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Abstract: The diagnosis of eye disease through deep learning (DL) technology
is the latest trend in the field of artificial intelligence (AI). Especially in
diagnosing pathologic myopia (PM) lesions, the implementation of DL is a
difficult task because of the classification complexity and definition system of
PM. However, it is possible to design an AI-based technique that can identify
PM automatically and help doctors make relevant decisions. To achieve this
objective, it is important to have adequate resources such as a high-quality
PM image dataset and an expert team. The primary aim of this research is
to design and train the DLs to automatically identify and classify PM into
different classes. In this article, we have developed a new class of DL models
(SAN-FSL) for the segmentation and detection of PM through semantic
adversarial networks (SAN) and few-short learning (FSL) methods, respec-
tively. Compared to DL methods, the conventional segmentation methods
use supervised learning models, so they (a) require a lot of data for training
and (b) fixed weights are used after the completion of the training process.
To solve such problems, the FSL technique was employed for model training
with few samples. The ability of FSL learning in UNet architectures is being
explored, and to fine-tune the weights, a few new samples are being provided
to the UNet. The outcomes show improvement in the detection area and
classification of PM stages. Betterment in the result is observed by sensitivity
(SE) of 95%, specificity (SP) of 96%, and area under the receiver operating
curve (AUC) of 98%, and the higher F1-score is achieved using 10-fold cross-
validation. Furthermore, the obtained results confirmed the superiority of the
SAN-FSL method.
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1 Introduction

Cardiovascular disease (CV) is the main chronic disease and the major contributor to the global
burden of disease. The CV health is directly related to all the organs of your body, and it can directly
affect blood vessels due to high blood pressure [1]. As a result, the vision is lost if it is not treated
early. Myopia is currently a public health problem due to its rapidly growing prevalence globally and
the threat to vision. It has been estimated that 50 percent of the world’s population could be myopic
in 2050, and 10 percent of them suffer from severe myopia [2]. The identification and classification of
myopic maculopathy are done based on the international photographic and grading system for Myopic
Maculopathy (MM) [3]. Pathologic myopia (PM) was classified with respect to severity as shown in
Fig. 1.

Figure 1: Myopic maculopathy (a) category 1: Fundus tessellation temporal to the optic disc,
(b) category 2: Diffuse chorioretinal atrophy, (c) category 3: patchy chorioretinal atrophy and (d)
category 4: macular atrophy

The rapid development of artificial intelligence (AI) [4] plays a vital role in the automation of
clinical data processing and complicated medical diagnostics. Deep learning systems (DLS) are the
most advanced class of AI [5]. It emulates the human brain at work and utilizes neural networks (NN)
to solve feature-dependent problems. In medical practices, the DLS [6–11] outperforms in many cases.
In ophthalmology, DLS-based diagnosis software has been successfully used in clinical and public
healthcare departments. AI technologies is a worthwhile and efficient alternative for the control and
diagnostics of MM. On the other hand, automated diagnosis using images is considered an image
analysis problem, which can be figured out by labeling the data and using machine learning (ML)
algorithms such as DL. However, the use of deep learning techniques in MM lesion scanning remains a
challenge [12] because of the classification complexity and definition of the MM system. The objective
of this research is to design and train the DLS, which is capable of automatically detecting MM and
categorizing the MM using a handsome dataset of color retinal fundus images, which are collected
from the ophthalmic centers of hospitals. A visual example of MM fundus images is displayed in
Fig. 1.

To address this problem, there is a CycleGAN [13] technique, which uses the convolutional
neural networks (CNN) model to detect Myopic maculopathy (MM). In practice, CycleGAN has
the capability to generate more realistic and reliable images with cycle consistency. Moreover, the
classifier and generator work together to discriminate the domain images [14]. A res-guided UNet [15]
is developed as a generator and res-guided sampling blocks are replaced by traditional convolution.
Supervised learning usually requires a large training dataset to incorporate all possible variations.
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However, it might be possible that the large dataset is not available, and if it is available, then it is
a tedious task in the domain of medical imaging. This problem is solved if we can employ few-shot
learning (FSL) algorithms [16,17] that require a smaller training dataset. Additionally, there is a chance
of issues when a large training dataset is required.

In this paper, we overcome this limitation by proposing a few-shot learning (FSL) model, where
only a few samples of the network will be dynamically trained. Our focus is on FSL classification
as we are updating and refining weights dynamically by feeding new sample data. To the best of our
knowledge, dynamic updating of model weights is a novel and unique approach up to this point. There
is no use of the FSL-based UNet (SAN-FSL) scheme (in the testing phase of dynamic learning), which
has also proven to be very useful for the detection and classification of MM-infected regions. The SAN-
FSL technique is newly proposed by integrating a semantic adversarial network (SAN) based on FSL
and UNet model. As a result, this SAN-FSL has the capability to dynamically tune its parameters
in accordance with user feedback. In particular, this process is enhanced the segmentation outcomes
when there is a poor performance.

Our major contributions towards myopia detection are as follows.

1) To develop this SAN-FSL method, we have also proposed a new preprocessing step to enhance
Myopic Maculopathy (MM) regions.

2) A novel DL method is proposed by integrating semantic adversarial networks (SAN) and few-
short learning (FSL) techniques to detect and recognize the category of myopia.

3) In a comparison among deep learning models, machine learning models, and our method,
the best performance is demonstrated by our SAN-FSL. It guarantees the accuracy and
convenience of clinics for doctors.

