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Abstract: One of the most common types of threats to the digital world is
malicious software. It is of great importance to detect and prevent existing
and new malware before it damages information assets. Machine learning
approaches are used effectively for this purpose. In this study, we present a
model in which supervised and unsupervised learning algorithms are used
together. Clustering is used to enhance the prediction performance of the
supervised classifiers. The aim of the proposed model is to make predictions in
the shortest possible time with high accuracy and f1 score. In the first stage of
the model, the data are clustered with the k-means algorithm. In the second
stage, the prediction is made with the combination of the classifier with the
best prediction performance for the related cluster. While choosing the best
classifiers for the given clusters, triple combinations of ten machine learning
algorithms (kernel support vector machine, k-nearest neighbor, naïve Bayes,
decision tree, random forest, extra gradient boosting, categorical boosting,
adaptive boosting, extra trees, and gradient boosting) are used. The selected
triple classifier combination is positioned in two stages. The prediction time
of the model is improved by positioning the classifier with the slowest pre-
diction time in the second stage. The selected triple classifier combination
is positioned in two tiers. The prediction time of the model is improved by
positioning the classifier with the highest prediction time in the second tier. It
is seen that clustering before classification improves prediction performance,
which is presented using Blue Hexagon Open Dataset for Malware Analy-
sis (BODMAS), Elastic Malware Benchmark for Empowering Researchers
(EMBER) 2018 and Kaggle malware detection datasets. The model has
99.74% accuracy and 99.77% f1 score for the BODMAS dataset, 99.04%
accuracy and 98.63% f1 score for the Kaggle malware detection dataset,
and 96.77% accuracy and 96.77% f1 score for the EMBER 2018 dataset. In
addition, the tiered positioning of classifiers shortened the average prediction
time by 76.13% for the BODMAS dataset and 95.95% for the EMBER 2018
dataset. The proposed method’s prediction performance is better than the rest
of the studies in the literature in which BODMAS and EMBER 2018 datasets
are used.
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1 Introduction

In recent decades, the internet has changed human life by enabling easy access to knowledge,
communication, and social interaction [1]. According to International Telecommunication Union’s
estimates, the number of people using the internet increased from 1 to 4.9 billion between 2005
and 2021, and approximately 63% of the world population was using the internet in 2021 [2]. This
dependence on technology and the rise in the usage of the internet makes information system assets
crucial for both individuals and organizations. To protect an organization’s business, reputation, and
value, securing information and information assets is of the utmost importance [3].

Malware is the code used for purposes such as disrupting a computer system, stealing, deleting,
or encrypting sensitive data, or hacking, altering, or monitoring basic computing functions. There are
many kinds of malware, such as viruses, worms, ransomware, and trojan horses, and attacks using such
malware have increased significantly recently [4]. When the statistics of the detected malware over the
years are examined, it is seen that the number of malware incidents detected in 2013 was 182 million,
and this number increased to 1.312 billion by 2021 [5]. Malware is analyzed in two different ways; the
process of analyzing a software program without running it is called static analysis, while analyzing
the features that a program displays at runtime is called dynamic analysis [6].

At its worst, malware can cause devastating damage to information technology assets, users,
cyber-physical systems, and, therefore, the physical world. To detect malware quickly, signature-based,
behavior-based, and hybrid malware detection methods can be applied. Signature-based detection uses
logic where the analyzed software features match an entry in a malware database [7]. This method
cannot detect new or unknown types of malware [8]. Heuristic detection approaches, unlike signature-
based detection approaches, can detect both new and variants of malware. On the other hand, by
making false-positive detections, it may detect beneficial applications as harmful and be deceived by
new avoidance techniques [9]. Although traditional malware detection approaches have been used in
the past, machine learning algorithms that can combat the complexity and evolution of malware are
now needed [10]. To detect new malware and implement faster malware detection, machine learning
and artificial intelligence techniques must be used [1].

In this study, the aim is to present a detection model that performs fast malware detection with
high accuracy and f1 score in cases where traditional malware detection methods are insufficient.
Supervised and unsupervised learning algorithms are used together to develop the detection model.
First, data preprocessing steps are applied, then binary classification is performed by supervised
learning algorithms in accordance with the clustering process performed by the unsupervised learning
algorithm. Accuracy and f1 scores obtained from different datasets are used to demonstrate the
effectiveness of the proposed model.

Our contributions are:

• Combined use of supervised and unsupervised machine learning algorithms in malware detec-
tion

• Usage of different combinations of classifiers in different subsets created
• Training and usage of specialized classifiers that can provide better prediction performance in

subsets of a dataset
• Decreasing the prediction time with an early consensus approach



CMC, 2023, vol.75, no.1 1237

The rest of the study is organized as follows: In chapter 2, related studies are examined; in
chapter 3, machine learning algorithms, metrics, and datasets are explained; in chapter 4, the proposed
detection method is presented; in chapter 5, the results obtained are presented and compared with the
studies in the literature; in the last chapter, we perform an evaluation of the study.

2 Related Works

In the study [11], a comparative analysis of low-dimensional features and tree-based multiple
learning methods are made within the scope of malware detection. For low-dimensional features,
2-gram, 2-gramM, application programming interface–dynamic link library (API-DLL), API, and
Windows Entropy Map (WEM) are used. It is seen that WEM features grant the best performance
in malware detection among low-dimensional features. The malware detection model [12], which is
developed specifically for the detection of malicious joint photographic experts group (JPEG) files,
consists of two stages. In the first stage, features are extracted with the MalJPEG feature extractor,
and in the second stage, the light gradient boosting method (LightGBM) algorithm is trained using the
dataset. In the study [13], a behavior-based malware detection model is presented. The model consists
of runtime feature capturing, feature extraction, feature processing, and classifier training stages. In the
study [14], which aims to detect malware by using the static and dynamic features of the software, two
methods are presented: One based on weighted voting and the other using stacking. The best results
in the model are obtained with the weighted rank voting method according to class accuracies. In the
study [15], a malware detection model using LightGBM with a special log loss function is presented.
The accuracy performances of static methods were examined within the scope of malware detection.
In the study [16], it is aimed to effectively detect malware that exploits zero-day vulnerabilities, and for
this purpose, an ensemble learning model, in which bagging and boosting methods are used together,
is presented.

