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Abstract: 5G use cases, for example enhanced mobile broadband (eMBB),
massive machine-type communications (mMTC), and an ultra-reliable low
latency communication (URLLC), need a network architecture capable of
sustaining stringent latency and bandwidth requirements; thus, it should be
extremely flexible and dynamic. Slicing enables service providers to develop
various network slice architectures. As users travel from one coverage region to
another area, the call must be routed to a slice that meets the same or different
expectations. This research aims to develop and evaluate an algorithm to
make handover decisions appearing in 5G sliced networks. Rules of thumb
which indicates the accuracy regarding the training data classification schemes
within machine learning should be considered for validation and selection of
the appropriate machine learning strategies. Therefore, this study discusses
the network model’s design and implementation of self-optimization Fuzzy Q-
learning of the decision-making algorithm for slice handover. The algorithm’s
performance is assessed by means of connection-level metrics considering the
Quality of Service (QoS), specifically the probability of the new call to be
blocked and the probability of a handoff call being dropped. Hence, within
the network model, the call admission control (AC) method is modeled by
leveraging supervised learning algorithm as prior knowledge of additional
capacity. Moreover, to mitigate high complexity, the integration of fuzzy logic
as well as Fuzzy Q-Learning is used to discretize state and the corresponding
action spaces. The results generated from our proposal surpass the traditional
methods without the use of supervised learning and fuzzy-Q learning.
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1 Introduction

Since the evolution of the first generation (1G) wireless technology, there has been a dramatic
growth in the telecommunications business. The industry’s expansion can be linked to a rise in need
for network service industries from a variety of consumers. These services demand that network
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providers maintain a high level of QoS for users while efficiently utilizing available network resources.
5G wireless networks are expected to address users’ ever-increasing and diverse requirements. To
address customers’ varying needs, 5G wireless networks leverage a variety of technologies, including
Network Function Virtualization (NFV), Network Slicing, and Software Defined Network (SDN).
Slicing of the network is the process of logically dividing the physical infrastructure or resources
into multiple separate virtual networks customized to meet specific users’ unique requirements.
While the terminology slicing, virtualization, cloud, edge computing, and programmable network
are sometimes used interchangeably, their combination provides numerous opportunities for mobile
network operators (MNOs) and service providers. It enables them to rapidly deploy new services, scale
and adapt existing services to meet their needs, and serve as the foundation for an open ecosystem [1].

Mobility management refers to the capability of a call to remain connected while it is shifted from
one cell to another. When a tenant moves from one area to other during a call, then, it is responsibility
of the network to sustain the call while it is transferred after one coverage cell to the other. As soon as a
call is relocated to an alternate cell which uses a similar network technology as utilized by the original,
the procedure is called horizontal handoff. In contrast, when a call is transported to the cell that uses a
separate technology, the procedure is called vertical handover. Inside the 5G networks, the calls will be
able to move between slices that strengthen the identical use cases, revealed when intra-slice handover,
or between slices that support distinct scenarios, known to be the inter-slice handover. In addition, 5G
networks must include efficient algorithms that minimize call blocking or termination during handoffs
and minimize the number of handoffs conducted to provide seamless connectivity during handover.
Vertical handover algorithms in 5G networks incorporate several bandwidth reservation strategies to
prioritize handoff calls and maintain acceptable QoS levels [2,3].

Through the introduction of 5G networks, the customers number requesting various network
services is likely to grow tremendously. As the users of the network increases, then extra calls are
expected to be blocked (ignored) or dropped when users change from one coverage region to another,
necessitating the implementation of effective algorithms for call admission control to minimize
the number of dropped or blocked calls and ensure that network resources are efficiently utilized.
Additionally, because network users are more tolerant of dropped handoff calls, it is necessary
to incorporate handoff call prioritization schemes into the call admission management algorithm.
Further, the consequences of subscriber mobility at networks as well as handoff call prioritization
must be investigated. 5G networks must include efficient algorithms that minimize call blocking or
termination during handoffs and minimize the number of handoffs conducted to provide seamless
connectivity during a handover. Vertical handover algorithms in 5G networks incorporate several
bandwidth reservation strategies to prioritize handoff calls and maintain acceptable QoS levels [3].

In this paper, we investigate how to develop and evaluate an algorithm aimed at making handover
decisions in 5G sliced networks. Ground truth that signifies the training sets accuracy classification
approaches in the field of machine learning will be studied to check along with the selection of a
most suitable technique. Therefore, we discuss the network model’s design and implementation of
self-optimization Fuzzy Q-learning of the decision-making algorithm for slice handover. The fuzzy
Q-Learning algorithm integrates action-state estimation coupled with action selection memory of
into a single framework. By consolidating the state-action calculation and policy collection memory
constructs into one frame, Fuzzy Q-Learning’s exploration activity is simpler. Consequently, the
algorithm is better appropriate for planning issues such as multi-stage decision-making. The main
contributions of our proposed scheme are as following:
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• Leveraging supervised learning algorithm as prior knowledge of additional capacity, �C(s,n).
The knowledge enables the estimation of the limit of �C(s,n) along with its general behavior
under varying traffic load conditions.

• Leads to the objective to make the AC method of Q-learning learning easier to implement by
encoded simpler the action selection in the term of Fuzzy logic management rules. The prior
learning is for state analysis and evaluation, which can be revealed via fuzzy rules to guide the
reinforcement learning.

• We have compared the proposed fuzzy Q-learning methodology with the conventional approach
with respect to the probability of blocking via utilizing an exploitation policy.

• Finally, the results are evaluated for probability in the blocking in the three real-Internet
topologies such as Abilene, Substrate, and USnet.