2 Literature Review

In the early research, images were segmented using techniques based on edges, regions, clusters,
and thresholds [18]. In these conventional methods, features are extracted manually and then used
for tasks like background separation. Moreover, the quality of features affects the segmentation
results, and sometimes this approach is labor-intensive and time-consuming. However, in recent
years, research’s focus has shifted toward conventional neural networks and deep learning algorithms,
especially in semantic image segmentation [19,20]. Moreover, with the passage of time, the accuracy of
these methods has also been considerably improved in recognition and prediction. The DeconvNet
[21] is a more extensive decoder than the original FCN. The mentioned decoder is balanced in
number and feature size with the encoder. Aside from the deconvolution, to improve the results, the
DeconvNet decoder uses un-pooling layers. The DevconvNet also consumes large amounts of memory
as compared to FCS due to fully connected layers in the encoder. To optimize the parameters and
memory, the authors introduced the SegNet [22] model, which is like the VGG-16 but differs from
the FCN and DeconvNet in up-sampling and convolution. This technique effectively eliminates the
deconvolution process. The SegNet manages the feature maps very efficiently. However, it requires
more memory.

Recently, generative adversarial networks (GANs) [23] have proved very successful in different
applications. Many researchers have found that generative adversarial loss is helpful for enhancing
network performance. Motivated by the success of GANs on image translation [24], an efficient GAN
network for image semantic segmentation is designed. It is closest to the adversarial networks, which
aid in training for semantic segmentation. But it does not improve the overall baseline. This research
has two significant advantages, such as (a) a clear pattern of viral infections can be observed at an early
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stage, and (b) CT abnormalities related to viral pneumonia can be identified before laboratory tests in
70% of cases [16]. Therefore, a CT investigation is very helpful in the early detection of MM infection.
There are also many studies on MM detection in chest X-ray images. However, we concentrate on
work related to CT scans. U-Net structures are another option to use. It is intended only for medical
applications. It is a multistage method involving the segmentation and classification of MM and other
viral infections [25]. It also helps in monitoring advanced disease progression.

A pretrained Resnet-50 is updated for the classification of MM or other cases [26]. In the
next phase, multi-object adaptive CNN, called AdaResU-Net [27], was proposed with the ability
to automatically adapt to new datasets and residual learning paradigms. U-Net++ [28], a U-Net-
based model, was also used on high-resolution CT images for MM detection. Moreover, the MM’s
detection has been tested with many variants of transfer learning [29] algorithms. Among many TL
architectures, the ResNet-101 and Xception models were outperformed. Other studies [30–32] use TL
methods to detect MM eye diseases. Moreover, object-detection methods are considered [33] for MM
diagnostics and, in another study, VGA variations are also used for the detection of symptomatic
lung areas [34]. The proposed method can classify SMM from non-pneumonia (NP) and community-
acquired pneumonia (CAP). In [35], for MM detection, the Nave Bayes classifier, discrete wavelet
transforms, and genetic algorithms are used. In a segmentation-based study, super-pixel-based type 2
fuzzy clustering methods are combined into a proposed algorithm [36]. As an alternative, the V-Nets
[37] are used for MM image segmentation. Likewise, in another study, V-Net was used to segment all
the slices of MRI simultaneously [38]. Deep learning methods [39] were critical in the segmentation
of pulmonary CT images. Now they have gained the ability to evaluate the severity and quantify the
infection levels of diseases [40,41].

The basic requirement of DLS methods is a large ground-truth dataset for training, which is
very difficult sometimes. Moreover, annotating large amounts of data is a labor-intensive and time-
consuming job. These limitations confine the applicability and utility of DLS to real-world problems.
This limitation has started to be discussed in a limited number of studies where a semi-supervised
learning approach was used with multiclass segmentation to identify the infected region. However,
this method showed poor output. In this study, we proposed a few-shot learning process with U-Net
that supports dynamic re-training mechanisms. This approach eliminates the need for a large dataset. It
dynamically updated the UNet parameters with a few samples. Furthermore, this scheme dynamically
adjusts the parameters with the interaction of domain experts. On the other hand, current models are
not able to tune the weights once trained.

3 Proposed Methodology
3.1 Data Acquisition

The training dataset for this study was acquired from the event hosted by the International
Symposium on Biomedical Imaging (ISBI-2019) in Italy. It contains 400 labeled fund images. The
dataset consists of 239 pathological myopic eye images and 161 normal eye images. The image size is
1444 × 144 × 3 (RGB image). The dataset is online available at https://palm.grand-challenge.org/.

3.2 Preprocessing Method

The Myopic Maculopathy (MM) images are captured in different environments. As a result,
there is a need to improve the color fundus image by preprocessing to adjust light and enhance the
contrast so that the MM-infected region can be highlighted. An example of low light is shown in
Fig. 1. The preprocessing step is used to enhance the patterns. Moreover, the processed images make

https://palm.grand-challenge.org/
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the training task easy for Deep Learning (DL) models to extract features and detect the infected
regions. In practice, the color fundus images can be depicted in various color spaces such as RGB
(red, green, blue), HSV (hue, saturation, value), CIELUV, etc. However, the CIECAM02 color space
is closer to human perception, and it is an unfirm color space compared to other non-uniform
color spaces. Therefore, the preprocessing step utilizes the CIECAM02 color appearance model to
enhance the MM-infected region compared to other parts of the eye fundus image. This step can
assist ophthalmologists in the accurate diagnosis of Myopic Maculopathy (MM). Furthermore, the
uniform color space is very crucial for the image enhancement of some applications, whereas the RGB
and HSV are not uniform, therefore they are not used for image enhancement.