In the study [17], it is aimed to improve the classification efficiency of malware for the Android
operating system. In the presented model, the fuzzy c-means clustering algorithm and LightGBM
classification algorithm are used together. In the study [18], a cluster-ensemble malware detection
method for Android malware (CENDroid) model developed for the detection of Android malware
using static features of the applications is presented. The model tries to reveal whether Android
applications are malicious or beneficial by using clustering and ensemble learning together. The
predictions made by the CENDroid method using the averaging, weighted average, and stacking
methods are realized with higher accuracy, precision, and sensitivity than the predictions made with
the base classifiers. In the study [19], it is aimed to detect malware and to reveal the family to which
the detected malware belongs. Two different models are proposed to achieve this aim. In the first, a
two-stage stacking method with a weighted average is used to predict whether a sample is malicious or
not. In the second model, the sample’s feature size is decreased using t-distributed stochastic neighbor
embedding (t-SNE), and a model that helps optimize the k-means algorithm’s cluster number is
presented. In the study [20], a three-stage model is presented for the detection of Android malware.
In the first phase of the model, there is an iterative clustering phase in each view of the training set to
create an image-based clustering pattern. The second stage of the model is an information exchange
stage performed to transfer each clustering pattern learned in one view to the previous views. In the
last stage of the model, a stacking-based classification approach is used to learn the malware detection
pattern, utilizing the clustering patterns introduced in the previous two stages.

In the study [21], a hybrid classification model using majority voting is presented. Single and
hybrid performances of the classifiers are compared, and the classifier with better performance in
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terms of accuracy, f1 score, precision, and sensitivity metrics is considered successful. The BODMAS
dataset is used in the study, and 375 of 2,381 features are selected using the random forest algorithm. In
the study conducted within the scope of binary classification of malware [22], two different converter-
based models are presented. The first performs a sequence-based classification using byte sequences
extracted from binaries. The second model converts binary files to images and performs image-based
classification. The malware in the BODMAS dataset are grouped according to the malware families,
and a subset of BODMAS is created with the samples of the malware families that have more than
1,000 samples. The subset of the dataset is used in the study.

In the study [23], a new model is presented to train machine learning models more effectively
and quickly. The use of the MalConv method, in combination with global channel gating, improves
prediction performance while keeping prediction time at a reasonable level. In the study [24], a model
based on the conversion of binary files to grayscale images is presented. In the study, with the EMBER
dataset, the model using the grayscale image and convolutional neural networks (CNN) and random
forest (RF) classifiers provides 88.04% accuracy and 89.14% f1 score. For the same dataset, prediction
is performed with 94% accuracy and 93.4% f1 score after the dataset is converted to a red–green–
blue toned image. In the study [25], the aim is to perform the static analysis and detection of malware
effectively. To eliminate existing problems, a model is presented that extracts a feature set from a dataset
and effectively classifies static portable executable (PE) files. The importance of feature extraction
(rather than model creation) is emphasized, and it is stated that artificial neural networks fed with
well-extracted features give better performance. Detection of malware with low false positive rates is
of great importance for the protection of information system assets. In the study [26], research on the
use of uncertainty in malware detection for various datasets, models, and feature types is presented.
With the spread of intelligent polymorphic malware, it has become a necessity to develop systems for
the effective detection and quarantine of malware. In the study [27], it is aimed to solve the malware
detection problem by using static analysis and machine learning. In this context, a two-step model is
presented. In the first step, a binary classification model is created using the gradient boosting classifier
and EMBER 2018 dataset, and in the second step, a family classification model is created using the
CNN algorithm and Virus Modified National Institute of Standards and Technology (Virus-MNIST)
Dataset. Related works are presented in Table 1.

Table 1: Related works

Article Dataset Algorithms Metrics

Euh et al. [11] Original dataset Extra Gradient Boosting (XGB) Accuracy (WEM)–100%
Accuracy (API)-94.7%

Cohen et al. [12] Original dataset LightGBM Accuracy-95.1%
Singh et al. [13] Original dataset AdaBoost (ADAB) Accuracy-99.54%
Gupta et al. [14] Original dataset Bagging Accuracy-99.5%

TPR-99.6%
Gao et al. [15] EMBER 2017 LightGBM Accuracy-99.81%

(EMBER)
FFRI Accuracy-99.84 %(FFRI)

Kumar et al. [16] Original dataset Random Forest (RF), LightGBM, XGB,
Extra Trees (EXT)

Accuracy-98.49%

Taha et al. [17] Original dataset C-Means, LigthGBM Accuracy-94.63%

(Continued)
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Table 1: Continued
Article Dataset Algorithms Metrics

AUC-98.74%
Badhani et al. [18] Original dataset K-mode, Bagging Accuracy-99.41%

F1 Score-99.13%
Yang et al. [19] Datacon 2019 t-SNE, Stacking Accuracy-99.67%

F1 Score-99.67%
Appice et al. [20] Original dataset K-means++, Stacking Sensitivity-96%

AUC-96.6%
Ramadhan et al. [21] BODMAS Bagging (LightGBM, XGB, Logistic Accuracy-99.63%

regression) F1 Score–99.56%
Lu [22] BODMAS ImgConvAttn-Frequency, Accuracy-97.00%

SeqConvAttn F1 Score-96.99%
Raff et al. [23] EMBER 2018 MalConv w/ GCG Accuracy-93.29%

AUC-98.04%
Marais et al. [24] EMBER 2018 Convolutional neural network Accuracy-94%

F1 Score-93.4%
Lad et al. [25] EMBER 2018 Dense neural network Accuracy-94.09%

F1 Score-88.66%
Nguyen et al. [26] EMBER 2018 Bayesian logistic regression Accuracy-94.72%

AUC-98.15%
Thosar et al. [27] EMBER 2018 Gradient boosting Accuracy-96%

F1 Score-96%

In the studies examined, it is seen that different datasets and different features of malicious
software are used. In some of the studies, only binary classification is made, while in others, both
binary classification and detection of malware families are carried out. It is seen that supervised and
unsupervised learning algorithms are used in very few of the studies in the literature [17–20]. This study
differs from the studies in the literature in terms of the combined use of supervised and unsupervised
learning algorithms, the staged positioning of classifiers, the usage of classifier combinations, and
specialized classifiers.

