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Abstract: In feature-based visual localization for small-scale scenes, local
descriptors are used to estimate the camera pose of a query image. For
large and ambiguous environments, learning-based hierarchical networks that
employ local as well as global descriptors to reduce the search space of
database images into a smaller set of reference views have been introduced.
However, since global descriptors are generated using visual features, reference
images with some of these features may be erroneously selected. In order to
address this limitation, this paper proposes two clustering methods based on
how often features appear as well as their covisibility. For both approaches,
the scene is represented by voxels whose size and number are computed
according to the size of the scene and the number of available 3D points. In the
first approach, a voxel-based histogram representing highly reoccurring scene
regions is generated from reference images. A meanshift is then employed
to group the most highly reoccurring voxels into place clusters based on
their spatial proximity. In the second approach, a graph representing the
covisibility-based relationship of voxels is built. Local matching is performed
within the reference image clusters, and a perspective-n-point is employed to
estimate the camera pose. The experimental results showed that camera pose
estimation using the proposed approaches was more accurate than that of
previous methods.

Keywords: Visual localization; deep learning; voxel representation; clustering;
covisibility; meanshift; graph structure

1 Introduction

Camera pose estimation has recently attracted attention to mobile cameras such as those used in
augmented reality, robots, and autonomous vehicles. In these applications, it is necessary to estimate
camera poses (6-degree of freedom) [1–5]. Visual localization is widely used in structure from motion
(SfM) as well as simultaneous localization and mapping (SLAM) technologies, which perform camera
tracking using projection and geometric information based on image feature correspondences derived
over a sequence of images [1,2,6,7]. Because of visual localization’s wide adoption, robust performance
is required regardless of lighting, seasonal changes, or weather conditions.
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The SfM method establishes correspondence between image sequences and structures the relation-
ship between images and cameras. This is essential for camera movement and three-dimensional (3D)
point reconstruction applications. Visual features such as corners are generally examined as candidates
for correspondence between image sequences, and the random sample consensus (RANSAC) algo-
rithm [6] is generally employed as a robust matching scheme. A sparse 3D model is constructed using
SfM, and the camera pose is estimated using a two-dimensional (2D)-3D local matching procedure,
where 3D structure-based methods for visual localization establish relationships between pixels in the
query image and 3D points in the scene. The camera pose is then estimated by checking the perspective-
n-point (PnP) geometric consistency within the RANSAC scheme [6,8–12]. Image search can be used
in structure-based methods to reduce the search space by only clustering similar images instead of
every possible image. In addition, the retrieved images may be used in further processes such as pose
interpolation or relative pose estimation. Image retrieval-based methods approximate the pose of the
test image to that of the most similar retrieved image [9,13]. This relies on a database (DB) of global
image information, which is more reliable than direct local matching. Most of these methods are based
on image representations that use sparsely sampled invariant image features. Image retrieval is also the
first step in hierarchical structure-based approaches.

Hierarchical approaches are used in two ways: image searches and structure-based methods. Image
search methods extract the reference view for the query image quickly but provide an approximate
camera pose instead of a precise result. Structure-based methods exhibit good performance in small-
scale scenes; however, feature matching with local descriptors is computationally intensive for large-
scale scenes. In addition, hierarchical approaches are sensitive to changes in the scene, such as the
lighting conditions (day or night) and viewpoints. Ambiguous local matches occur more frequently as
the size of the scene model increases. 2D-3D matching errors for camera pose estimation increase as the
shared descriptor space enlarges. A prior frame retrieval method that can reduce the matching space
is used to solve this problem. An approximate search at the map level is performed by matching the
query image with the DB image using a global descriptor. Given a query image, the set of the closest
images (reference views) is extracted using an image search method. The locations of the reference
views are considered as candidate locations.

In recent years, convolutional neural networks (CNNs) have been developed for learning-based
visual localization and for camera pose estimation [14–18]. PoseNet was the first application of a CNN
for end-to-end camera localization [15]. VlocNet++ is based on multitasked learning and can be used
for visual localization, semantic segmentation, and odometry estimation [16]. CNNs can estimate an
accurate camera pose in a small-scale scene, but their performance is not as good as that of structure-
based methods [10,18].