The CIECAM02 color space also has an issue with white adaptation, which may result in a
poor image, even after enhancement. In this paper, we used the CIECAM02 color space for image
preprocessing. Therefore, the image is converted from RGB to CIECAM02 uniform color space
to adjust the light and enhance the contrast of the MM-infected region. The CIECAM02 color
appearance model provides JCh (J: luminance, C: chroma, and h: hue) channels to process the fundus
image. The J-component of this uniform color space is used with a discrete-wavelet transform (DWT)
approach to update or enhance this channel of uniform color space. The preprocessing follows three
steps: Firstly, the J-component of the color space coefficients of DWT is modified by Ben Graham’s
method [19] to increase the illumination so that perception augmentation and contrast adjustment
can be done. Secondly, the inverse transform is used to adjust J coefficients for good visualization
and reconstruction without generating artifacts. In addition, Gaussian Filtering is applied to enhance
Myopic Maculopathy (MM) regions compared to other regions of fundus images. The enhancement
results are visually displayed in Fig. 2.

Figure 2: A visual example of myopic maculopathy in case of preprocessing to enhance the infected
region

3.3 Semantic Adversarial Network Method

In this step, a Generative Adversarial Network (GAN) is used for image semantic segmentation.
The architecture of the proposed algorithm is shown in Fig. 3. In contrast to the original GAN
model, the framework of the proposed GAN is established on two separate deep convolutional
neural networks, the discriminator network D and the segmentation network S, whose joint work
can outperform for a given input image. The proposed SegGAN network is designed to generate a
reasonable result by segmenting the given input image. The anatomy of a generative network is based
on the UNet framework. In comparison to known fully-connected network (FCN) methods [41], the
major variations are connection-skipping between paths and symmetry.
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Figure 3: A systematic flow diagram of proposed SAN-FSL system for recognition of stages of myopic
maculopathy

The UNet architecture is depicted in Fig. 2. The framework consists of two paths. The left side is
the contraction path. The encoder part is a conventional stack of convolutional and max-pooling layers
that scale down the height and width of the input images. The right side is a symmetrical, expansive
path. The decoding part restores the original dimensions of the input images, which helped in the
precise localization using transposed convolutions. Each box in the figure represents the multi-channel
feature map. The dotted box shows the concatenated feature maps from the contractive part. The
arrows in the figure represent the operations listed in the legend. The image dimension is displayed
on the left side of the box, and the number of channels is displayed on the top of the box. The half
UNet has a similar architecture, except it halved the number of channels in the network. Therefore,
it is referred to as half UNet. The 2D image patches are fed into the network, and it returns the 2D
segmentation probability map for every patch. More specifically, by applying the same model to inputs
at multiple scales, the network can have access to information with different levels of detail. Thus,
semantic segmentation can be successfully performed by merging features obtained using different
input scales. However, this type of model presents an important drawback: they do not scale well for
deep convolutional neural networks (CNNs) due to factors such as limitations in graphical processing
unit (GPU) memory (in semantic segmentation, it is not uncommon to work with images of large size).
This sort of method is sometimes referred to as an image pyramid.

Because of its success in image generation, generative adversarial loss (GAN) has been widely
used in learning generative models. Because GANs solve the issues of other models by introducing
the theory of adversarial learning between the generator and the discriminator, the sampling in other
models is inaccurate and slow, whereas GANs can simply sample the generated data. Due to these
benefits, GAN was selected to deal with the image semantic segmentation problem. Furthermore,
CNN training can aid in the stabilization of GAN training. The proposed Seg-GAN is composed of
two feed-forward CNNs: the segmentation part S and the discriminator part D. The Seg-GAN can also
suggest the guidelines for architecture, in which the segmentation network consists of convolutional
neural networks and the discriminator consists of fully connected CNNs combined with cascaded
ConvCRFs. Batch normalization (BN), Leaky ReLU (rectified linear units), and ReLU activation
functions are applied for the segmentation network part, and a discriminator is utilized to stabilize
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the GAN training. The segmentation network labeled the segmented image and assigned a ground-
truth image y to each input image x. Furthermore, S(x) is urged to have data distribution like that
of a ground-truth image. The discriminator network D determines the difference between the data
distribution of the segmentation outcome and the respective ground-truth image. The networks S and
D compete to attain their respective goals, coining the term adversarial. For discriminator network
training, the cross-entropy loss DL is minimized in the respective classes. The loss DL can be expressed
as (1):

LD = −
∑

h,w

(1 − yn) log(1 − D(S(Xn))
h,w) + ynlog

(
D (yn)

h,w
)

(1)

From Eq. (1), The parameter Xn is the input image with size of (h.w.3). The segmentation network
is denoted as S, which has a corresponding output S (Xn). For our fully convolutional discriminator,
we denote it as D. yn is the corresponding ground-truth label. Where yn = 1 when the image is drawn
from the ground-truth label, and yn = 0 when the image is generated from the segmentation network.
We propose to train the segmentation network via minimizing a multi-task loss function:

Lseg = Lce + μLadv (2)

where Lce, Ladv denote the multi-class cross entropy loss, the adversarial loss, respectively. The
parameter μ represents a hyperparameter for balancing the proportion of the Lce in multi-task loss
function. Lce and Ladv are respectively obtained by the following Equations and other parameters are
derived as follows.