3 Algorithms and Metrics Used in The Study

During the development of the proposed detection model, supervised and unsupervised machine
learning algorithms are used. The k-means algorithm is used for clustering to improve the prediction
performance of supervised classifiers. Kernel support vector machine (KSVM), k-nearest neighbor
(KNN), naive Bayes (NB), decision tree (DT), random forest (RF), adaptive boosting (ADAB),
gradient boosting (GB), extra gradient boosting (XGB), categorical boosting (CATB), and extremely
randomized trees (EXT) are used as classifiers.

Accuracy and f1 score metrics are used to select the best classifier combination in the model and
compare its performance with existing models.

First, the Kaggle malware detection dataset [28] is used when developing the model. Since this
dataset has just 56 features, the speed that is needed during the design phase of the model is provided.
This dataset has a total of 216,352 samples (75,503 benign, 140,849 malicious). The BODMAS
malware dataset [29] is based on the lack of time-stamped malware samples in the previous PE malware
datasets and the lack of well-organized malware family information. This dataset is an up-to-date
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dataset with 2,381 features for each sample. The RF algorithm is used for feature selection and the
448 most important features are selected. The BODMAS dataset has 134,435 samples (77,142 benign,
57,293 malicious). The EMBER dataset [30] is obtained by using executable files located in or targeting
the Windows operating systems. There are three different versions of the EMBER dataset, and this
study uses the latest version, EMBER 2018. The RF algorithm is used for feature selection and 448
most important features are selected. The EMBER 2018 [31] dataset has 1,000,000 samples (400,000
benign, 400,000 malicious, 200,000 unlabeled).

4 Proposed Method

In this part of the study, the proposed model and its stages are explained. The presented method
consists of three stages: Data preprocessing and clustering, training and selection of classifiers, and
model creation.

4.1 Data Preprocessing and Clustering

In the data preprocessing stage, the aim is to process the dataset effectively by the use of machine
learning algorithms. This stage consists of “handling missing data,” “feature scaling,” “feature
selection,” and “clustering.” Data preprocessing and clustering steps are presented in Fig. 1.

Figure 1: Data preprocessing and clustering

4.1.1 Handling Missing Data

When performing feature extraction using a malware file, it is not possible to obtain all feature
values for each malware variant. The management of the missing data is achieved using the “Sim-
pleImputer” library by taking the average of the relevant column and assigning this to be the value of
the missing data.

4.1.2 Feature Scaling

The purpose of feature scaling, also called normalization, is to ensure that the values in the
raw data can be processed effectively by various machine learning algorithms. In this step, mean
normalization and the “StandardScaler” library are used.

4.1.3 Feature Selection

With the feature selection process, the aim is to reduce the additional workload that can be caused
by features that are of little relevance in the prediction process of machine learning algorithms. Feature
selection is performed using the RF algorithm for the BODMAS and EMBER 2018 datasets. In the
first step, feature importance is calculated for all features in both datasets. In the second step, 448
features with the highest importance are determined among 2,381 features, columns with these features
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are drawn from the datasets, and new datasets to be processed by machine learning algorithms are
created. No feature selection is applied for the Kaggle malware detection dataset, which has a total
number of 56 features.

4.1.4 Clustering

In this study, the aim is to increase the prediction performance of the detection approach by
performing a clustering operation before the classification process. At this stage, the datasets are
divided into clusters using the k-means algorithm. To present the proposed model effectively, the
datasets used in this study are divided into three subsets.

4.2 Training and Selection of Classifiers

At this stage, machine learning algorithms are trained using both the entire and subsets of the
training dataset. Then, the combination of three classifiers that provides the best prediction for
each subset is determined. The steps for training the classifiers and determining the best classifier
combination are presented in Fig. 2. The explanations of the sub-steps shown in Fig. 2 are presented
below.

Figure 2: Training and selection of classifiers

4.2.1 Training of Classifiers

At this stage, the classifiers are trained with the entire training dataset and its subsets obtained in
the clustering step. The trained classification algorithms are KSVM, KNN, NB, DT, RF, XGB, CATB,
ADAB, EXT, and GB. As a result of this step, four classifiers are obtained for each algorithm; one is
trained with the whole training set and the others are trained with subsets. Classifiers trained with the
whole training set are called general (g) classifiers, and those trained with subsets are called specialized
(s) classifiers.

4.2.2 Selection of the Best Classifier Combinations

At this step, the prediction performances of each combination are calculated by taking the triple
combination of general and specialized classifiers separately. For each combination, the average of the
accuracy and f1 score is calculated to determine the classifier combination with the best performance.
The relevant combination is accepted as the best classifier combination for the relevant cluster.

The outputs of the training and selection of classifiers stages are the classifier combinations that
perform the best classification for both the whole dataset and the subsets. The notation “C11 C12
C13” in Fig. 2 represents the combination of classifiers that performs the best classification for cluster
1.
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At this stage, the classifier with the slowest prediction time of each combination is also determined
for the selected classifier combinations. The prediction time performance of the model is improved by
using the slowest classifier in the second stage of classification.

4.3 The Model

After the data preprocessing and classifier selections are completed, a malware detection model is
created by combining data preprocessing steps, clustering, and classification algorithms. The proposed
model is presented in Fig. 3.