2 Literature Review

Studies have been undertaken on the Admission Control issue in 5G communication. Han et al. [4]
present a utility-focused, multi-service approach to network slicing centred on Queuing Theory
towards maximize network functionality. This approach accounts for impatient clients by utilizing
distinct queues for two particular sorts of requests. Raza et al. [5] suggest an AC process that uses
Big Data for traffic forecasting to boost public services providers’ profits. This methodology accepts
slice requests in case when there is no risk of service interruption. Moreover, Salvat et al. [6] propose
a heuristic-based admission control technique for maximizing user QoE. This strategy decides the
acceptance for the slice requests dependent on the Radio Access Network (RAN) minimum as well as
maximum rates of data rates along with the provided resources. In addition, Challa et al. [7] present
an AC prototypical for optimizing resource monetization based on a formulation of the knapsack
issue. Bega et al. [8] present a semi-Markov judgment process-based analytical model and a Q-learning
related algorithm for performing AC on individual requests for slicing. Raza et al. [5] give an AC
method based on reinforcement learning to maximize provider profit; this approach considers the
flexibility of the 5G RAN after that prioritizes requests through varying latency needs and predicted
profits. The proposed solution uses a Q-learning agent to determine which slices should be accepted
to maximize income. Bega et al. [9] presented a DRL-based method for performing AC on individual
RAN slicing that requests to optimize the infrastructure provider’s monetization.

Within 3GPP, we can relate to the current work that discusses the network slicing which is a
significant element of 5G framework layout. To illustrate machine learning utilization, the works
in [10] discuss the improvements in cognitive abilities. Machine learning entails an ability to adapt
according to a complete infrastructure which is based upon the historical data, that ensures whether
network management is able to monitor the key network parameters in 5G, and recognize configurable
metrics, along with changing optimally their values for achieving the superior network outline, shown
via a combination of key performance parameter indicators. Lastly, with the next generation for
management of network and a key engine for 5G, and an introduction with cognitive network
administration. There are also no strict specifications associated with the regular eMBB, mMTC, or
URLLC slice of traffic types in [11]. The requirements are defined in a highly generic manner for the
three basic types of traffic, eMBB, URLLC, and mMTC. As the number of different slices handled
in one network is not constrained theoretically, the author restricts the number of different types
of tenants (which corresponds to multiple interpretations of slices) to three types, primarily mMTC,
eMBB, and URLLC, to make the study more tractable.
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Salvat et al. offer a handover approach based on reinforcement learning in [6]. The method services
a centralized reinforcement learning representative to manage network measurements from UEs and to
use the data towards govern an optimal handover selection to optimize long-term utility. The proposed
method is assessed and compared to traditional handover algorithms, and the outcomes indicate an
increase of at least 20% in the proficiency of making the accurate handover decision. More and more,
Chen et al. [12] recommend a Markov chain standard and sensitivity evaluation-based and threshold-
based admission control approach for calling. The sensitivity analysis is used to constrain the number
of recalculations conducted by the algorithm, altogether with Markov chain conjunction is utilized to
derive the optimal policy.

3 Motivation and Problem Statement

Machine Learning (ML) is intended for a subset of applications for which it is impossible to create
explicit algorithms with the desired performance. Learning methods are required when knowledge (like
human skill) does not exist or is difficult to obtain. Nonetheless, ML algorithms can utilize training
data or prior knowledge to construct useful models for a variety of applications. Several artificial
intelligence strategies discussed to construct a self-optimizing AC for 5G. The proposed idea come
under the well-known AI subject of machine learning, characterized by the emergence of two distinct
learning algorithms.

Fuzzy logic enables the adoption of human awareness as if-then inference guidelines. A particular
fuzzy if-then principle is expressed as follows: “If x equals to A, next y is equal of B”, where A along
with B represent the linguistic principles (such as low, or medium, or high) specified with fuzzy sets X
as well as Y, correspondingly. Input as well as output sharp values (for example the quality of signal
and handoff choice) are denoted by x in addition to y. The if-condition for the rule “x is denoted with
A” is also referred to as the rule’s antecedent, whereas the then-part of the rule “y = B” is known as the
rule’s consequent. The antecedent, p, indicates the consequent, i.e., q, for an if-then rule. If p condition
is true in binary logic, then q will also be true (p → q). However, according to fuzzy logic, when p will
be true to certain extent of association, then q is too considered as true up to same degree [13].

The final phase of fuzzy interpretation process is defuzzification, which defines a single specific
value as of a fuzzy output collection. An approach based on fuzzy logic appears ideal for managing the
imprecision of real cellular networks (wireless) [14]. In fact, fuzzy system strategies have recently been
presented as a means of managing handoff assessment algorithms. For example, the study illustrated
in [15] provides a handoff choice method established on type-2 and fuzzy logic 3 that considers a
range of access network along with features for user and chooses the network beside a highest value
of satisfaction.

Moreover, a major primary limitation of Q-Learning is the inherent time needed, which is
usually relatively long. Throughout each optimization iteration, the agent takes action to improve
the correctness of the Q-estimates. An initial default rule should be founded (e.g., choose the random
movements). The agent later sees this policy till it congregates with optimal Q∗ value corresponding to
the state and its action. Depending upon the intricacy of the optimization situation, MNO expectations
for higher convergence times may not be met.

In addition, it may be observed that the rules made by a for fuzzy logic may not be best possible.
An optimization technique must be implemented in order to construct a precise knowledge base.
Hence, this research studies self-optimization which focused on aspects concerning admission control.
However, in certain applications for optimization, the continuous states-action spaces can result in
highly complicated circumstances. To alleviate this issue, the integration of fuzzy rationality with Fuzzy
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Q-Learning is applied to discretize state as well as resultant action spaces. Consequently, instead of
getting a vague number for states and their actions, the fuzzy logic restricts these numbers based on
the requirements of each application exclusive of compromising time of convergence or state accuracy.