Lce = −
∑

h,w

∑
ceεC

Y h,w,c
n log

(
s (Xn)

h,w,c
)

(3)

Ladv = −
∑

h,w
log(D

(
s (Xn))

h,w
)

(4)

where c represents categories in the dataset. With the adversarial loss, the segmentation network first
tries to train the network and then cheats the discriminator by maximizing the probability of the
segmentation prediction being considered as the ground truth distribution.

3.4 Few-Shot Learning (FSL) for Classification

The main issue with deep-learning-based (DL) studies is that they require many ground-truth
datasets for training, whereas collecting large numbers of labeled datasets is time-consuming, labor-
intensive, and sometimes impossible due to the nature of the data. This requirement limits the
utilization of these approaches. The alternate solution is a few-shot [31–40], which is better than the
semi-supervised learning paradigm. In this methodology, the huge dataset problem is overcome by
adopting a few-short learning process for U-Net with a dynamic re-training mechanism. In this way,
the model’s parameters are dynamically adjusted using a small, labeled dataset with expert feedback.

When a convolutional neural network (CNN) is used on a local dataset for training and diagnostic
of eye diseases, it classified the normal eye as infected while testing, despite accurate segmentation.
whereas the fully-connected network (FCN) and UNet models showed better performance. This is
due to the multiscale capability of algorithms and the availability of local and global information at
the same time. The UNet has been found to be a better classifier than FCN for the medical imaging
domain since it represents local information more efficiently. However, UNet failed to segment the
infected areas. Therefore, a new architecture is proposed and named the few-shot U-Net model. The
performance of the model is increased by improving the initial parameter training. Furthermore, only
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specific data samples were provided to the few-shot model for retraining where low performance was
observed.

The framework of the few-shot UNet model is described in Fig. 3. We specifically assume that a
training set Sinit = (xnew (n) , tnew (n)) is in pairs of input-target association at time instance n. Variable
xi(n) represents the annotated input data (fundus image), whereas targets ti are supervised (desired)
outputs (the segmentation of the MM), given by the medical experts. From a traditional learning
paradigm and this initial training set, a set of parameters for the UNet structure were obtained. Then,
the segmentation performance of the UNet was examined over a test data set by experts (medical
professionals). The new augmented training set was developed after assessing the low accuracy of the
segmentation results by the experts.

Supdate = {xnew (n) , tnew (n)} ∪ Sinit (5)

The network is trained with a new augmented training set. It is assumed that samples were picked
by the domain experts one at a time. The network began its training from the place where the learning
algorithm had been stopped, and only a couple of training epochs were taken into consideration. The
FSL-based UNet network is trained in this manner to trust the new incoming (few) samples, while also
encountering the least amount of deterioration of the prior network knowledge. Finally, the softmax
classifier is employed to classify eye diseases into various classes.

4 Experiment and Results
4.1 Experimental Setup

The TensorFlow and Keras libraries were used to create all networks in Python. A Google Colab-
provided NVIDIA Tesla P4 GPU was used to train the models. The test was conducted on a PC with
an 8-core CPU (AMD FX-8320 @ 3.5 GHz) and 8GB of RAM. The suggested CNN classifier and
the FCN-8 adopted topologies, which displayed in Figs. 3 and 4, respectively. In addition, Fig. 3 also
shows the architecture of the new FSL-based U-Net that has been proposed with the main objective of
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enhancing the existing accuracy of U-Net network. Whereas the architecture of UNet model is shown
in Fig. 4. It is observed that the FSL-based U-Net model needs only 8MB of storage space.

Figure 4: U-Net segmentation model used to detect Myopic maculopathy region

Several other assessment measures, such as specificity (SP), sensitivity (SE), F1-score, accuracy
(ACC), recall (RE), and precision (PR), are used to quantitatively evaluate the performance of the pro-
posed technique. In the accuracy (ACC) metric, the most common and one of the basic performance
measures is accuracy, which is essentially the probability that a randomly selected example (negative
or positive) would be accurate. The diagnostic test in this metric shows the probability of a correct
result, i.e., the probability that the diagnosis will be correct. The precision metric refers to the capacity
to accurately identify positive categories among entire expected positive classes, which is expressed as
a proportion of all accurately expected positive categories to all correctly predicted positive categories.
The sensitivity (SE) is a measure of a model’s capability to detect all positive instances and represent
them. It’s worth noting that the above equation implies that a low false-negative rate almost always
accompanies a high recall. The specificity (SP) provides the ratio of true negatives to total negatives
in the data. The F1-score is useful in determining the classifier’s exactness and robustness. The F1
score, which is a key metric that considers both recall and precision for performance testing, could be
represented as follows. Whereas the AUC stands for area under the receiver operating characteristics.
The AUC curve is a graphical representation or plot of the diagnostic ability of any machine learning
classifier using all thresholds.