Figure 3: The proposed model

Classification of a sample by the proposed model shown in Fig. 3 is carried out in the following
order. First, the sample is processed in the data preprocessing stage. Then the sample is clustered into
one of the existing clusters (1, 2, . . . , N) by the k-means algorithm, which is trained using the training
data. In the classification stage, three classifiers (CN1, CN2, CN3) for each subset are used that are
determined beforehand. For example, if the sample is clustered in cluster 1, the relevant sample is
classified by the C11-C12-C13 classifiers. In the first tier of the classification stage, there are CN1 and
CN2 classifiers. In the case that CN1 and CN2 classifiers make the same prediction (benign/malware)
on the sample, the sample is tagged with this class. At this stage, the prediction time of the model has
improved due to the early consensus. If CN1 and CN2 cannot make a common prediction, then the
classification is done by the CN3 classifier.

5 Experimental Results

The study was carried out in Google Colaboratory [32], also known as Colab, which enables
Python code to be run through a web browser and is widely used for machine learning, data analysis,
and training purposes. Sci-kit Learn [33], PeFile [34], Numpy, Pandas, Time, Typing, Catboost,
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XGBoost, Drive, Files, CSV, Math, Sys, and Pickle libraries were used during the development of
the model.

In this section, first the results obtained during the study are presented, and then the performance
of the proposed model is compared with other studies in the literature. In Tables 2–4, the prediction
performances for general and specialized classifiers are presented for each dataset used in this study.
For each classification algorithm, four classifiers (one general and three specialized) are trained.
The values in the row of general classifiers are the performance values of a single classifier. The
values under the “Cluster-N” column in the specialized classifier row, with “N” being the cluster
number, are the performance values of the classifier of the relevant classification algorithm trained
with the subset belonging to the given column. The values under the “Overall” column represent the
combined performance value of three specialized classifiers derived from the same algorithm or general
classifier performance. The performance values obtained using the Kaggle malware detection dataset
are presented in Table 2.

Table 2: Results obtained with the Kaggle Malware Detection Dataset

Algorithm
Cluster-0 Cluster-1 Cluster-2 Overall

Acc F1 Acc F1 Acc F1 Acc F1

KSVM (g) 0.942 0.9605 0.9859 0.8 0.9688 0.8755 0.9601 0.9428
KNN (g) 0.9679 0.978 0.9874 0.8391 0.98 0.9254 0.9761 0.966
NB (g) 0.7327 0.8443 0.2071 0.0881 0.2237 0.2526 0.4155 0.5437
DT (g) 0.9788 0.9854 0.0991 0.8888 0.9866 0.949 0.984 0.9771
RF (g) 0.9861 0.9904 0.9931 0.909 0.9914 0.9672 0.9895 0.985
XGB (g) 0.9682 0.9781 0.9894 0.8529 0.9667 0.8591 0.9692 0.955
CATB (g) 0.986 0.9903 0.9915 0.8865 0.9914 0.9673 0.9893 0.9847
ADAB (g) 0.9557 0.9696 0.9862 0.8088 0.9807 0.9248 0.9717 0.9593
EXT (g) 0.9845 0.9893 0.9928 0.9052 0.9913 0.967 0.9889 0.984
GB (g) 0.9836 0.9887 0.9907 0.878 0.9895 0.9599 0.9873 0.9818
KSVM (s) 0.9438 0.9617 0.977 0.5837 0.9727 0.8939 0.9621 0.9458
KNN (s) 0.9682 0.9782 0.9875 0.8339 0.9797 0.924 0.9761 0.9659
NB (s) 0.7427 0.8488 0.0684 0.0774 0.238 0.2563 0.4148 0.5429
DT (s) 0.9792 0.9856 0.9915 0.8888 0.9858 0.9458 0.9838 0.9767
RF (s) 0.9858 0.9902 0.9939 0.9187 0.9911 0.9661 0.9893 0.9847
XGB (s) 0.9682 0.9781 0.9894 0.8529 0.9667 0.8591 0.9692 0.955
CATB (s) 0.9862 0.9905 0.9939 0.9198 0.9911 0.9664 0.9895 0.985
ADAB (s) 0.9618 0.9737 0.9881 0.8339 0.9821 0.9311 0.9749 0.964
EXT (s) 0.9841 0.989 0.9926 0.902 0.991 0.9657 0.9885 0.9835
GB (s) 0.9845 0.9893 0.9912 0.8858 0.9903 0.9633 0.9882 0.9831

As presented in Table 2, when the prediction performances for general classifiers are examined,
the best prediction is performed by the RF (g) classifier with 98.95% accuracy and 98.5% f1 score.
The worst prediction is performed by the NB classifier, with an accuracy of 41.55% and an f1 score
of 54.37%. When the performance of the specialized classifiers is examined, the best prediction for all
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three clusters is performed by the CATB (s) classifiers. With the CATB algorithm, 98.62% accuracy
and 99.05% f1 score for cluster 0, 99.39% accuracy and 91.98% f1 score for cluster 1, 99.11% accuracy
and 96.64% f1 score for cluster 2 are provided. When the combined prediction performance of the
specialized classifiers for each cluster is evaluated, it is seen that the CATB classifiers perform the
best prediction, with 98.95% accuracy and 98.5% f1 score. The combined prediction performance
of the specialized CATB classifiers is higher than the prediction performance of the general CATB
classifier. The combined performances of the specialized classifiers are compared with the general
classifier performances. The most significant improvement occurred in the ADAB classifier. It is seen
that the accuracy performance of the related classifier increased from 97.11% to 97.49%, and the f1
score increased from 95.93% to 96.4%. When the performances of the other classifiers are examined,
a partial performance increase in the KSVM, KNN, and GB classifiers, and a limited decrease in the
performance of the DT, RF, and EXT classifiers is observed. The performance values obtained for the
BODMAS dataset are presented in Table 3.

