Work and Methodology

The proposed model has mainly four modules: Data Preprocessing and Augmentation, Transfer
Learning models, Ensemble model, and Data Parallel Model, as shown in Fig. 1.

Figure 1: Overview of proposed model
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3.1 Dataset

The dataset is organized into three (training, testing, and Validation). There are 5,863 X-Ray
images split into two classes (for standard and Pneumonia patients). The Guangzhou Women and
Children’s Medical Center, Guangzhou, analyzed chest X-ray images from retrospective batches of
children ages one to five.

3.2 Pre-processing

Privacy regulations, the costly expense of acquiring annotations, and other issues limit the growth
of medical imaging datasets. After dataset preprocessing and partition, data augmentation is used
in the training process to supplement data in data-limited circumstances and minimize overfitting.
In addition, our approaches used geometrical changes such as rescale, rotate, shifting, shearing,
zooming, and flipping. Unfortunately, this location featured an uneven distribution of positive and
negative observations, minimal data, and a significantly lower number of standard photographs than
pneumonia photographs. This may result in poor post-training verification and generalization.

3.3 Class Imbalance Problem

The prevalence of class imbalance issues in diagnosing diseases is high. A conventional classifier
may favor the majority class and disregard the significance of the minority class. Therefore, this
issue affects most supervised classification techniques, requiring researchers to exert much more
effort to address it. The classification of outliers is a crucial aspect of deep learning. This issue
arises when sample data seldom adhere to a distinct pattern. Techniques for managing outliers and
unbalanced data have been presented, which may be categorized into two major categories: algorithm-
based and data-level-based methods. The former seeks to adapt a learning algorithm toward the
data and is considered to incur a high computational expense. The second is classifier-independent
and straightforward to implement since it relies on approaches for data pre-treatment [36]. Several
researchers address class disparity by under-sampling the dominant class or up-sampling the minority
class [37]. In this work, Synthetic Minority Oversampling Technique is used to remove class imbalance.

Synthetic Minority Oversampling Technique [38]: Interpreting the minority group is one method
for addressing uneven data sets. The most straightforward technique is duplicating instances from the
minority class; however, these examples contribute no additional insight into the model. Alternatively,
one may build new instances by synthesizing previous ones. The SMOTE is a method of supplementing
data for this minority group. The augmented images generated using SMOTE analysis are shown in
Fig. 2.

Figure 2: Augmented images
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3.4 Transfer Learning

Deep Learning models are widely utilized for pneumonia diagnosis. However, owing to privacy
regulations, the expensive expense of collecting annotations, and other factors, a considerable quantity
of data is currently accessible in diagnostic imaging for deep learning models, even though they have
shown tremendous performance in medical imaging. In light of the absence of medical datasets,
transfer learning is used. Transfer learning is a deep learning approach in which a previously trained
model from ImageNet is reused and transferred to a newly trained model. VGG16, Mobilenetv2,
and Densenet169 are the transfer learning models used in this research. After analyzing the problem
and dataset, the models are selected because the network structure significantly impacts the model’s
performance [39].

3.4.1 VGG16

With 3 × 3 convolutional kernels with 2 × 2 pooling layers, a VGGNet design may be considered
an extended AlexNet. The network infrastructure can be further developed to improve deep features
by utilizing a smaller convolution layer. VGGNet-16 and VGGNet-19 are now the two most popular
VGGNet versions. The layers of the VGG model are given in Table 2.

Table 2: Transfer learning model parameters

VGG16 parameters Mobile Net parameters DenseNet 169 parameters

Type Filter Type Filter Type Filter

Convolution
layer

64 × 3 × 3 Convolution
layer

3 × 3 × 3 × 32 Convolution
layer

7 × 7

Convolution
layer

64 × 3 × 3 Depth wise
convolution

3 × 3 × 32 dw Pooling layer max pooling
3 × 3

MaxPooling
2D

64 × 3 × 3 Convolution
layer

1 × 1 × 32 × 64 Dense layer 1 × 1
3 × 3

Convolution
layer

128 × 3 × 3 Depthwise
convolution

3 × 3 × 64 dw Transition layer 1 × 1
average
pooling
2 × 2

Convolution
layer

128 × 3 × 3 Convolution
layer

1 × 1 × 128 × 64 Dense layer 1 × 1
3 × 3

MaxPooling
2D

128 × 3 × 3 Depthwise
convolution

3 × 3 × 128 dw Transition layer 1 × 1
average
pooling
2 × 2

Convolution
layer

256 × 3 × 3 Convolution
layer

1 × 1 × 128 × 128 Dense block 1 × 1
3 × 3

Convolution
layer

256 × 3 × 3 Depthwise
convolution

3 × 3 × 128 dw Transition layer 1 × 1
average
pooling
2 × 2

(Continued)
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Table 2: Continued
VGG16 parameters Mobile Net parameters DenseNet 169 parameters