4.2 Data Augmentation

To enhance the variance in the training data, the augmentation method is employed in this paper.
In this way, the network becomes invariant to certain transformations. The augmentation is applied
using the following parameters, which are described in Table 1.
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Table 1: Data augmentation with defined parameters

Rotation-range Width_shift-
range

Shear-range Zoom-range Horizontal-flip Vertical-flip

22 0.2 0.4 0.4 True False

4.3 Result Analysis

The experimental results considered both the identification capabilities and the computational
average time needed by a trained network to fully annotate a fundus image by using several
classification-related performance criteria. The average execution time per sample for the FCN
and UNet models varied from 0.364 s to 0.970 s. According to what was seen, the U-Net structure
had the lowest computing cost when compared to the other models, whereas the CNN has a high
computational cost and is more time-consuming. It required 13 s per image. On the other hand, the
UNet model is computationally efficient in retraining too, because just a small amount of new data
is used for retraining. Therefore, the proposed few-shot UNet structure is more computationally
productive than the native UNet model. On 10-fold cross validation set, the proposed SAN-FSL
model loss vs. accuracy graphs are visually displayed in Fig. 5. For prediction stages of MM, the
Fig. 6 represents the confusion metric for classification of four stages of myopic maculopathy (MM).

Figure 5: The proposed model loss versus accuracy based on 10-fold cross validation set

The segmentation results of the MM-infected areas for the three deep learning models with
other state-of-the-art comparisons are shown in Table 5. It is noticed that CNN performed over-
segmentation by including regions that were not MM-infected compared to the proposed model.
However, the FCN outperformed with UNet segmentation. Here, we give a sign of poor segmentation.
Furthermore, the detection failure may be due to no annotation at all or partial annotation of the
area, whereas symptoms can be seen in the fundus image. Hence, if identification is not successful
in earlier images, it can be done in adjacent images. In this way, valuable help can be given to
medical professionals. A model named the few-shot UNet model is proposed, and its performance
is demonstrated in the next paragraphs.
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Figure 6: Confusion metric for classification of four stages of Myopic maculopathy

Tables 2 to 5 illustrates the U-Net model’s performance scores before and after rectification. The
rectified UNet outperformed the original test dataset (the test dataset is reduced by eight images).
Additionally, it was noticed that the deep network kept up with its high-performance metrics on
the training and validation datasets, in this manner, preventing it from overfitting on the enlarged
training data.

Table 2: Classification performance of the proposed method with other machine learning classifier
using 70%–30% train-test partition strategy

Feature extraction Classifier ACC SPE SEN F1-Score

Proposed CNN 95% 95% 95% 96%
LSTM 94% 93% 96% 95%
CNN-LSTM 96% 94% 97% 96%
Semantic Seg (UNet) 95% 94% 97% 96%
Proposed Classifier
(UNet-GAN)

97% 96% 97% 97%

Table 3: Classification performance of the proposed method with other machine learning classifier
using 80%–20% train-test partition strategy

Feature extraction Classifier ACC SPE SEN F1-Score

Proposed CNN 95% 96% 94% 95%
LSTM 94% 95% 94% 95%
CNN-LSTM 96% 95% 96% 96%
Semantic Seg (UNet) 95% 95% 95% 95%
Proposed Classifier
(UNet-GAN)

97% 97% 95% 96%
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Table 4: Classification performance of the proposed method with other machine learning classifier
using 90%–10% train-test partition strategy

Feature extraction Classifier ACC SPE SEN F1-Score

Proposed CNN 96% 94% 96% 96%
LSTM 95% 95% 95% 95%
CNN-LSTM 97% 96% 96% 97%
Semantic Seg (Unet) 96% 96% 96% 96%
Proposed Classifier
(UNet-GAN)

98% 97% 98% 98%

Table 5: Comparison of proposed method with other existing studies

Method Recall Precision F1-score Accuracy

Rauf et al. [8] 94% 94% 94% 94%
Li et al. [9] 82% 97% 89% 88%
Devda et al. [11] 86% 96% 91% 94%
Lu et al. [26] 90% 92% 91% 87%
Du et al. [27] 83% 89% 82% 93%
Zhang et al. [28] 94% 96% 95% 95%
Proposed method 97% 97% 97% 97%

Tables 2–4 represent the classification performance of the Haar-Like feature extraction method
with different ML classifiers in terms of ACC, SEN, SPE, and F1-Score using three different train-test
partition strategies. Our proposed classifier gives us 97%, 97%, and 98% accuracy on three different
splits. It is noteworthy to see other metrics such as specificity, sensitivity, and F1-score. We have noted
that our proposed method outperforms other classifiers, and the performance of these metrics is not
less than 96% on all data splits using our proposed classifier. Fig. 5 depicts the confusion matrix of
the proposed method and other machine learning classifiers for different training test splits. These
confusion matrixes were depicted to evaluate the performance of the different classifiers better. It was
noticed clearly from these confusion matrixes that our proposed classifier consistently performs better
on each training test split strategy. Our proposed technique wrongly classified 5 samples, 20 samples,
and 24 samples using three different train test splits strategies (90%–11%, 80%–20%, and 70%–30%),
which is much less than other classifiers. This further confirms our proposed classifier’s effectiveness
in identifying three stages of MM.

5 Discussions

In this paper, Myopia maculopathy (MM) detection and classification from retinograph images
are proposed by using multi-layer deep-learning and few-short learning (FSL) algorithms. In practice,
numerous diseases, including cataracts, glaucoma, retinal detachment, and myopia maculopathy,
can be followed by myopia maculopathy (MM). Myopia is therefore acknowledged by the World
Health Organization as a substantial contributor to visual impairment if it is not entirely cured.
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The burden of MM on patients, their families, and society is enormous. Currently, there is no
proven treatment for MM. However, prevention therapy can reduce ocular complications for all
myopic patients. The existence of myopic maculopathy was characterized and grouped in view of
the International Photographic classification and grading System for myopic maculopathy (MM) [3].
Myopia is categorized based on severity. In this research, fundus images in category 2 and above are
considered for diagnosing myopic maculopathy.