Table 3: Results obtained with the BODMAS dataset

Algorithm
CLS-0 CLS-1 CLS-2 OVERALL

Acc F1 Acc F1 Acc F1 Acc F1

KSVM (g) 0.9896 0.9828 0.9957 0.9956 0.9895 0.9887 0.9915 0.9899
KNN (g) 0.9821 0.9709 0.9883 0.9879 0.9904 0.9896 0.9873 0.9851
NB (g) 0.8673 0.7344 0.9508 0.948 0.8623 0.8587 0.8911 0.8686
DT (g) 0.9848 0.9752 0.9909 0.9906 0.9897 0.9889 0.9887 0.9837
RF (g) 0.9948 0.9914 0.9967 0.9966 0.9952 0.9949 0.9956 0.9948
XGB (g) 0.9954 0.9925 0.9978 0.9977 0.9964 0.9961 0.9965 0.9959
CATB (g) 0.9959 0.9934 0.9983 0.9982 0.9966 0.9964 0.9969 0.9964
ADAB (g) 0.9844 0.9744 0.9906 0.9902 0.987 0.986 0.9873 0.9851
EXT (g) 0.995 0.9918 0.9971 0.9969 0.9946 0.9942 0.9955 0.9947
GB (g) 0.9937 0.9898 0.9973 0.9972 0.9952 0.9949 0.9954 0.9946
KSVM (s) 0.9901 0.9837 0.9937 0.9935 0.9893 0.9885 0.9909 0.9893
KNN (s) 0.9816 0.9701 0.9963 0.9859 0.9894 0.9886 0.9866 0.9843
NB (s) 0.9297 0.8881 0.9625 0.9602 0.8682 0.8414 0.9151 0.8948
DT (s) 0.9852 0.9759 0.9912 0.9908 0.9888 0.988 0.9885 0.9865
RF (s) 0.9939 0.9899 0.9959 0.9957 0.994 0.9936 0.9946 0.9936
XGB (s) 0.9864 0.9777 0.9922 0.992 0.9903 0.9895 0.9898 0.9879
CATB (s) 0.9959 0.9933 0.9975 0.9975 0.9964 0.9962 0.9966 0.996
ADAB (s) 0.9903 0.984 0.9945 0.9943 0.9928 0.9922 0.9918 0.9904
EXT (s) 0.9941 0.9903 0.9966 0.9965 0.9952 0.9948 0.9959 0.9952
GB (s) 0.9949 0.9916 0.9965 0.9963 0.9952 0.9948 0.9955 0.9947

When the prediction performances for the general classifiers presented in Table 3. are examined, it
is seen that the best prediction is performed by the CATB classifier, with 99.69% accuracy and 99.64%
f1 score. The worst prediction is performed by the NB classifier, with 89.11% accuracy and 86.86% f1
score. When the specialized classifier performances are examined, it is seen that the best prediction for
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all three clusters is performed by the CATB (s) classifiers. With the CATB algorithm, 99.59% accuracy
and 99.33% f1 score for cluster 0, 99.75% accuracy and 99.75% f1 score for cluster 1, 99.64% accuracy
and 99.62% f1 score for cluster 2 are provided. When the combined prediction performance of the
specialized classifiers for each cluster is evaluated, it is seen that the CATB classifiers perform the
best prediction, with 99.66% accuracy and 99.6% f1 score. However, the combined performance of the
specialized classifiers is lower than that of the general CATB classifier. The combined performances of
the specialized classifiers are compared with the general classifier performances. The most significant
improvement is in the NB classifier. The accuracy performance of the relevant classifier increases from
89.11% to 91.51%, and the f1 score from 86.86% to 89.48%. Another algorithm with a significant
increase is the ADAB algorithm, whose accuracy performance increases from 98.73% to 99.18%,
and the f1 score increases from 98.51% to 99.04%. The XGB algorithm is the only algorithm whose
prediction performance drops significantly with the specialized classification approach. The accuracy
performance of the XGB algorithm decreases from 99.65% to 98.98%, and the f1 score decreases from
99.59% to 98.79%. The performance values obtained using the EMBER 2018 Data Set are presented
in Table 4.

Table 4: Results obtained with the EMBER 2018 Dataset

Algorithm
CLS-0 CLS-1 CLS-2 OVERALL

Acc F1 Acc F1 Acc F1 Acc F1

KSVM (g) 0.9806 0.9111 0.8928 0.9218 0.9072 0.8993 0.9099 0.9113
KNN (g) 0.9724 0.8777 0.9143 0.9357 0.8898 0.8801 0.9086 0.9086
NB (g) 0.8812 0.0589 0.6546 0.7876 0.6391 0.4649 0.6724 0.6653
DT (g) 0.9694 0.8696 0.9081 0.9313 0.8987 0.8899 0.9103 0.9106
RF (g) 0.9918 0.9613 0.9473 0.961 0.9424 0.9366 0.9499 0.9499
XGB (g) 0.9921 0.9635 0.9676 0.9758 0.9543 0.9497 0.9637 0.9636
CATB (g) 0.993 0.9676 0.9674 0.9757 0.9576 0.9534 0.9654 0.9653
ADAB (g) 0.9526 0.796 0.7903 0.8592 0.8145 0.8047 0.8208 0.8335
EXT (g) 0.9874 0.9399 0.9396 0.9552 0.9323 0.9249 0.9413 0.941
GB (g) 0.9809 0.913 0.9462 0.9602 0.934 0.9284 0.944 0.9445
KSVM (s) 0.9755 0.8809 0.8895 0.9196 0.9078 0.8984 0.9084 0.9091
KNN (s) 0.9795 0.9073 0.9201 0.9407 0.9023 0.8944 0.9179 0.9185
NB (s) 0.9048 0.5405 0.4045 0.2381 0.6987 0.5949 0.6086 0.4392
DT (s) 0.9727 0.8801 0.9006 0.9252 0.8957 0.8853 0.9063 0.9057
RF (s) 0.9855 0.9291 0.9467 0.9607 0.9411 0.9349 0.9483 0.9482
XGB (s) 0.9851 0.9295 0.964 0.9731 0.9578 0.9537 0.9633 0.9632
CATB (s) 0.9848 0.9289 0.9637 0.9729 0.9535 0.9494 0.961 0.961
ADAB (s) 0.9735 0.8765 0.8929 0.9216 0.8729 0.8628 0.8919 0.8935
EXT (s) 0.9845 0.9243 0.9394 0.9552 0.9281 0.9198 0.9389 0.9385
GB (s) 0.9822 0.9166 0.9594 0.9697 0.9508 0.9461 0.9577 0.9576