Type Filter Type Filter Type Filter

MaxPooling
2D

256 × 3 × 3 Convolution
layer

1 × 1 × 128 × 256 Dense block 1 × 1
3 × 3

Convolution
layer

512 × 3 × 3 Depthwise
convolution

3 × 3 × 256 dw Classification
layer

average
pooling
7 × 7
softmax

Convolution
layer

512 × 3 × 3 Convolution
layer

1 × 1 × 256 × 256 - -

Convolution
layer

512 × 3 × 3 Depthwise
convolution

3 × 3 × 256 dw - -

MaxPooling
2D

512 × 3 × 3 Convolution
layer

1 × 1 × 256 × 512 - -

Convolution
layer

512 × 3 × 3 5 × Depthwise
convolution

3 × 3 × 512 dw - -

Convolution
layer

512 × 3 × 3 5 × C
convolution
layer

1 × 1 × 512 × 512 - -

Convolution
layer

512 × 3 × 3 Depthwise
convolution

3 × 3 × 512 dw - -

MaxPooling
2D

512 × 3 × 3 Convolution
layer

1 × 1 × 512 × 1024 - -

Fully
connected
(FC)

Depthwise
convolution

3 × 3 × 1024 dw - -

FC layer Convolution
layer

1 × 1 × 1024 × 1024 - -

FC Layer Average
pooling

Pool 7 × 7 - -

Flatten-
SoftMax

Classifier Fully
connected
layer

1024 × 1000 - -

- - Soft max Classifier - -

3.4.2 MobileNet v2

MobileNet V2 is an upgraded form of MobileNet V1, CNN with 54 layers and a 224-by-224-
pixel input image size. This approach does many convolutions using a single kernel instead of a two-
dimensional convolution. Instead, it uses two 1-dimensional convolutions using two depth-separable
kernels. Consequently, less memory and parameters are necessary for training, resulting in a small and
effective model. The layers, along with the filter details of the Mobilenet model, are given in Table 2.
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3.4.3 DenseNet169

Huang et al. [40] suggestion for increasing CNN’s depth in the DenseNet. When CNNs’ model
sizes increased in complexity, this strategy was initially used to address problems. The authors ensured
sufficient information and gradient transfer by thoroughly connecting each layer to the one after it.
One of the main advantages of using such a structure is that, through feature recycling, the DenseNet
structure optimizes its capacity by using less of a deep or broad design. DenseNet does not learn
duplicate features, unlike conventional CNNs. As a result, it needs fewer parameters. The structure
only adds a few new feature maps because the layers are thin. It is important to note that there is no
aggregation between the input feature maps and the output picture features of the layer because the
DenseNet concatenates both. Dense Blocks are used to make sure that the size of extracted features
remains constant within a block even though there are different numbers of filters in each one. In the
Dense Blocks, layers of a specific type (referred to as transition layers) are placed. DenseNet is widely
used in the medical diagnosis of critical illnesses like cancer [41]. The DenseNet layers and filter size
are shown in Table 2.

3.5 Data Parallel Model

The neural network model is distributed and trained in several High-Performance Computing
(HPC) devices in the data parallelism. Training data are dispersed among the equipment to run
synchronously or asynchronously. All-reduce is a method that reduces the target arrays throughout
all machines to a tensor and returns the tensor to every device. Forward and backward propagation of
the neural network are the two critical processes in the stochastic gradient learning of CNNs. An error
about the desired results is computed after the forward pass calculates the outputs for a data set. In
the so-called backward phase, this mistake or loss is then discriminated against about each parameter
within CNN. The weights inside the network are then updated using the obtained gradients. These
procedures are iteratively repeated until convergence, that is, until a local minimum inside the error
function is reached. There are two modes of data parallelism. First, the model is replicated on each
worker node and is used to process distinct data batches. Second, the parameter server nodes store
and update the model parameters. Essentially, the worker will take the model’s parameters, run it on
a batch of data, and transmit the gradients over to the Parameter Server (PS), where the model will
be changed to improve it. However, multiple model update policies might be selected at the PS to
carry out the training. The Parameter Server waits until all agent nodes have determined the gradients
concerning their respective data sets in this scenario. The Parameter Server applies the gradients to the
current weight after receiving them and then updates the model before sending it back to all worker
nodes. This approach may result in variable connection speeds whenever other users share the cluster
because updates are not made until all worker nodes have completed the calculation. It is only as fast
as the slowest node. However, as more precise gradient estimates are produced, convergence occurs
more quickly.