Many scientific studies have recently been published on using deep learning models for MM-
infected area segmentation. The fully-connected convolution network and the U-shaped convolution
network are very successful in pixel-based segmentation for medical images. As a result, both are
prioritized for segmentation of the PM-infected area in the retinal fundus image. Due to the complexity
of the PM or MM classification and definition systems, the implementation of deep learning (DL)
technologies in detecting pathologic myopia (PM) lesions remains a challenge. However, with adequate
resources such as high-quality PM retinal fundus image datasets and high-standard expert teams,
goals can be met. The goal of this research is to develop and train DLs to identify PM as well as
the categories. In this study, we examine the efficacy of deep learning models for segmenting PM in
fundus images by utilizing semantic adversarial networks (SAN). In contrast to DL models, which
require a large dataset and fixed (static) network weights, a few-shot UNet deep learning approach is
explored for detecting MM regions. A few-shot can train the network model using a minimal number
of samples and enables the network weights to be dynamically adjusted as new samples are introduced
into the UNet. According to experimental findings, the segmentation accuracy for identifying MM-
infected zones (as shown in Fig. 6) has improved. Moreover, few-shot learning entails a generic pool
of algorithms with various modifications depending on the task, degree of user involvement, data
complexity, and so on.

In this case, we used the concept of few-shot learning with a UNet model and GAN for MM image
segmentation and classification as shown in Fig. 7. In addition, the proposed deep model is correctly
classified MM into four classes as visually displayed in Fig. 8. It is an online learning methodology
that uses only a few samples at a time to train. In this methodology, the new fundus images with the
consent of domain experts are fed into the model. Next, the model results are evaluated by experts
in the testing phase to identify the misclassified results. Even though this methodology enhanced
segmentation performance and offered an online learning framework, it needed expert interaction
throughout the testing phase. Therefore, in this approach, human involvement is necessary throughout
the learning phase. Mistakes in the medical experts’ decisions, albeit unlikely, would have resulted in a
decrease in overall network performance.

An identical issue is experienced in the supervised learning paradigm where an incorrectly labeled
dataset is fed to the network. However, the supervised learning ground-truth data was created offline,
so there was ample time to assess the annotation correctness. In the suggested learning approach,
weights are adjusted dynamically, so the expert has no time to reevaluate the decision. Secondly, a
forgetting mechanism is adopted to reduce the training dataset and entertain new training samples.
To understand the image details, it is analyzed in detail from a coarse-grained to a fine-grained level.
In the first step, classification will be done, and MM infection will be checked in the image. In the
second step, the MM area is localized, labeled, and a bound box is drawn around the area of interest.
This will aid professionals in narrowing down the diagnosis. However, bounding boxes are insufficient
for many applications (for example, precise tumor diagnosis). In such situations, we require highly
comprehensive pixel-level information, commonly known as pixel-based segmentation. This is the
target of semantic segmentation. In this scenario, all pixels of an image are labeled with the respective
class. However, semantic segmentation is constrained by time constraints, limited computational
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capabilities, and low false-negative detection limits. In future work, we hope to incorporate some other
segmentation-based networks [42,43] to detect MM regions from fundus images.

Figure 7: A Visual example of proposed model for segmentation of MM-infected region, where figure
(a) shows the input image, (b) preprocessed image, (c) segmented MM-infected region and (d) classify
as category 1: tessellated. Also, the figures (e) represents the input image, (f) preprocessed image,
(g) segmented MM-infected region and (h) classify as category 2: diffuse chorioretinal atrophy

Figure 8: A visual example of proposed model for classification of different stages of myopic
maculopathy with stages such as Category 1: tessellated fundus, Category 2: diffuse chorioretinal
atrophy, Category 3: patchy chorioretinal atrophy, Category 4: macular atrophy from left to right

6 Conclusions

The basic aim of this research is to design and train the DLs to automatically identify myopic
maculopathy (MM) or pathologic myopia (PM) and its categories. In this article, we have developed
a new strength of DL models for the segmentation and detection of PM through semantic adversarial
networks (SAN) and few-short learning (FSL). In this research, a few-shot learning method for the
detection and classification of pathologic myopia (PM) infected areas is presented. This model was
built using the UNet framework. It dynamically updates the network based on a few incoming new
samples. This retraining technique permitted the model to trust however much as could reasonably
be expected of the approaching new incoming samples while minimizing the loss of current under-
standing. The suggested method differs from standard approaches in that it uses an online learning
paradigm, in contrast to the static learning of UNet. This innovative strategy is known as few-shot
learning (FSL) powered by UNet to perform segmentation of PM or MM-infected regions. The
efficiency of the proposed FSL technique in conjunction with a UNet model is demonstrated by
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experimental data. In comparison to deep learning models like CNN, the few-shot learning (FSL)
powered by UNet is a potential artificial intelligence (AI) framework for medical imaging.

Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research
at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work
through Research Partnership Program no. RP-21-07-04.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific Research
at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work
through Research Partnership Program no. RP-21-07-04.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. S. Modjtahedi, R. L. Abbott, D. S. Fong, F. Lum, D. Tan et al., “Reducing the global burden of myopia

by delaying the onset of myopia and reducing myopic progression in children: The academy’s task force on
myopia,” Ophthalmology, vol. 128, no. 6, pp. 816–826, 2021.