When the prediction performances for the general classifiers presented in Table 4 are examined,
it is seen that the best prediction is performed by the CATB classifier, with 96.54% accuracy and
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96.53% f1 score. The worst prediction is performed by the NB classifier, with an accuracy of 67.24%
and an f1 score of 66.53%. When the prediction performances for specialized classifiers are examined
for cluster 0, the RF algorithm provides the best prediction performance, with 98.55% accuracy, and
the XGB algorithm, with a 92.95% f1 score. The XGB algorithm performs the best prediction, with
96.40% accuracy and 97.31% f1 score for cluster 1, 95.78% accuracy, and 95.38% f1 score for cluster 2.
When the combined prediction performance of the specialized classifiers for each cluster is evaluated,
it is seen that the XGB classifiers perform the best prediction, with 96.33% accuracy and 96.32%
f1 score. The combined performances of the specialized classifiers are compared with the general
classifier performances. Significant improvement is seen in the ADAB and GB classifiers with the
use of specialized classifiers. Accuracy for ADAB increases from 82.08% to 89.19%, and the f1 score
increases from 83.35% to 89.35%. Accuracy for GB increases from 94.40% to 95.77%, and f1 score
increases from 94.45% to 95.76%. The most significant performance decrease is observed in NB, where
the accuracy decreases from 67.24% to 60.86%, and the f1 score decreases from 66.53% to 43.92%.

At the stage of creating the model, it is necessary to obtain the best classifier combination of
classifiers for each subset of the dataset. While determining the classifier combination that makes the
best prediction for each subset, the prediction performance for each combination is obtained by taking
triple combinations of the ten classification algorithms used. By taking the arithmetic average of the
accuracy and f1 score, the combination with the highest value is selected as the classifier for the relevant
subset. In cases where there is equality in the prediction performance of the classifier combinations,
the combination with the shortest prediction time is selected as the classifier of the relevant cluster.
The best classifier combinations for the datasets used in this study and the subsets of each dataset are
presented in Table 5.

Table 5: Best classifier combinations for datasets and subsets

Dataset Subset Classifier type Combination Accuracy F1 Score

Kaggle 0 Gen RF + CATB + EXT 0.9869 0.9909
1 Gen DT + CATB + EXT 0.9944 0.9268
2 Gen DT + CATB + EXT 0.9921 0.9705
(Full) Gen DT + CATB + EXT 0.9902 0.986
0 Spec CATB0 + EXT0 + GB0 0.9867 0.9908
1 Spec KNN1 + DT1 + CATB1 0.995 0.9526
2 Spec NB2 + RF2 + CATB2 0.9917 0.9688

BODMAS 0 Gen XGB + CATB + EXT 0.9968 0.9948
1 Gen KSVM + CATB + GB 0.9986 0.9986
2 Gen DT + XGB + CATB 0.9967 0.9965
(Full) Gen RF + XGB + CATB 0.9973 0.9968
0 Spec KSVM + CATB + GB 0.9965 0.9942
1 Spec KSVM + CATB + GB 0.9977 0.9976
2 Spec KNN + CATB + GB 0.9964 0.9962

EMBER 2018 0 Gen XGB + CATB + EXT 0.9936 0.9703
1 Gen KNN + XGB + CATB 0.9683 0.9763

(Continued)
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Table 5: Continued
Dataset Subset Classifier type Combination Accuracy F1 Score

2 Gen KNN + XGB + CATB 0.9615 0.9578
(Full) Gen KNN + XGB + CATB 0.9676 0.9676
0 Spec KNN0 + DT0 + CATB0 0.9883 0.9458
1 Spec NB1 + XGB1 + CATB1 0.9674 0.9756
2 Spec KNN2 + XGB2 + CATB2 0.96 0.9564

When the results obtained by using the Kaggle malware detection dataset presented in Table 5
are examined, the highest prediction performances were found to be “RF-CATB-EXT” for cluster 0,
“KNN1-DT1-CATB1” for cluster 1, and “DT-CATB-EXT” for cluster 2. For the BODMAS dataset,
the highest prediction performances are provided by the classifier combinations “XGB-CATB-EXT”
for cluster 0, “KSVM-CATB-GB” for cluster 1, and “DT-XGB-CATB” for cluster 2. The best
prediction performance for the EMBER 2018 dataset is provided by the combinations of “XGB-
CATB-EXT” for cluster 0, “KNN-XGB-CATB” for cluster 1, and “KNN-RF-CATB” for cluster 2.

When the values obtained with the proposed model presented in Fig. 4 are examined, it is seen
that the results exhibit higher prediction performance than the prediction performance of both base
classifiers and general classifier combinations for all three datasets.

Figure 4: Performance of proposed method for each dataset

One of the aims of the study is to make malware classification faster. For this purpose, triple
classifier combinations are positioned in two tiers. Faster classifiers are positioned in the first tier and
slower classifiers are positioned in the second tier. The prediction time performance per sample is
presented in Fig. 5.
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Figure 5: Prediction times per sample for each classifier

Prediction times per sample are given for the classifiers in Fig. 5, and the prediction performance
values are taken as the basis in the tiered positioning of the selected classifier combinations.

For each dataset and its subsets, data on how many predictions are made at each tier and how
much the tiered positioning approach shortens the prediction time are presented in Table 6.