Learning-based local and global feature extractors are more robust than handcrafted methods in
various situations, such as lighting conditions (day or night) and viewpoints. A hierarchical network
obtains location hypotheses and then performs local feature matching within the candidate places
[14]. Reference images of a viewpoint similar to a query image are obtained using a global descriptor.
NetVLAD [19], inspired by a vector of locally aggregated descriptors [20], is an image representation
method used in image retrieval and has been used to extract global descriptors from hierarchical
localization. However, outlier images with scene locations distant from the query image may be
retrieved because of their similar visual appearances to the query. False matches among the retrieved
reference views significantly affect the absolute pose-estimation performance.

To address this challenge in hierarchical networks’ feature extraction stage, this paper introduces
two clustering methods based on features’ frequency of visibility and their covisibility. Reference
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images retrieved by global matching may not correspond to the same area on the map; therefore,
in the proposed method, reference images with similar camera viewpoints are clustered into the same
scene areas, where each cluster shares common visual features. This means that they are clustered
according to their map locations and are, therefore, likely to be retrieved together. After the reference
views are clustered based on covisibility, each one is independently matched with the query image.
Because reference views with common features are used, the number of incorrect local matching results
can be reduced, and the chance of successful localization increased. The scene was digitized using
identical voxels consisting of 3D points in the scene space. In an earlier study [21], the scene space is
represented with a regular tessellation of cubes. The scene is represented with voxels, whose size and
number are computed according to the scene volume and number of 3D points. In voxel-based scene
representation, 2D-3D correspondence sets of DB images are indexed with the voxel information.
Therefore, voxel information can be used efficiently for feature covisibility. Fig. 1 shows the learning-
based hierarchical localization system [14], which is combined with the global and local descriptors,
and the proposed modules are highlighted in red.

Figure 1: Learning-based hierarchical localization system [14] using proposed method

2 Method

Hierarchical localization methods create global and local descriptors of DB images offline (in the
training stage) using a coarse-to-fine approach [14,19]. In the test stage, global and local descriptors
are similarly extracted from the query image. First, candidate images (reference views) are determined
by searching the DB images globally, which reduces the domain to be matched. Subsequently, the
keypoints of the query image and reference views are locally matched. A wrong location hypothesis in
global matching significantly affects the performances of hierarchical methods. In this study, the 3D
points of the DB images were computed using the SfM methods during training. Therefore, the 2D
keypoints detected in the query image were matched to the 3D points associated with the reference
views, and the PnP solver was used to estimate the camera pose.

NetVLAD [19], a representative study on place recognition, was used to extract global descriptors
from hierarchical localizations. Fig. 2 shows 15 reference views retrieved for a single query image
(red bounding box) from the Aachen Day-Night dataset [22] using NetVLAD. The Aachen dataset
describes an old city center in Aachen, Germany. It contains 4,328 images of the old city’s weekly
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database and 824 and 98 queries, respectively, under day and night conditions. This dataset has a large
scene space and contains images captured under various conditions (weather, season, and day-night
cycles). The global retrieval results show that the reference views captured from different locations and
camera viewpoints can be matched. Fig. 2 shows three reference image groups that are marked with
red, green, and blue dotted lines. If the query image is matched with the reference images one by one,
outlier images captured at a distant location are matched. The visual features of the image are then
used in the local matching stage. Here, the number of inliers set (2D-3D correspondences) that satisfy
a geometric consistency check within the RANSAC [8,23,24] is examined.

Figure 2: Fifteen matched reference views in the global matching stage. Query image (top left, red box)
and reference images (dotted line boxes)

By clustering the reference views with a similar viewpoint, the number of inlier sets in local
matching can be increased. In the previous method [14], frames were clustered based on the 3D
structures that they co-observed. The connected components (places) were found in a bipartite graph
composed of frames and observed 3D points. However, when clustering all images with co-observed 3D
points, there are no criteria to measure the degree of covisibility of the 3D points. If a video sequence
with many successive frames is used as the training dataset, regions that are too large to include
common visual features may be clustered in the same places. To address this, this paper introduces
two methods for the covisibility-based clustering of images with similar viewpoints using voxel-based
scene representation.