[2] P. Sankaridurg, N. Tahhan, H. Kandel, T. Naduvilath, H. Zou et al., “IMI impact of myopia,” Investigative
Ophthalmology & Visual Science, vol. 62, no. 5, pp. 1–12, 2021.

[3] L. Lu, P. Ren, X. Tang, M. Yang, M. Yuan et al., “AI-model for identifying pathologic myopia based on
deep learning algorithms of myopic maculopathy classification and plus lesion detection in fundus images,”
Frontiers in Cell and Developmental Biology, vol. 2841, pp. 1–9, 2021.

[4] F. Jotterand and C. Bosco, “Artificial intelligence in medicine: A sword of damocles?” Journal of Medical
Systems, vol. 46, no. 1, pp. 1–5, 2022.

[5] Y. Li, L. L. Foo, C. W. Wong, J. Li, Q. V. Hoang et al., “Pathologic myopia: Advances in imaging and the
potential role of artificial intelligence,” British Journal of Ophthalmology, pp. 1–23, 2022.

[6] Q. Abbas, I. Qureshi, J. Yan and K. Shaheed, “Machine learning methods for diagnosis of eye-related
diseases: A systematic review study based on ophthalmic imaging modalities,” Archives of Computational
Methods in Engineering, vol. 29, pp. 3861–3918, 2022.

[7] Q. Abbas, M. E. A. Ibrahim and A. Rauf Baig, “Transfer learning-based computer-aided diagnosis system
for predicting grades of diabetic retinopathy,” Computers, Materials & Continua, vol. 71, no. 3, pp. 4573–
4590, 2022.

[8] N. Rauf, S. O. Gilani and A. Waris, “Automatic detection of pathological myopia using machine learning,”
Scientific Reports, vol. 11, no. 1, pp. 1–9, 2021.

[9] J. Li, L. Wang, Y. Gao, Q. Liang, L. Chen et al., “Automated detection of myopic maculopathy from color
fundus photographs using deep convolutional neural networks,” Eye and Vision, vol. 9, no. 1, pp. 1–12,
2022.

[10] R. Lu, W. Zhu, X. Cheng and X. Chen, “Choroidal atrophy segmentation based on deep network with
deep-supervision and EDT-auxiliary-loss,” International Society for Optics and Photonics, vol. 12, no. 10,
pp. 1–10, 2020.

[11] J. Devda and R. Eswari, “Pathological myopia image analysis using deep learning,” Procedia Computer
Science, vol. 165, pp. 239–244, 2019.

[12] C. Zhang, J. Zhao, Z. Zhu, Y. Li, K. Li et al., “Applications of artificial intelligence in myopia: Current
and future directions,” Frontiers in Medicine, vol. 9, pp. 1–22, 2022.

[13] Z. Zhang, Z. Ji, Q. Chen, S. Yuan and W. Fan, “Joint optimization of CycleGAN and CNN classifier for
detection and localization of retinal pathologies on color fundus photographs,” IEEE Journal of Biomedical
and Health Informatics, vol. 26, no. 1, pp. 115–126, 2021.



1498 CMC, 2023, vol.75, no.1

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley et al., “Generative adversarial
networks,” Communications of the ACM, vol. 22, no. 63, pp. 139–44, 2020.

[15] Q. Abbas, I. Qureshi and M. E. Ibrahim, “An automatic detection and classification system of five stages
for hypertensive retinopathy using semantic and instance segmentation in DenseNet architecture,” Sensors,
vol. 21, no. 20, pp. 1–20, 2021.

[16] L. Sun, C. Li, X. Ding, Y. Huang, Z. Chen et al., “Few-shot medical image segmentation using a global
correlation network with discriminative embedding,”Computers in Biology and Medicine, vol. 140, pp. 1–21,
2022.

[17] Y. Tian and S. Fu, “A descriptive framework for the field of deep learning applications in medical images,”
Knowledge-Based Systems, vol. 210, pp. 1–14, 2020.

[18] L. R. Ren, J. X. Liu, Y. L. Gao, X. Z. Kong and C. H. Zheng, “Kernel risk-sensitive loss based hyper-
graph regularized robust extreme learning machine and its semi-supervised extension for classification,”
Knowledge-Based Systems, vol. 227, no. 107226, pp. 1–14, 2021.

[19] S. Irtaza Haider, K. Aurangzeb and M. Alhussein, “Modified anam-net based lightweight deep learning
model for retinal vessel segmentation,” Computers, Materials & Continua, vol. 73, no. 1, pp. 1501–1526,
2022.

[20] A. Deepak Kumar and T. Sasipraba, “Multilevel augmentation for identifying thin vessels in diabetic
retinopathy using unet model,” Intelligent Automation & Soft Computing, vol. 35, no. 2, pp. 2273–2288,
2023.

[21] H. Lu, S. Tian, L. Yu, L. Liu, J. Cheng et al., “DCACNet: Dual context aggregation and attention-
guided cross deconvolution network for medical image segmentation,” Computer Methods and Programs
in Biomedicine, vol. 214, pp. 1–12, 2022.

[22] N. Gao, H. Xue, W. Shao, S. Zhao, K. Qin et al., “Generative adversarial networks for spatio-temporal
data: A survey,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 2, pp. 1–25,
2022.