Table 6: Classification of data with tiered positioning

Dataset Cluster Total
number of
samples

Number
of samples
classified
in Phase 1

Percentage
of samples
classified
in Phase 1

Accuracy
of Phase 1

Number
of samples
classified
in Phase 2

Percentage
of samples
classified
in Phase 2

Accuracy
of Phase 2

Decrease
in
prediction
time (%)

Kaggle 0 18949 18788 99.15% 99.10% 161 0.85% 58.40% 66.96%
1 3828 3795 99% 99.50% 37 1% 94.60% 98.90%
2 20490 20236 98.80% 99.50% 254 1.20% 75.60% 93.90%
Combined 43267 42819 98.96% 99.34% 452 1.04% 71.23% 82.54%

BODMAS 0 7734 7710 99.68% 99.73% 24 0.32% 99.68% 56.30%
1 8306 8292 99.83% 99.87% 14 0.17% 100% 99.10%
2 10847 10820 99.75% 99.77% 27 0.25% 59.25% 72.69%
Combined 26887 26822 99.76% 99.79% 65 0.24% 78.46% 76.13%

EMBER
2018

0 22562 22449 99.50% 99.50% 113 0.50% 71.68% 83.76%
1 77026 75402 97.89% 97.76% 1624 2.11% 53.57% 97.88%
2 100412 97615 97.21% 96.94% 2717 2.79% 70.22% 97.20%
Combined 20000 195466 97.73% 97.55% 4454 2.27% 64.19% 95.95%

When the data presented in Table 6 are examined, it is seen that 98.96% of the samples for the Kaggle
malware detection dataset are predicted in the first tier and the tiered positioning approach provides
an 82.54% reduction in the prediction time. 99.76% of the samples belonging to the BODMAS dataset
are classified in the first tier, and a 72.69% reduction in prediction time is observed. When the values
of the EMBER dataset are examined, it is seen that 97.73% of the samples are classified in the first
tier and a 95.95% reduction in the prediction time is achieved. A comparison of the proposed method
with other studies in the literature is presented in Table 7.
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Table 7: Comparison of the proposed method with other studies in the literature

Dataset Article Accuracy F1 Score

BODMAS Ramadhan et. al. [21] 0.9962 0.9956
Lu [22] 0.97 0.9699
Proposed Model 0.9974 0.9977

EMBER 2018 Raff et. al. [23] %93.29 N/A
Marais et. al. [24] %94 %93.4
Lad et al. [25] %94.09 %88.66
Nguyen et. al. [26] %94.72 N/A
Thosar et. al. [27] %96 %96
Proposed Model %96.77 %96.77

When Table 7 is examined, it is seen that the proposed method has better detection performance
than other studies [21,22] performed using the BODMAS dataset. The proposed method’s accuracy
is 99.77% and f1 score is 99.77%, which outperforms the following study’s [21] accuracy (99.62%) and
f1 score (99.56%). It is also seen that the proposed method has better detection performance than
other studies [23–27] performed using the EMBER 2018 dataset. The proposed method’s accuracy is
96.77% and f1 score is 96.77%, which outperforms the following study’s [27] accuracy (96%) and f1
score (96%). Since there is no scientific article found that uses the Kaggle malware detection dataset,
it is not included in Table 7.

6 Conclusion and Future Works

In this study, the aim was to detect malware quickly with high accuracy and f1 score. In the
proposed method, the k-means algorithm is used as an unsupervised learning algorithm, and KSVM,
KNN, NB, DT, RF, XGB, CATB, ADAB, EXT, and GB are used as classification algorithms.
The Kaggle malware detection dataset, BODMAS dataset, and EMBER 2018 dataset are used to
demonstrate the effectiveness of the presented detection approach. To reduce the prediction time of
the model, the classifiers are positioned in two tiers. As a result of tiered positioning, it is seen that the
prediction time is reduced by up to 95.95%.

It is seen that the specialized classifiers approach used in the model causes a considerable increase
and decrease in the prediction performance of some algorithms. The most remarkable effects of
specialized classifiers are observed in the EMBER 2018 dataset. Among the classification algorithms
used, the greatest improvement is seen in ADAB, with a 7.11% increase in accuracy and a 6% increase
in f1 score, when compared to the general ADAB classifier. The performance of the proposed model
was compared with other studies [21–27] using the BODMAS and EMBER 2018 datasets, and it is
seen that the proposed model provides the best prediction performance for both datasets.

The scope of future studies is as follows: Revealing the effects of clustering algorithms such as
DB Scan, Birch, spectral clustering, and hierarchical clustering on the prediction performance of
classification algorithms; using clustering algorithms as classifiers for clusters consisting of the same
type of samples; and evaluating and improving prediction performance of the classifier positioned in
the second tier in the model with novel approaches.



1250 CMC, 2023, vol.75, no.1

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. N. Alenazi, H. Alabdulrazzaq, A. A. Alshaher and M. M. Alkharang, “Evolution of malware threats

and techniques: A review,” International Journal of Communication Networks and Information Security, vol.
12, no. 3, pp. 326–337, 2020.

[2] Individuals Using Internet. 2022. [Online]. Available: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/
default.aspx.

[3] S. AlGhamdi, K. T. Win and E. Vlahu-Gjorgievska, “Information security governance challenges and
critical success factors: Systematic review,” Computers and Security, vol. 99, no. 4, pp. 1–39, 2020.

[4] R. Komatwar and M. Kokare, “A survey on malware detection and classification,” Journal of Applied
Security Research, vol. 16, no. 3, pp. 390–420, 2021.

[5] AVTEST Malware Statistics. 2022. [Online]. Available: https://www.av-test.org/en/statistics/malware.
[6] M. Egele, T. Scholte, E. Kırda and C. Kruegel, “A survey on automated dynamic malware-analysis

techniques and tools,” ACM Computing Surveys, vol. 44, no. 2, pp. 1–42, 2012.
[7] S. J. I. Ismail, Hendrawan and B. Rahardjo, “A survey on malware detection technology and future trends,”

in Proc. of Int. Conf. on Telecommunication Systems, Services, and Applications, Bandung, Indonesia, pp.
220–225, 2020.