2.1 Voxel-based Scene Representation

The 2D-3D benchmark dataset for camera localization includes 3D points reconstructed using
SfM methods such as COLMAP [25,26] and Bundler [27]. In the Aachen dataset, the scale-invariant
feature transform (SIFT) and COLMAP are used for image feature matching and 3D reconstruction
[22]. Figs. 3a and 3b show that 3D points are mainly distributed in specific regions with many visual
features, and many outliers by false matching (with SIFT) are included in the dataset.
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Figure 3: 3D points reconstructed by SIFT in Aachen dataset (a) and their enlarged version (b)

To effectively identify the specific places in the scene space, the scene is represented as a regular
tessellation of cubes in Euclidean 3D space [21]. Each voxel was assigned a unique identification
number based on its global location. Outliers, such as noisy 3D points, that are very distant from
the cloud distribution of 3D points in the scene are removed first. Then, the number and size of voxels
are determined based on the scene volume and the number of 3D points. False matches among 2D-3D
correspondences can be identified and removed by examining whether the voxel regions detected in an
input image maintain geometric consistency (such as left–right order).

In our previous voxel-based representation [21], RANSAC-based plane fitting was applied to the
3D points in a voxel to obtain the main plane in which the inlier points on the main plane were
determined. Because the exterior walls of a building, the ground, and the outer surface of an object
are captured using a camera, outdoor scenes with many manufactured structures can be approximated
using major planes. In addition, points that are distributed on the main plane are more likely to be
captured from multiple viewpoints by the camera. This is because the points occluded on a surface
with respect to a given viewpoint increase as the surface’s geometric complexity increases. In some
cases, the main planes correspond to the exterior walls and ground. However, when there are several
objects such as streetlights and trees in the scene, an unexpected plane that is entirely different from
the original scene structure is often obtained. Therefore, to solve this problem, the RANSAC-based
plane-fitting procedure and the centroid of the main plane were excluded.

It is essential to detect rich and widespread feature sets over the entire scene space for precise
scene description and matching. In visual feature (corner point) detection and matching, SuperPoint
[28] is used to detect and precisely match a set of evenly distributed points of interest. Fig. 4a shows
the feature points detected and matched using SuperPoint. As a result, a considerable number of
outliers and noisy 3D points were removed. Fig. 5 shows the process of defining the voxel volume and
identifying the 3D points in each voxel. First, the maximum and minimum coordinate values of the x-,
y-, and z-axes of the 3D points were found, and the voxel width, length, and height were computed.
The number and size of the voxels were determined according to the scene volume and the number
of 3D points. Second, the number of points within each voxel was counted. If this value was below a
specific threshold, the voxel was considered an outlier and removed. Finally, the remaining voxels and
their 3D points were indexed and labeled. Fig. 4b shows the distribution of 3D points in the proposed
voxel representation, each marked with different colors.
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Figure 4: 3D points by SuperPoint [28] and COLMAP [25] (a) and voxel-based representation (b)

Figure 5: Determining voxel volume and labeling 3D points

2.2 Reference Image Clustering Based on Covisibility
2.2.1 Histogram of Voxel Visibility and Meanshift

In previous hierarchical methods [14,19], common visual clues have been employed in location-
based image clustering. This has been very helpful for camera localization. More specifically, images
are clustered based on co-observed 3D scene structures, meaning that images correspond to the same
place if the same 3D points are visible in them. Therefore, connected components are found in the
covisibility graph that links the DB images to 3D points in the model [14]. Thus, these images are likely
to be retrieved together using a hierarchical method, which uses 3D points and their visual features.
However, because there are many 3D points in a large-scale scene, efficient clustering of 3D points
and their visual features in the scene’s location is required. Given the reference images obtained by the
global retrieval of a query image, this paper introduced a method to create image clusters with similar
viewpoints in the proposed voxel-based scene representation. In this study, the scene was represented
with voxels, in which 3D points reconstructed using SfM were indexed. A voxel identification number
was assigned to each 3D point. The geometric information was placed in a list structure.