4 Experimental Setup

After using preprocessing, data segmentation, and data augmentation techniques, the quantity
of our training data is increased, and it is ready to be given to the suggested method for extracting
features to acquire suitable and relevant characteristics. The features acquired from each proposed
system are merged to build the final, fully linked layer, which is then utilized to categorize each image
into its corresponding class. In addition, each model within the ensemble is independently trained
to address the specific issue. The ensemble model’s ultimate output is the mean or fusion of the
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various separate model outputs. In addition, ensemble models reduce the variance of prediction and
generalization errors, considerably improve computational training, and may be implemented with a
small amount of training data. This work developed three well-known CNN classification methods
for pneumonia in pulmonary images using the literature and the suggested ensemble technique.
Utilizing early termination prevents processes from getting overfitted. The model is built in Python
using Tensorflow. Even though Tensorflow currently supports distributed repeated training, which
has solved the problem of long training periods and may reduce training times, there is still room for
development. The proposed model parameters are shown in Table 3.

Table 3: Model parameters

Parameters Data

Input data size 224 × 224
Model batch size 32
Model learning rate 0.0001
Epochs 20
Optimization Adam β1 = 0.9, β2 = 0.999
Training dataset 5216
Testing dataset 624
No of classes 2
Steps per epoch Training sample size/batch size = 163
VGG16 Total parameters 14,882,242

Trainable parameters 166,018
Non-trainable parameters 14,716,224

Mobile Net Total parameters 2,625,218
Trainable parameters 364,162
Non-trainable parameters 2,261,056

Dense Net Total parameters 13,109,954
Trainable parameters 463,234
Non-trainable parameters 12,646,720

The dataset has data and associated labels based on which the model accuracy and other
evaluation parameters are calculated. Based on the label associated with data, the output can be
grouped into four classes: True positives (correctly predicted output for positive labels), True Negative
(Correctly predicted output for negative labels), False positive (False output for positive values, when
the label is negative but got predicted as positive) and False Negative (False output for negative values,
the label is positive but got predicted as unfavorable). These four factors provide the basis for most
categorization task evaluation measures. Classification techniques are evaluated using the accuracy
statistic. It is determined by dividing the number of correct predictions for both positive and negative
labels by the total number of predictions. Precision is determined by dividing the number of actual
positives by the total of real and false positives. When the impact of false negatives is considerable, it
is reasonable to apply the recall statistic. The recall is determined by dividing the number of genuine
positives by the total number of true positives and false negatives. The training time and speed up are
also measured for model analysis.
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5 Result Analysis
5.1 Existing State-of-the-Art Transfer Learning CNN Model

Cohen’s Kappa score is a compelling performance statistic for datasets with imbalances. Various
ranges of Kappa scores are used to examine the consistency with the acquired findings. If the score
is lower than zero, it indicates a lack of data consistency. For example, if the score range is between
0.01 and 0.20, it indicates that there is just a modest degree of agreement, between 0.21 and 0.40,
reasonable agreement, between 0.41 and 0.60, moderate agreement, and between 0.61 and 0.80, strong
agreement. The range of Kappa scores between 0.81 and 1.00 represents an almost perfect degree of
agreement. Precision and accuracy have also been included as a measure for the model’s evaluation.
The dataset used for training has 5863 pictures. As most examples correspond to the negative samples,
the models incorrectly forecasted most cases as belonging to the negative samples, resulting in much
worse accuracy, recall, and F1 score values for positive class prediction. The model performance before
SMOTE is given in Table 4.

Table 4: Performance of classifiers before SMOTE

CNN model Precision Recall F1 score Accuracy

VGG16 0.85 0.88 0.86 0.85
Mobile Net 0.90 0.89 0.89 0.90
DenseNet 0.91 0.92 0.90 0.92

The performance measures of the three base transfer learning models–Densenet 169, ResNet 50,
and MobileNet after SMOTE are given in Table 5.