Q-learning based admission control can map every single state to the ideal action. Comparably,
the Fuzzy Logic Control (FLC) can map every fuzzy set to the optimal action. Fig. 3 depicts a
potential Learning-based optimization method, the agent of which executes the learning technique,
where the instant reward might be any conventional KPI, for instance the ratio for call blocking or
coverage of cell-edge, subject on the intended application. The basic Reinforcement Learning (RL)
method is characterized as a Markov Decision Process (MDP) with state, action, and reward as its
three components. The current environment is represented as a state st at every time slot t. The agent
takes action at based on the state and a policy. The agent then receives reward rt, and the next state
st+1 can be observed. The purpose of the RL agent remains to learn such a policy which maximizes
the final cumulative reward. In this scheme, there is an additional component, critic that is used for
evaluating the decisions by reward received and reward expectation. An agent attempts to learn as of
its environment i.e., the optimal actions set to optimize the intended cumulative rewards as well as the
performance of the overall system.

Rk = rk + γ rk+1 + γ 2rk+2 + γ 3rk+3 . . . =
∑∞

t=0
γ trt+k (1)

where Rk represents the collective reward by k-th time moment (i.e., iteration). rt + k represents the
immediate reward received for doing an action on the iteration (t + k). γ remains the discount
component, with values approaching to 0 indicating that an agent attempts to maximize immediate
benefits and values near to 1 showing that long-term high rewards are considered.

4 Proposed Idea
4.1 System Model
4.1.1 Supervised Learning

The scenario assumes that there are N cells designated n = 1 . . . , N that are shared with S tenants
labeled s = 1 . . . , S. The total of Resource Blocks (RB) required by new Radio Access Bearers (RAB)
and already declared RABs does not go beyond the amount of RBs available within a cell ρ(n).
Therefore, the capability check requirement estimates if the calculated cell has satisfactory physical
resources on the way to admit another RAB, which is expressed as given below:∑S

s′=1
ρG (s′, n) + �ρ ≤ ρ(n) αth(n) (2)

where ρG (s′, n) shows the average quantity of RBs for the n-th number cell designated to RABs for
the s-th user. �ρ is the approximate RBs needed for the newly allowed RAB that is calculated with
respect to the mandatory bit rate Rreq and the probable bit rate according to RB š(n).

�ρ = Rreq

š(n)
(3)

An upper limit for the RBs used by a tenant’s RABs in accordance with the ability stated in an
SLA. For this instance, the capacity stands determined via a Scenario-Aggregated-Guaranteed-Bit-
Rate i.e., (SAGBR), that establishes the guaranteed bit rate intended for the total amount of RABs
for that tenant. The insignificant capacity part regarding tenant s, along with C(s), can be defined as
a ratio of the SAGBR(s) around all cells to the grouped SAGBR of whole tenants:
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C(s) = SAGBR(s)∑S

s′=1 SAGBR(s′)
(4)

The per-tenant volume sharing check requirement can be stated: ρG (s, n) + �ρ ≤ ρ (n) αth(n).
(C (s) + �C (s, n)). As, the previous condition assures that s-th tenant should be permitted to utilize
a fraction for the RBs appearing in the n-th region of a cell specified by C(s), and also an additional
label �C(s,n) that considers any remaining capacity received from the remaining tenants.

The development of supervised learning technique to exploit the learning of �C(s,n) takes two
primary goals. First, the experience itself allow the determination of the limit of �C(s,n), in addition
to its general behavior in various traffic aware situations. This indicates the second objective, which is
to make the AC method for unsupervised learning easier to implement. As there are four variables to
optimize themselves (that are �C(1, 1), with �C(1, 2), combined with �C(2, 1), and �C(2, 2)). Hence,
the time of converge for an optimal solution will possibly be excessively long. Consequently, supervised
learning can be applied to variables �C(s, n) for the sake of simplification, and the remaining will be
preferred for optimization.

As a supervised learning technique applicable to the scale of this act. Therefore, an Adaptive-
Neuro-Fuzzy-Inference-System (ANFIS) is planned. ANFIS is a type of ANN which contains a
Takagi–Sugeno fuzzy interpretation engine, that only provides one single output (that is related to
�C (s, n)) after the defuzzification stage. On the other hand, four inputs are considered, each of which
corresponds to the suggested loads for each tenant within every cell, as extracted after the simulator.
In addition, the fuzzy inference system (FIS) will be combine both grid panel along with subtractive
clustering. Consider the most recent algorithm, in that each input contains as possible membership
functions regarded as a number of discovered clusters. Fig. 1 identifies 10 clusters as an example,
although a greater or fewer number of clusters could be detected depending on the trade-off among
training error as well as training duration. The overall anticipated learning scheme is demonstrated in
Fig. 2.

Figure 1: Subtractive clustering technique

After that, once the input/output set of data gets trained using the aforementioned method,
experience of �C (s, n) will be accessible to exactly exploit untaught input data. The subsequent phase
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will be to extract the ideal value i.e., �C (s, n) for a given traffic load condition in every optimization
rehearsal for an unsupervised learning system, leaving a specific �C(s, n), that will be self-optimized
for ease purpose.

Figure 2: Supervised learning policy designed to exploit �C(s, n) knowledge

4.1.2 Fuzzy Q-Learning

To attain self-optimization, each disseminated agent should understand which parameter tuning
action is to take based on the current process state. Herein, the lines presented below provide an
overview of the fundamentals for fuzzy Q-learning.

In brief, Q-learning provides a reinforcement learning strategy whose purpose is to increase an
cumulative reward through environmental activities. Q-learning incrementally increases the size of a
Q-function, revealed as Q(s, a), via calculating a discounted rewards in direction of future which are
associated with actions among particular states s. This paper considers a fuzzy variant of Q-learning
to reap the advantages of fuzzification. Fundamentally, fuzzy learning-based Q learning enables the
discretization of state action spaces, avoiding the need to deal with continuous and consequently
complex regions.