[8] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches using data mining
techniques,” Human-Centric Computing and Information Sciences, vol. 8, no. 1, pp. 1–22, 2018.

[9] Z. Bazrafshan, H. Hashemi, S. M. H. Fard and A. Hamzeh, “A survey on heuristic malware detection
techniques,” in 5th Conf.on Information and Knowledge Technology, Shiraz, IRAN, pp. 113–120, 2013.

[10] L. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” Journal
of System Architecture, vol. 112, no. 101861, pp. 1–24, 2021.

[11] S. Euh, H. Lee, D. Kim and D. Hwang, “Comparative analysis of low-dimensional features and tree-based
ensembles for malware detection systems,” IEEE Access, vol. 8, pp. 76796–76808, 2020.

[12] A. Cohen, N. Nissim and Y. Elovici, “Maljpeg: machine learning based solution for the detection of
malicious jpeg images,” IEEE Access, vol. 8, pp. 19997–20011, 2020.

[13] J. Singh and J. Singh, “Detection of malicious software by analyzing the behavioral artifacts using machine
learning algorithms,” Information and Software Technology, vol. 121, no. 106273, pp. 1–13, 2020.

[14] D. Gupta and R. Rani, “Improving malware detection using big data and ensemble learning,” Computers
and Electrical Engineering, vol. 86, no. 106729, pp. 1–17, 2020.

[15] Y. Gao, H. Hasegawa, Y. Yamaguchi and H. Shimada, “Malware detection using lightgbm with a custom
logistic loss function,” IEEE Access, vol. 10, pp. 47792–47804, 2022.

[16] R. Kumar and G. Subbiah, “Zero-day malware detection and effective malware analysis using shapley
ensemble boosting and bagging approach,” Sensors, vol. 22, no. 7, pp. 1–23, 2022.

[17] A. A. Taha and S. J. Malebary, “Hybrid classification of android malware based on fuzzy clustering and
gradient boosting machine,” Neural Computing and Applications, vol. 33, no. 12, pp. 6721–6732, 2021.

[18] S. Badhani and S. K. Mutto, “Cendroid: A cluster-ensemble classifier for detecting malicious android
applications,” Computer and Security, vol. 85, no. 3, pp. 25–40, 2019.

[19] H. Yang, S. Li, X. Wu, H. Lu and H. Han, “A novel solutions for malicious code detection and family
clustering based on machine learning,” IEEE Access, Special Section on Security and Privacy in Emerging
Decentralized Communication Environments, vol. 7, pp. 148853–148860, 2019.

[20] A. Appice, G. Andresini and D. Malerba, “Clustering-aided multi-view classification: A case study on
android malware detection,” Journal of Intelligent Information Systems, vol. 55, no. 1, pp. 1–26, 2020.

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.av-test.org/en/statistics/malware


CMC, 2023, vol.75, no.1 1251

[21] F. H. Ramadhan, V. Suryani and S. Mandala, “Analysis study of malware classification portable executable
using hybrid machine learning,” in Proc. of Int. Conf. on Intelligent Cybernetics Technology & Applications,
Bandung, Indonesia, pp. 86–91, 2021.

[22] Q. Lu, “An investigation on self-attentive models for malware classification,” M.S. theses, University of
Alberta, Canada, 2021.

[23] E. Raff, W. Fleshman, R. Zak, H. S. Anderson, B. Filar et al., “Classifying sequences of extreme length
with constant memory applied to malware detection,” in Proc. of the AAAI Conf. on Artificial Intelligence,
Virtual Conf., vol. 35, pp. 9386–9394, 2020.

[24] B. Marais, T. Quertier and C. Chesneau, “Malware analysis with artificial intelligence and a particular
attention on results interpretability,” in 18th Int. Conf. on Distributed Computing and Artificial Intelligence,
Salamanca, Spain, pp. 43–55, 2021.

[25] S. S. Lad and A. C. Adamuthe, “Improved deep learning model for static pe files malware detection and
classification,” International Journal of Computer Network and Information Security, vol. 2, pp. 14–26, 2022.

[26] A. T. Nguyen, E. Raff, C. Nicholas and J. Holt, “Leveraging uncertanity for improved static malware
detection under extreme false positive constraints,” in Proc. of 1st Int. Workshop on Adaptive Cyber Defense,
Montreal, Canada, pp. 1–12, 2021.

[27] K. Thosar, P. Tiware and R. Jyothula, “Effective malware detection using gradient boosting and convolu-
tional neural network,” in 2021 IEEE Bombay Section Signature Conf., Gwalior, India, pp. 1–4, 2021.

[28] Kaggle Malware Detection Dataset. 2022. [Online]. Available: https://www.kaggle.com/c/malware-
detection.

[29] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh and G. Wang, “Bodmas: An open dataset for learning
based temporal analysis of pe malware,” in Proc. of IEEE Security and Privacy Workshops (SPW), San
Francisco, CA, USA, pp. 78–84, 2021.

[30] H. A. Anderson and P. Roth, “Ember: An open dataset for training static pe malware machine learning
models,” Arxiv, 1804.04637v2, pp. 1–8, 2018.

[31] EMBER 2018v2 Dataset. 2022. [Online]. Available: https://github.com/elastic/EMBER.
[32] Google Colaboratory. 2022. [Online]. Available: https://colab.research.google.com.
[33] Scikit-Learn. 2022. [Online]. Available: https://scikit-learn.org/stable/.
[34] PeFile Library. 2022. [Online]. Available: https://github.com/erocarrera/pefile.

https://www.kaggle.com/c/malware-detection
https://www.kaggle.com/c/malware-detection
https://github.com/elastic/EMBER
https://colab.research.google.com
https://scikit-learn.org/stable/
https://github.com/erocarrera/pefile

	Clustering-Aided Supervised Malware Detection with Specialized Classifiers and Early Consensus
	1 Introduction
	2 Related Works
	3 Algorithms and Metrics Used in The Study
	4 Proposed Method
	5 Experimental Results
	6 Conclusion and Future Works



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