Table 5: Performance of classifiers after SMOTE

CNN model Precision Recall F1 score Kappa score Accuracy

VGG16 0.89 0.95 0.914 0.78 0.89
Mobile Net 0.92 0.92 0.92 0.82 0.9371
DenseNet 0.92 0.94 0.929 0.83 0.9452

In Fig. 3, the performance of VGG16 is analyzed using accuracy, and loss is calculated using the
training and validation phase. The confusion matrix is used to calculate the precision and recall. From
Fig. 3, it is clear that accuracy gradually increases from 0.6056 to 0.8614 till epoch five, and after epoch
10, there is a stepwise improvement and reaches 0.89. The loss gradually decreases to five epochs and
then reduces stepwise to 0.2511.

In Fig. 4, the performance of MobileNet v2 is analyzed using accuracy, and loss is calculated
using the training and validation phase. The confusion matrix is used to calculate the precision and
recall. From Fig. 4, it is clear that accuracy gradually increases 0.7753 to 0.9068 till epoch five, and
after epoch 10, there is a stepwise improvement and reaches 0.9371. The loss gradually decreases till
five epochs, and after that, it reduces stepwise to 0.1604. In Fig. 5, the performance of DenseNet169 is
analyzed using accuracy, and loss is calculated using the training and validation phase. The confusion
matrix is used to calculate the precision and recall. From Fig. 5, it is clear that accuracy gradually
increases from 0.6578 to 0.9047 till epoch five, and after epoch 10, there is a stepwise improvement
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and reaches 0.9452. The loss gradually decreases till five epochs, and after that, it reduces stepwise to
0.1134.

Figure 3: VGG16 performance

Figure 4: MobileNet V2 performance



902 CMC, 2023, vol.75, no.1

Figure 5: DenseNet169 performance

5.2 Ensemble Stacked Model

The ensemble model’s output is preferable to the base learning models because it serves to include
the discriminatory features of all of its component models. A practical approach for classifier merging
is weighted average assembly. In this section, the ensemble learning models are studied to obtain
improved performance, and the accuracy is measured. In Table 6, the ensemble models’ performance
is shown. The Confusion matrix for the three-combination ensemble model created after stacking all
three pre-trained model features is given in Fig. 6.

Table 6: Ensemble classifiers

Model Precision Recall F1 score Accuracy

VGG16+Mobile Net 0.92 0.91 0.915 0.901
Mobile Net+Dense Net 0.92 0.95 0.935 0.969
Dense Net+VGG16 0.90 0.94 0.92 0.956
VGG16+Mobile Net+Dense
Net

0.91 0.93 0.92 0.944

5.3 Data Parallel Transfer Learning Models

There are two types of bandwidths in a data pipeline: data load bandwidth and model training
bandwidth. The actual model training bandwidth is also constrained by the restricted on-device storage
of the GPUs or other accelerators. From the flow viewpoint, it is false to say that the bigger input data
size causes a longer time for training in single-node. From a system standpoint, the problem is the
mismatch between data loading and model train bandwidth. The issue of the bandwidth mismatch
between the data load bandwidth and the model building bandwidth is the fundamental cause of the
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lengthy single-node model training phase. We can boost the model-building bandwidth proportional
to the number of processors used in the same training run by using data parallelism. The main steps
of the data parallel model are shown in Fig. 7.

Figure 6: (a) MobileNetV2+DenseNet169+VGG16 (b) MobileNetV2+DenseNet169 (c) VGG16+
MobileNetV2 (d) VGG16+DenseNet169

Figure 7: Data parallel model
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The training pipeline in a data-parallel model mainly consists of six steps:

1. Data collection, Preprocessing of the image, and Augmentation
2. Data partition based on the number of devices/hardware accelerators available without bias
3. Loading data into the accelerators
4. Building identical models on the accelerators and training them
5. Model synchronization after the gradient calculation among all nodes/devices
6. Update the model with the updated parameter in each node/device
7. Repeat steps 4–6 till the end of an epoch

Table 7 shows the training time in the sequential and parallel models. It is found that the parallel
mode is found to be faster compared to the serial model, which can be further accelerated using
multiple nodes and multiple devices for parallel execution. Faster execution is very crucial in the case
of medical applications which require timely detection of the disease and need an immediate cure. The
performance and accuracy are also accelerated in parallel training, making the model more efficient.
In the literature, the existing works mainly deal with sequential execution models for pneumonia
prediction. All existing works mainly concentrate on the sequential ensemble models and increasing
the accuracy of the models. The performance measures used in the current works are accuracy and,
in this proposed model, both accuracy and training time. The proposed ensemble method gave an
accuracy of 98.6% with accelerated training time in distributed data-parallel models in distributed
TensorFlow.