Fuzzy sets consist of components with varying degrees membership. In traditional set theory,
a membership of items in the set is evaluated in terms of binary. In contrast, the fuzzy set theory
allows for a detailed evaluation of an element’s set membership. A membership function expresses
a statement’s degree for truth, that identifies the extent with which a statement is true. Moreover,
the membership functions permit limited membership within a set. Typically, the mapping for input
values to membership functions have being called “fuzzification.” In addition, Membership functions
will be coupled with fuzzy “if... then” procedures to conclude, as in “if x will be larger and y is smaller,
then z should be normal,” where “high/large,” “low,” as well as “normal” are considered membership
functions for the identical fuzzy subsets.
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4.1.3 Design and Optimization of the Fuzzy Sets

In this work, fuzzy sets can be viewed as a combination of states obtained by clustering the states,
meaning that any state S can be categorized into a fuzzy set A: S ∈ A. Each state is assigned to
one action a under the control of a neural network, S → a. The mapping rules are reasonable if the
neural network is well-trained, hence it can be argued that the fuzzy logic controller uses the following
mapping: A → a.

If states s1 and s2 and actions a1 and a2 exist, the following conditions are satisfied:

S1 �= S2 (5)

a1 �= a2

The states s1 and s2 both belong to fuzzy set A: S1, S2 ∈ A. And based on the rules of neural
network mapping:

S1 → a1 (6)

S2 → a2

There will be two distinct actions a1 and a2 for the same fuzzy set A in this circumstance. However,
the fuzzy logic controller’s mapping rules must be uniquely determined. We define the function of FLC
π and initialize it with zeros to address this problem:

π(A, a) = 0 ∀A, a (7)

The value corresponding to the function is updated using the following formula:

π(A, a1) ← π (A, a1) + 1 (8)

π(A, a2) ← π (A, a2) + 1

Thus, we employ a neural network for accomplishing a task with constantly update function π

corresponding to the subsequent mapping rules, causing in the FLC with nearly identical functionality
to the neural network. To make such rules which FLC learns after neural network as accurate as
feasible, we also create a state s0 in the actual process. If the task can be performed under a control
of the neural network, reset the preliminary state to s0; restart the control procedure, and update the
function π ; otherwise, establish a new state.

Furthermore, the self-optimization practice’s architecture is illustrated in Fig. 3, which is undoubt-
edly distributed. Moreover the optimizer Q-Learning unit, that fill in the Q-function in response to
earned reward, the fuzzy reasoning controller monitors a set of states from environment in the form
of inputs (i.e., recommended traffic loads altogether with �C(s, 1)) and a set of actions considered
outputs (i.e., increase of �C(s, 1)). Firstly, it was intended to self-optimize �C(s, 1) and �C(s, 2),
whereas supervised learning was used to optimize �C(s, 2). Nonetheless, due to the enormous time
required for optimization, it was agreed for leaving �C(1, 1) as unique variable for self-optimization.

Let’s start by identifying the notion of q-value. With each FIS rule, a[i, j] is called as the jth action
for rule i as well as q[i, j] is defined as its accompanying q-value. i.e., quality value. As a result, the
greater the value for q[i, j], the greater the trust in the specified tuning action corresponding to that
value. The following easy requirement is used for initialize of q-values in an algorithm:

q[i, j] = 0, 1 ≤ i ≤ N and 1 ≤ j ≤ A (9)
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Figure 3: Architecture as well as proposed system model

Herein, the q[i, j] is regarded as the associated value to rule i along with action j. Similarly, N is
considered to be the total mark for rules in conjunction with A which is s the number for available
actions according to rules.

For each distinct activated rule, the action selection is performed following by exploration policy.
In addition, the agent must select those actions that have generated highest rewards previously.
Though, the agent discovers such action’s accomplishments by attempting the actions which were
not selected in advance. After that, further exploitation phase, along with exploration policy must be
considered to track an unfamiliar actions who bear maximum sustainable reward.

The CAC algorithm is in charge of determining whether a call should be accepted or rejected.
A call is accepted into a resource-constrained network if and only if the slice contains sufficient
bandwidth to allow the call without affecting the network’s agreements to other ongoing calls.

A = {
a = {

an
1, . . . , an

i , ah
1, . . . , ah

i

}}
(10)

With an
i representing the action taken upon arrival of new calls and ah

i representing the action
taken upon arrival of handoff calls.

ai =

⎧⎪⎨
⎪⎩

0, reject call
1, accept call into slice 1
U , accept call into slice U

(11)

where ai is regarded an action for rule i. Normally, during the optimization process, is not fixed.
Instead, it gradually decreases to values near to zero, indicating that the evaluation of prospective
actions reduces. The subsequent determinant of the global action is as under:

a(t) =
∑N

i=1
αi (s (t)) . ai(t) (12)
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where a is the tuning action and αi (s (t)) is the activation function for rule i. In other words, αi (s (t))
reflects the factual accuracy of an input state s(t) in the t-th iteration.