A histogram (Fig. 6) representing the distribution of visible voxels from the reference images was
created using global retrieval. In Fig. 6, the x-axis represents the voxel index in the scene space, and the
y-axis represents the frequency of voxel visibility in the reference images. Because the visual features
and their 3D points in the Aachen dataset were stored, the visible voxels where 3D points were captured
could be identified. If a voxel has a higher frequency in the histogram, it is visible in more images. The
visibility frequencies of the voxels in the histogram were then sorted in descending order. From the
histogram of voxel visibility, K reference images were used to create the cluster set of reference images
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with similar viewpoints. Fig. 2 shows the query image and its 15 retrieved reference images in the global
matching procedure. Some images had the same location as that of the query image, but there were
also other images from different locations.

Figure 6: Histogram of voxel visibility

To consider the spatial proximity of neighboring voxels in the voxel clustering procedure, the
meanshift method with kernel density estimation [29] was employed. In Eq. (1), for n data points xi,
i = 1, . . . , n in 3D space, the Parzen kernel density estimator fh(x) at point x is given by:

fh (x) = 1
n

n∑
i=1

Kh (x − xi) = 1
nh

n∑
i=1

K
(

x − xi

h

)
, (1)

where Kh(x) is the kernel for the density estimation and its bandwidth parameter h, which determines
the considered range of the neighboring voxels.

Because a camera generally has a limited field of view, reference images with similar viewpoints
and camera locations share many visual features within the same scene area. Therefore, this paper can
create image clusters with similar viewpoints by using the 3D reconstructed points of the reference
images. The 20 most re-occurring voxels from the voxel visibility histogram of the query image’s
reference images (Fig. 7) were considered. The center coordinates of the voxels were weighted in
proportion to the visibility frequencies of the bins. Fig. 7a shows the center coordinates of the 20
voxels, from blue to red (most to least common). In 3D space, the meanshift method based on the K-
nearest neighbor (K-NN) rule was employed instead of the Parzen kernel density estimator because it
is faster and allows for higher dimensions. Fig. 7b shows the cluster areas (colored regions) and their
center positions (‘X’) using meanshift. The obtained clusters were used for camera pose estimation
using 2D-3D correspondence with local descriptor information.
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Figure 7: (a) Center points of 20 voxels in the order of their visibility frequency and (b) their
corresponding cluster regions and center positions (marked with ‘X’), generated using the meanshift
algorithm

2.2.2 Graph Clustering Based on Voxel Covisibility

Meanshift clustering requires the bandwidth parameter h of the kernel function (see Eq. (1)) or
the bandwidth to include K-nearest neighbors, which in turn affects the results of meanshift clustering
using the spatial proximity of voxels. Because local areas generally have a variety of structures in
a large-scale scene, it is difficult to determine the optimal bandwidth parameter in the meanshift
clustering process. Furthermore, the bandwidth parameter significantly affects the processing time
because more data is required as the bandwidth radius increases.
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For efficient clustering of the reference images of the query, this paper introduces a graph structure
for the covisibility relationship of voxels. The nodes of the graph were the voxels in the scene, and the
eight voxels adjacent to each voxel were considered the neighborhood. The edges of the graph were
weighted based on the relative covisibility of the adjacent voxels. In the proposed graph representation,
the cost values of the adjacency matrix were based on each voxel’s covisible voxels. The proposed
method stored the index information of voxels visible in DB images as a data structure, which was
used to obtain the number of covisible voxels for each voxel (see Fig. 8a). For example, the first voxel
(Voxel 1) was visible in 31 training images. When Voxel 2 appeared in seven images that voxel 1 was
visible in and had a higher covisibility with Voxel 1 than the other voxels. The relative covisibility was
computed by dividing the covisibility frequencies of the neighboring voxels by the number of times the
voxel of interest is visible. In Fig. 8a, the covisibility ratio of Voxel 2 relative to Voxel 1 is 0.2258. For
each voxel, the average covisibility ratios of the adjacent voxels were computed according to the level of
the graph. The covisibility ratio at each graph level depends on the local complexity of the scene. The
more complex the scene structure, the lower the covisibility ratio at a given graph level. In addition,
as shown in Fig. 8b, the average covisibility ratios decrease as the scene structure complexity increases
because cameras generally have a limited field of view. The average ratios in the graph levels were used
to determine the number of adjacent nodes considered in the clustering procedure. Subsequently, by
applying the breadth-first search method to the graph, the connected components (adjacent voxels) of
the voxel of interest were examined, as shown in Fig. 9a. More specifically, when the average covisibility
of the adjacent voxel was higher than that of all voxels at each depth level, it was determined that the
voxels were connected to the voxel of interest. Fig. 9b shows the graph structure of Voxel 1, which
has edges with higher covisibility values than the average values of other voxels at each level. Here the
colors of the nodes (yellow, green, blue, purple, and pale blue) represent the connectivity of Voxel 1 as
the level of the graph increases. Voxels that appear concurrently in DB images can be clustered using
this procedure, and this is utilized in the preprocessing steps.