[23] A. You, J. K. Kim, I. H. Ryu and T. K. Yoo, “Application of generative adversarial networks (GAN) for
ophthalmology image domains: A survey,” Eye and Vision, vol. 9, no. 1, pp. 1–19, 2022.

[24] B. Zhan, J. Xiao, C. Cao, X. Peng, C. Zu et al., “Multi-constraint generative adversarial network for dose
prediction in radiotherapy,” Medical Image Analysis, vol. 77, pp. 1–20, 2022.

[25] R. Hemelings, B. Elen, M. B. Blaschko, J. Jacob, I. Stalmans et al., “Pathological myopia classification with
simultaneous lesion segmentation using deep learning,” Computer Methods and Programs in Biomedicine,
vol. 199, pp. 1–18, 2021.

[26] L. Lu, E. Zhou, W. Yu, B. Chen, P. Ren et al., “Development of deep learning-based detecting systems for
pathologic myopia using retinal fundus images,” Communications Biology, vol. 4, no. 1, pp. 1–8, 2021.

[27] R. Du, S. Xie, Y. Fang, T. I. Yokoi, M. Moriyama et al., “Deep learning approach for automated detection
of myopic maculopathy and pathologic myopia in fundus images,” Ophthalmology Retina, vol. 5, no. 12,
pp. 1235–1244, 2021.

[28] W. Zhang, X. Zhao, Y. Chen, J. Zhong and Z. Yi, “DeepUWF: An automated ultra-wide-field fundus
screening system via deep learning,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 8, pp.
2988–2996, 2022.

[29] Z. Shi, T. Wang, Z. Huang, F. Xie and G. Song, “A method for the automatic detection of myopia in
optos fundus images based on deep learning,” International Journal for Numerical Methods in Biomedical
Engineering, vol. 37, no. 6, pp. 1–10, 2021.

[30] C. R. Freire, J. C. D. C. Moura, D. M. D. S. Barros and R. A. D. M. Valentim, “Automatic lesion
segmentation and pathological myopia classification in fundus images,” ArXiv Preprint, pp. 1–15, 2020.

[31] S. Jia, S. Jiang, Z. Lin, N. Li, M. Xu et al., “A survey: Deep learning for hyperspectral image classification
with few labeled samples,” Neurocomputing, vol. 448, pp. 179–204, 2021.

[32] A. Voulodimos, E. Protopapadakis, I. Katsamenis, A. Doulamis and N. Doulamis, “A Few-shot U-net
deep learning model for COVID-19 infected area segmentation in CT images,” Sensors, vol. 21, no. 6, pp.
1–21, 2021.



CMC, 2023, vol.75, no.1 1499

[33] Y. Feng, J. Gao and C. Xu, “Learning dual-routing capsule graph neural network for few-shot video
classification,” IEEE Transactions on Multimedia, pp. 1–12, 2022.

[34] M. Abdelaziz and Z. Zhang, “Multi-scale kronecker-product relation networks for few-shot learning,”
Multimedia Tools and Applications, vol. 81, pp. 6703–6722, 2022.

[35] Q. Zhu, Q. Mao, H. Jia, O. E. N. Noi and J. Tu, “Convolutional relation network for facial expression
recognition in the wild with few-shot learning,” Expert Systems with Applications, vol. 189, pp. 1–20, 2022.

[36] P. Korshunov and S. Marcel, “Improving generalization of deepfake detection with data farming and few-
shot learning,” IEEE Transactions on Biometrics, Behavior, and Identity Science, pp. 1–21, 2022.

[37] W. Li, Y. Gao, M. Zhang, R. Tao and Q. Du, “Asymmetric feature fusion network for hyperspectral and
SAR image classification,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2022.

[38] R. Singh, V. Bharti, V. Purohit, A. Kumar, A. K. Singh et al., “MetaMed: Few-shot medical image
classification using gradient-based meta-learning,” Pattern Recognition, vol. 120, pp. 1–15, 2021.

[39] S. Y. Wang, W. S. Liao, L. C. Hsieh, Y. Y. Chen and W. H. Hsu, “Learning by expansion: Exploiting social
media for image classification with few training examples,” Neurocomputing, vol. 95, pp. 117–125, 2012.

[40] Y. Xian, B. Korbar, M. Douze, B. Schiele, Z. Akata et al., “Generalized many-way few-shot video
classification,” in Proc. of European Conf. on Computer Vision, Glasgow, UK, Springer, Cham, pp. 111–
127, 2020.

[41] A. Javaria, A. A. Muhammad and M. Sharif, “Fused information of DeepLabv3+ and transfer learning
model for semantic segmentation and rich features selection using equilibrium optimizer (EO) for classifi-
cation of NPDR lesions,” Knowledge-Based Systems, vol. 249, pp. 1–12, 2022.

[42] W. Sun, G. Z. Dai, X. R. Zhang, X. Z. He and X. Chen, “TBE-Net: A three-branch embedding network with
part-aware ability and feature complementary learning for vehicle re-identification,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 9, pp. 14557–14569, 2022.

[43] W. Sun, L. Dai, X. R. Zhang, P. S. Chang and X. Z. He, “RSOD: Real-time small object detection algorithm
in UAV-based traffic monitoring,” Applied Intelligence, vol. 52, no. 8, pp. 8448–8463, 2022.


	A Semantic Adversarial Network for Detection and Classification of Myopic Maculopathy
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	4 Experiment and Results
	5 Discussions
	6 Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