αi (s (t)) =
∏M

i=1
μi,j(xj(t)) (13)

where M represents the FIS inputs. Moreover, μi,j(xj (t)) represents the membership function for the
i-th rule and j-th input. For example, if we consider the first rule for all four inputs are labeled as low
(L), and the activation function can be written as following:

αi (s (t)) = μ11 (x1 (t)) . μ12 (x2 (t)) . μ13 (x3 (t)) . μ14 (x4 (t)) (14)

The Q-function can be determined using the activation functions and q-values of the particular
rules:

Q(s (t) , a(t)) =
∑N

i=1
αi (s (t)) . q[i, ai] (15)

where Q(s(t), a(t)) is the Q-function value for state s with action a. The subsequent phase consists
of allowing the system to expand to the subsequent state s(t + 1). On this stage, r(t + 1) is observed
as a reward:

r (t) = r1 (t) + r2 (t) + k1 (16)

where r(t) represents the overall reinforcement signal, r1 (t) and r2 (t) represent the reinforcement
signal contributions of both tenants along the two cells, and k1 is a constant parameter. In particular,
ri (t) signals are calculated as follows:

ri (t) = k2. log
(

1
(Pblock(Ti) + k3).1000

+ 1
)

(17)

where k2 and k3 are constant values and Pblock(Ti) is the tenant blocking probability for the scenario.
Table 1 provides the parameters required to process the support signal. Furthermore, when blocking
probability related with both tenants is zero, the maximum reward is obtained (which is 1).

Table 1: Network topology

Network topology Nodes Links Cores Edges

Abilene 11 14 3 8
USnet 24 43 6 17
Substrate 16 28 4 12

After observing the reward of the later state r(t + 1), while the value for the new is denoted by
Yt (s (t + 1)) can be calculated as follows:

Yt (s (t + 1)) =
∑N

i=1
αi (s (t + 1)) . maxkq[i, ak] (18)

The error signal between two sequential Q-functions will be utilized to update the q-values. It is
expressed by:

�Q = r (t + 1) + γ Yt (s (t + 1)) − Q(s (t) , a (t)) (19)
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where Q represents the error signal, r(t + 1) represents the reward, γ represents the discount factor,
and Q(s(t), a(t)) represents the previous state’s Q-function. γ is set to 0.7. Then, the q-values can be
updated using a standard gradient descent algorithm:

q [i, ai] = q [i, ai] + η. �Q .αi(s (t)) (20)

where η is the learning rate, and its value is set to 0.5, indicating that older knowledge is given equal
weight to new information. The aforementioned practice is repeated starting from action assortment
in anticipation of convergence is achieved. Algorithm 1 provides a summary of the algorithm discussed
above.

Algorithm 1: Self-Optimization Fuzzy Q-Learning Algorithm for Admission Control
1. exploit the knowledge for �C(s,n) leveraging Supervised Learning
2. Initialize of q-values: For instance: q[i, j] = 0, 1 ≤ i ≤ N as well as 1 ≤ j ≤ A
3. Select action of each rule which is activated
4. Compute a global action: Such as a(t) = ∑N

i=1 αi (s (t)) . ai(t)
5. Estimate the Q-function using the existing q-values with the degree of rule authenticity:

Q(s (t) , a(t)) =
∑N

i=1
αi (s (t)) . q [i, ai]

6. Allow the system to continue to the next state, s(t + 1).
7. Observe the reward or reinforcement signal, that is r(t + 1), and calculate the value of the new

state:
Yt (s (t + 1)) =

∑N

i=1
αi (s (t + 1)) . maxkq[i, ak]

8. Calculate the error: �Q = r (t + 1) + γ Yt (s (t + 1)) − Q(s (t) , a (t))
9. Update q-value: According to q [i, ai] = q [i, ai] + η. �Q . αi(s (t))
10. Repeat the process starting from step 2 until convergence is obtained for the new current state.

4.2 Slicing Scenario
4.2.1 Assumptions

To implement the network model, some assumptions must be made. There are:

• The MVNO prioritizes slices equally while allocating resources to maximize radio resource
utilization.

• Priority is assigned to users at each given slice according to their time for arrival.
• Because the UEs mobility is not present. Hence, mMTC slice is unable to assist handoff calls.
• In uRLLC and eMBB, handoff calls get priority as compared with new calls.
• In a slice, users are spread uniformly.

The slices are known as mMTC, eMBB, uRLLC, or else slice 1, slice 2, and slice 3 in turn. If a call
that is moved to another slice which supports a different use case, for example, when an eMBB call is
assigned to an uRLLC slice, this is referred to as inter-slice handover. In another case, when a call is
transferred to a slice that supports the same use case, for example, when an mMTC call is assigned to
an mMTC slice, this kind of handover is known as intra-slice. Due to the fact that calls on behalf of
uRLLC slices contains severe admission conditions, they cannot be allowed to any slices. Calls that
are directed to eMBB have a demand that the uRLLC slice can meet, and hence can be assigned to an
uRLLC slice. Because the conditions for mMTC slices are flexible and are likely met by both eMBB
as well as uRLLC slices, they be capable of assigning to either slice. Calls are conceded to a slice when
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only if the slice has sufficient radio resources to meet the call’s constraints without interfering with
other accepted calls; else, the call is likely transferred to another cell slice, blocked, or dropped. The
use case of the sliced handover concept describes in Fig. 4.

Figure 4: Use case of slice handover

Additionally, mMTC slice calls can be permitted into the uRLLC and eMBB slices, as the mMTC
slice calls’ QoS requirements can be met in both the eMBB and uRLLC slices. eMBB slice calls can
be permitted in the uRLLC slice since the uRLLC slice can satisfy its QoS requirements. Because no
slice can satisfy the uRLLC slice’s QoS requirements, uRLLC slice calls cannot be handed over to any
slice. There are some slice parameters are described in this work:

• Threshold—Because wireless network users are more biased of stopped handoff calls compared
with blocked calls (new), it is necessary to assign handoff calls a greater priority. To ensure that
consumers’ QoS needs are met, a threshold will be established to prioritize handoff calls across
new calls. The threshold can be static or dynamically set inside a slice. Because uRLLC and
eMBB slices allow handoff calls, threshold values are set. A fixed threshold is applied in this
research. When the slice is initialized during simulation, threshold value is provided as a metric.

• Capacity—The term slice capacity refers to the maximum quantity of radio resources that a
slice may provide. The MVNO’s overall capacity equals the sum of its 3 slices. The slice capacity
changes according to the number of resources requested by the calls.