Table 7: Training time analysis

Model Training time with data parallel
strategy

Training time w/o data parallel
strategy

VGG16 2770.66 s 3075.026 s
Mobile Net V2 2593.55 s 2740.39 s
Dense Net169 2453.4 s 2737.0556 s

5.4 Discussion

The proposed model consists of a parallel ensemble model with accelerated training time and
improved performance of 98.6%. The model is compared with the existing works, broadly classified as
works on sequential ensemble techniques for pneumonia detection, parallel techniques for pneumonia
detection, and parallel ensemble models. From Table 8, the proposed model is efficient compared to
the existing parallel techniques for pneumonia detection. In Table 9, the existing sequential models
are compared with the proposed model, and [26] was found to have higher accuracy. However, it is
a sequential model, and accuracy will be reduced when executed in parallel. In Table 10, the existing
parallel ensemble models are compared, and the proposed work was found to have better accuracy
and performance.
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Table 8: Comparison of existing parallel techniques for pneumonia detection with proposed work

Model Accuracy Remarks Reference

Pattern recognition using CUDA NA Uses a GPU environment. No
ensemble was used, but parallelism
was employed for pattern
recognition. Speed up 12.75

[42]

VGG16 based 96.81% No ensemble was used but
parallelism employed

[43]

VGG19 based 96.58% No ensemble was used but
parallelism employed

[43]

NasNet Mobile based 83.37% No ensemble was used but
parallelism employed

[43]

ResNet152V2 based 96.35% No ensemble was used but
parallelism employed

[43]

Inception, ResNetV2 94.87% No ensemble was used but
parallelism employed

[43]

MobileNetV2, DenseNet169,
VGG16

98.6% Ensemble model with data
parallelism

Proposed
model

Table 9: Comparison of existing sequential ensemble technique for pneumonia detection with pro-
posed work

Model Accuracy Remarks Reference

DenseNet169 93.91% Ensemble transfer learning models [35]
MobileNetV2 No parallelism, executed in a
Vision transformer sequential manner
VGG, ResNet Inception-, 90.71% Pediatric pneumonia dataset [33]
SqueezeNet, Mobile Net Ensemble model, no parallelism

Executed in a sequential manner
GoogLeNet, ResNet, DenseNet 98.81% Ensemble model, no parallelism [26]

Executed in a sequential manner
VGG19 with different ML classifiers 97.94% Ensemble model with ML

classifiers, no parallelism, executed
in a sequential manner

[44]

MobileNetV2, DenseNet169,
VGG16

98.6% Ensemble model with data
parallelism

Proposed
model
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Table 10: Comparison of existing parallel ensemble technique for pneumonia detection with proposed
work

Model Accuracy Remarks Reference

3D inception 98.21% The soft-Voting mechanism, ensemble
classifier, GPU parallelism

[45, p. 19]

AI systems 92.49% Smaller dataset, CT scan images used [46]
ECOVNet 96.59% Efficient Net with ensemble classifier,

parallel model
[47, p. 19]

MobileNetV2, DenseNet169,
VGG16

98.6% Ensemble model with data parallelism Proposed model

6 Conclusion

Early detection of pneumonia has the potential to save more lives than later detection. Detecting
pneumonia from X-Rays is difficult; thus, assistive tools and approaches may aid in diagnosing this
illness. Medical data analysis demands a high degree of precision, and as a result, a great deal of
research is being conducted to create novel diagnostic procedures. The proposed technique is based on
a parallel ensemble model with 98.4%. The results demonstrate the efficacy of features derived from
VGG16, MobileNetV2, and DenseNet169 in conjunction with a data-parallel model for successfully
diagnosing pneumonia in a balanced enhanced dataset. Even though the strategy yielded promising
outcomes, it must be validated on more datasets to ensure its robustness. After demonstrating its
efficiency with larger real-world data sets, the approach may be used as a medical aid. The proposed
model uses three transfer learning algorithms ensembled together, and it is a time-consuming task, but
the distributed parallel framework effectively balances it. The main limitation of the proposed model
is that the memory requirement is slightly higher since the model is replicated in each parallel node.
High-performance computing systems will make the model faster, but it is costly. Even then, the GPU
system’s performance outweighs its cost. In the future, the model will be scaled to HPC systems in
Cloud, and a general framework needs to be created for deployment in real-time setup.
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