• Basic Bandwidth Unit (BBU)—It explains the bandwidth conditions for calls. Several calls
demanding services since slices have distinct BBU requirements due to their requirements.
Because all bandwidth given by a slice is similar to its capacity. Therefore, handoff calls as
well as new call are accepted only when there is sufficient bandwidth available.

• Arrival Rate—The average calls that arrive in an available network is referred to as the call
arrival rate. The rate with which calls arrive is determined by the poison distribution.
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4.2.2 Experiment Setup

The architectural modules developed using Matlab 2021a and Python 3.8. The substrate network
topology is generated by the simulator using Omnet++. Various topologies were utilized in the
experiments, such as Abilene, US_Net, and 16-nodes networks topology. In this study, results are
presented for an Abilene architecture consisting of 3 core nodes and 8 outer nodes with corresponding
capacities of 300 and 100 processing units. Each link has a capacity of 100 bandwidth units. This
topology’s results were comparable to those of the other topologies used in the performance evaluation.
The bandwidth requirements for the virtual links in the eMBB, URLLC, and mMTC graphs are
3, 2, and 1, respectively. The details of the simulation topologies are given in Table 2. In addition,
the simulation parameters and associated values utilized throughout the studies are summarized in
Tables 1 and 2.

Table 2: Simulation parameters

Parameter Value Parameter Value

Network topology Abilene; USnet;
Substrate 16-node

Minimum distance
between UE

10 m

Capacity of nodes (units) Core: 300; edge: 100 Number RB 50
Capacity of links (units) 100 Bandwidth per RB 180 kHz
Number of states (rules) 34 (81) Total power 41 dBm
Action space [−0.05 0 +0.05]; [1 1 1]; Antenna gain 5 dB
Initial greed factor s 0.9 Noise power UE 9 dB
Reducing rate of s 1/650 × epoch Height BS 10 m
Discount factor γ 0.7 Height UE 1.5 m
Learning rate η 0.5 Frequency 2.6 GHz
Required BBU 30 Time window 300
Simulation duration (per step) 50000 LOS 3 dB
Inter-site distance 200 m NLOS 4 dB
Simulation time step 0.1 s SINR 10 dB

We represent the 5G core network substrate as an undirected graph with labels and weights:
SN = {N, L}, where N denotes the node set, N = {n1, n2, . . . , nm}, and L denotes the link set,
L = {(n1, n2), (n1, n3), . . . , (n1, nm)}. Each of the nodes ni ∈ N, has a processing capacity denoted by
the symbol CPU (ni).

Consider an InP i that provides infrastructure services to the group of mobile virtual network
operators, H = {1, 2, . . . , |H|}. Each MVNO consists of a number of slices is: X h = {

1, 2, . . . ,
∣∣X h

∣∣}.
with each slice isolated from the rest of the network’s slices. A use case and capacity define each virtual
network slice. The capacity for lice is known as the highest quantity for radio resources which the
slice is able to deliver. Various studies reveal that radio sources are earmarked in provisions with time
slots, code sequences, or frequency channels, depending upon multiplexing technology; nevertheless,
this study, capacity is distributed in terms of Necessary Bandwidth Units (BBU). Hence, a use case
implies a collection of essential services that contribute to standard needs i.e., eMBB. The MVNO
might receive a requesting services call and transfer it to the slice keeping in view its requirements. For
example, the video streaming apparatus can submit request for a service, and an MVNO will allow it
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to eMBB slice. Therefore, the MVNO analyze the slice limitation for load during admission of a call.
If the current eMBB slice will be full, the call may be handled in the upcoming slice that meets the
call’s parameters.

Algorithm 2: Intelligent Admission Call Algorithm
1. Initialize the slices (eMBB, mMTC, uRLLC)
2. Assign a priority users at each slice according to their arrival time
3. Determine the capacity Ch = ∑X

1 Cx

4. Reserve the available bandwidth
5. Calculate the admissible state for the network

S =
{

U∑
u=1

X∑
x=1

(
buhu,x + bunu,x ≤ Cx

) ∧
U∑

u=1

X∑
x=1

(
buhu,x ≤ Th

) ∧
U∑

u=1

X∑
x

(
buhu,x ≤ Tn

)}

6. Condition for blocking new call

Sbu =
{

s ∈ S :
((

bu +
∑U

u=1
nu,xbu > Tn

)
∨

(
bu +

∑U

u=1
(nu,x + hu,x)bu > Cx

))
∀x

}
7. Condition for dropping handoff call

Sbu =
{

s ∈ S :
((

bu +
∑U

u=1
hu,xbu > Tn

)
∨

(
bu +

∑U

u=1

(
nu,x + hu,x

)
bu > Cx

))
∀x

}

Each slice xh ∈ X h belonging to an MVNO h has a capacity denoted by Cx; thus, the MVNO’s total
capacity is: Ch = ∑X

1 Cx.Each slice has a list of users Uh
x . Users are fully dependent upon that slice and

are designated by: Uh
x = {1, 2, . . . , |Uh

x |}. Each user u ∈ U demands a bandwidth of Bu upon admission
to the slice, and the slice distributes a fraction Fx of its total bandwidth to the user. Assuming uniform
distribution of users, the likelihood of a user u ∈ U corresponding to a slice xh ∈ X h that belongs to an
MVNO h is:

ρb = 1
X h

(21)

Because users are less tolerant of dropped handoff calls in slices that support them (eMBB and
uRLLC), handoff calls are prioritized over new calls in those that support them. A bandwidth reserva-
tion policy is therefore established. To ensure that consumers’ QoS requirements are met, a bandwidth
reservation strategy is implemented that prioritizes handoff calls. The bandwidth reservation strategy
that has been chosen is consistent with the guard channel technique. Since users are more sensitive to
dropped handoff calls than blocked new ones, handoff calls are prioritized over new ones. Thresholds
for new and handoff calls are defined as slice x with total capacity Cx. Let Tux be the rejection threshold
for new calls from user u in slice x and Lx denote the load in each slice. The available bandwidth for
new calls is indicated by: Nx = Tux − Lx. The available bandwidth for handoff calls is defined by:
Hx = Cx − Lx. The bandwidth available for new calls on the mMTC slice that does not accept handoff
calls is denoted by: Nxm = Cx − Lx. The Markov model represented the slice’s parameters. C is the slice’s
total capacity; H denotes the bandwidth reserved for handoff calls; and λn, λh show the call arrival
rate for new calls and handoff calls, respectively. And μn, μh denote the departure rate of new calls and
handoff calls respectively. The current state determined by: Ω = (nu,x, hu,x, u = 1, . . . , U , x = 1, . . . , X),
with nu,x and hu,x denoting the number of ongoing new and handoff call in the slices.
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The admissible state for the network can be represented by a vector S. The acceptable states
refer to a set of all possible numbers of new and handoff calls that can be admitted into the network
simultaneously. The set of all possible states S is determined by:

S =
{∑U

u=1

∑X

x=1

(
buhu,x + bunu,x ≤ Cx

) ∧
∑U

u=1

∑X

x=1

(
buhu,x ≤ Th

) ∧
∑U

u=1

∑X

x

(
buhu,x ≤ Tn

)}
(22)

with bu, Cx, Tn, Th denoting required bandwidth, slice capacity, new call threshold and threshold
for handoff calls, respectively. The probability of P(s) of the system being in the state s(s ∈ Ω)is
expressed by:

P (s) = 1
G

(∏U

u=1

∏X

x=1

((
ρnu,x

)nu,x

nu,x

) ((
ρhu,x

)hu,x

hu,x

))
(23)

with ρnu,x and ρhu,x denoting the loads generated at the slices and they are given by:

ρnu,x = λn(u, x)

μn(u, x)
∀u, x (24)

ρhu,x = λh(u, x)

μh(u, x)
∀u, x (25)

The variable G is the normalization constant denoted by:

G =
∑
(s∈
)

∏U

u=1

∏X

x=1

((
ρnu,x

)nu,x

nu,x

) ((
ρhu,x

)hu,x

hu,x

)
(26)

5 Performance Metrics
5.1 New Call Blocking Probability (NCBP)

NCBP represents the probability when a new call will be denied, which means it is blocked. A new
call will be blocked when the slice is set up to concede it lacks the resources i.e., radio to admit it, i.e.,
if the maximum slice capacity is surpassed. Allowing Sbu ⊂ Ω to signify the state during which latest
calls can be prevented, the blocking equation denoting the condition is as follows:

Sbu =
{

s ∈ S :
((

bu +
∑U

u=1
nu,xbu > Tn

)
∨

(
bu +

∑U

u=1
(nu,x + hu,x)bu > Cx

))
∀x

}
(28)

As a result, the probability of recent call blocking is as follows:

Pb(S) =
∑

(s∈Sbu)
P(s) (29)

5.2 Handoff Call Blocking Probability (HCBP)

HCBP denotes the probability for the handoff call declining, which means it is dropped. The
handoff call will be declined when the slice constituted to acknowledge the call does not carry out
sufficient bandwidth towards admitting it, i.e., when the slice’s highest capacity is overwhelmed. Sdu ⊂
Ω, define the state through which the calls in handoff are authorized to be dropped; the condition for
dropping can be written as follows:

Sbu =
{

s ∈ S :
((

bu +
∑U

u=1
hu,xbu > Tn

)
∨

(
bu +

∑U

u=1
(nu,x + hu,x)bu > Cx

))
∀x

}
(30)
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As a result, the handoff blocking probability is as follows:

Pd(S) =
∑

(s∈Sdu)
P(s) (31)

6 Results and Discussion
6.1 New Call Blocking Probability (NCBP) and Handoff Call Blocking Probability (HCBP)

As it admits requests in the order in which they arrive while increasing the number of admissions
by enabling resource exhaustion, first come first served is an admissions approach that is inimical to
both fairness to SPs and profit to InP. The parameters of capacity and threshold were held constant
in the scenario shown in Fig. 5a, but the call arrival rates were changed. There are 10 distinct call
arrival rate values since the values are increased by 0.5 from 3 to 8 respectively. The rise in call arrival
rate indicates that customers are making more calls, which increases the need for radio resources from
networks. For the eMBB and uRLLC slices, the upcoming call rate is comparable, whereas the mMTC
slice has a doubled rate. The arrival rate of the handoff call is taken to be the same as the arrival rate of
the incoming call, and the departure rate for the slices is taken to be the same and maintained constant.

In intra-slice handover, Fig. 5a shows the growing call arrival rate on the new call blocking and
handoff call dropping probabilities. The graphs demonstrate that as the volume of incoming calls
rises, the likelihood of call blocking and dropping increases as well. Due to the network’ limited radio
resources derived from the graphs, as users place more calls, it becomes difficult for it to accept all
of the calls demanding services. Due to the greatest BBU requirement for calls seeking services in the
eMBB slice, it has the highest new call blocking probability of any slice. The mMTC slice has the lowest
new call dropping probability while having a higher call arrival rate because calls requesting services
in the slice have the lowest BBU needs and the slice has no threshold for new calls. Because bandwidth
is reserved for handoff calls when using the intra-slice algorithm, the likelihood of a handoff call
dropping is lower than the likelihood of a new call dropping. Due to the fact that calls for the uRLLC
slice require less BBU than calls for the eMBB slice, uRLLC has the lowest handoff call dropping
probability.

Figure 5: (a) Effect of the Increasing arrival rate on call blocking and dropping probability. (b) Effect
of threshold Increasing on call dropping probability along with call blocking
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The rising threshold on the new call blocking and handoff call dropping probability is shown
in Fig. 5b. The plots demonstrate that when the threshold rises, the new call blocking probability
drop. This is so that the network can accept more new calls when the threshold for new calls rises. It
should be observed from the findings that there is a modest increase in the chance of the handoff call
dropping. More handoff calls are dropped when the threshold rises because less bandwidth is set aside
for them. The mMTC slice’s blocking probability remains constant since there is no new call threshold
for the slice. The likelihood of rejecting incoming calls at 30 (the maximum capacity) is the same as the
probability of rejecting handoff calls. There is no bandwidth reservation when the threshold is similar
to the slice capacity; hence, no priority is given to handoff calls.

Fig. 6 depicts the contours of the membership functions. For the recommended traffic stacks of
both users, 3 Gaussian membership functions stay chosen and labeled Low (L), in combination with
Medium (M), as well as High (H), in turn. For the variable �C (s, 1), 2 trapezoidal including 1 function
i.e., triangular membership is utilized. Herein, we should consider that multiple strategies during the
selection of an acceptable function for membership shape.

Figure 6: Fuzzy membership function (a) offered load T1, cell 1, (b) offered load T2, cell 1, (c) offered
load T2, cell 1, (d) offered load T2, cell 2

The optimum outcome for every rule is defined through the action along with the maximum
q-value. It can be seen that above average q-value during the entire optimization procedure relates
t static action (i.e., 0), signaling that, from mid-to-long duration, this action would produce more
rewards. Hence, best actions to accomplish are the expansion of �C (s, n). Moreover, the state’s number
corresponds with the total rules number, and the related actions which are (�C (s, n) = a + �C (s,
n)) existing meant for each rule remain as follows: 1 increment (+0.05), its homologous decrement
(−0.05), as well as the action (0) i.e., no-change.
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As described in Fig. 7, exploration behaviors are observable attributed to the reason that a number
of reinforcement signals do not provide anything close to the maximum reward. Therefore, the entire
state-action space is entirely examined. It can be examined that as the blocking probability for both
tenants remain 0, the reward or reinforcement acquired is high (i.e., equal to 1).

Figure 7: Illustration of reinforcement/reward signal

6.2 Comparation (With and Without Learning Method, Different Topologies)

After constructing the fuzzy assumption rule base using the proposed approach, the network
performance will be weighed. In this scenario, the blocking probability of each user is used as the
performance metric for the network. In addition, the results obtained by the proposed fuzzy Q-learning
using the supervised learning method are compared to the scenario when (s, n) is fixed at 0. (designated
as conventional Fuzzy Q-learning [14,15].

Fig. 8 represents the probability of blocking throughout the exploitation phase. It is noticed that
the proposed approach achieves substantial improvements over the conventional fixed configuration
approach, particularly in the T1 domain. Network performance is enhanced by utilizing super-
vised learning as prior knowledge of increased capacity, �C(s,n). However, this study includes any
prospective activity that could provide higher rewards in the future, therefore the proposed approach
is applicable. Regarding the results, the proposed fuzzy Q-learning approach reduced the blocking
probability by 45.2%, compared to the conventional method while adopting an exploitation policy.

Fig. 9 displays the blocking probability obtained using the proposed method (leveraging super-
vised learning for Fuzzy Q-learning) for three different topologies. Based on the results, the Abilene
topology achieved the lowest blocking probability. Abilene has less complexity with the least number
of nodes compared to Substrate and USnet, both of them has 16 nodes and 23 nodes. This is simply
due to the fact that in large networks, the agent has to process a large number of requests in order to
gain rewards for learning. For instance, in the Abilene topology, 7 requests per time unit were sufficient
for the agent to achieve satisfactory performance, however in the USnet topology, 25 requests per time
unit were necessary which are larger as compared to the requests in the Abilene topology.
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Figure 8: Comparation blocking probability in the exploitation phase

Figure 9: Comparation blocking probability in the different topologies

7 Conclusion

The study of QoS optimization for an intelligent admission control method of dynamic slice
handover policy for 5G network slicing is among the major purposes of the presented work. In order to
implement the suggested AI algorithm, accurate research of the self-optimized AC approach for adapt-
ing the proportion of resources utilized by for each subscriber was required. Among all prospective AI
solutions, we proposed a fuzzy algorithm of Q-learning for the process of self-optimization because of
its model-free method, which enables the development of an optimal action-selection policy. Utilizing
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a supervised learning algorithm as prior knowledge of additional capacity, fuzzy Q-learning was built
�C(s,n). Knowledge allows estimation of the limit of �C(s,n) altogether with its general behavior
under various traffic load situations. The analytical results from the simulations indicated that as the
call arrival rate rises, the probability of blocking of the calls along with its dropping enhances. The
rate at which probability increases with arrival frequency of a call indicates that the available network
will not offer sufficient QoS to network subscribers. Consequently, the algorithm for slice handover
was simulated, enabling calls to be directed to other slices. Slice handover considerably reduced call
dropping as well as call dropping probability when call arrival rates remained constant, implying
that network with handover slicing can provide a higher level of QoS to 5G network subscribers.
In addition, the simulation results reveal that the proposed method offers a significant improvement
over the standard fixed-configuration method. Utilizing supervised learning as prior knowledge of
increased capacity improves network performance, �C(s,n). However, the scope of this study includes
any prospective activity that may yield greater rewards in the future; thus, the proposed method is
applicable. Regarding the results, the proposed fuzzy Q-learning approach decreased the probability
of blocking by 45.2% compared to the conventional method while utilizing an exploitation policy. The
future works include considering more parameters such as call acceptance ratio comparison.
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