In the global matching procedure, a query’s reference images were retrieved along with their
corresponding voxel index information. The highest-ranked T voxels in the visibility histogram
generated from reference images were then found. Voxel clusters with a high visual coherence were
generated using the graph structures of the T voxels. Therefore, visible voxels (covisible scene areas)
could be determined simultaneously when T voxels were captured. In this clustering procedure, the
lowest-ranked voxel of T voxels was added to the highest-ranked voxel if these two voxels were found
to be spatially connected. If two voxels were found not to be connected, a different voxel cluster
was generated. The identification information of the voxels appearing in the reference images was
compared with that of the voxel clusters. When more than half the voxels in a reference image were
found to be in a specific voxel cluster, the reference image was considered to be part of that voxel cluster.
In this procedure, M reference images were grouped into N reference image groups (M � N). The final
reference image group was used in local descriptor matching, in which local descriptor information
was collected for each group. The reference image groups were generated by checking the connection
elements of the voxel graph of the ranked voxels.
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Voxel 1 Voxel 2 Voxel 3 · · · Voxel 90 · · · Voxel 896

Voxel 1 31 7 0 · · · 5 · · · 0

Voxel 2 7 8 0 · · · 3 · · · 0

Voxel 3 0 0 4 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Voxel 90 5 3 0 · · · 97 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Voxel 896 0 0 0 · · · 0 · · · 88

(a)

(b)

Level 1 Level 2 Level 3 · · · Level 20 Level 21 Level 22 · · · Level 30

Voxel 1 0.32 0.043 0.032 · · · 0.0 × × × ×

Voxel 2 0.68 0.069 0.048 · · · 0.0 0.0 × × ×

Voxel 3 1.0 1.0 0.75 · · · 0.0 0.0 × × ×

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Voxel 90 0.67 0.187 0.082 · · · 0.0 0.0 0.0 0.0 0.0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Voxel 896 0.45 0.21 0.092 · · · 0.0 0.0 0.0 × ×

Figure 8: Number of voxels that are covisible for each voxel (a) and average covisibility values at each
graph depth level (b)

In the proposed voxel-based representation, the visibility of every voxel (V ) in a scene is 0
considered. Therefore, the space complexity of generating the voxel-based histogram is O(V ). Consider
that M reference images are retrieved by global matching, and the number of 3D points in the M-th
reference image is pM. The total number of 3D points present in M reference images is a summation
of all (pM) values. The time (computation) complexity of generating the voxel-based histogram is,
therefore, O(sum(pM)). The time complexity of the meanshift is expressed as O(T 2), where T is the
number of data samples. In the proposed method, T is the number of the most highly re-occurring
voxels in the query image’s reference images according to the voxel visibility histogram. Its space
complexity is O(T). In graph-based clustering, we examined how often each voxel appears in the same
reference image as every other voxel, as shown in Fig. 8a. In computing the covisibility of V voxels,
the time and space complexity are both O(V 2). For each voxel, the average covisibility values were
computed at each graph depth level d as shown in Fig. 8b. Since this processing is performed for
V voxels, the time complexity is O(Vd). The connected components (adjacent voxels) of the voxel
of interest that have more than the average covisibility, were examined by applying the breadth-
first search to the graph structure. The breadth-first search’s time and space complexity are O(V ).
In our graph-based clustering, the total time complexity is O(V 2) + O(Vd) + O(V )�O(V 2) and the
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space complexity is O(V 2) + O(V 2) + O(V )�O(V 2). After the above-mentioned pre-processing, voxel
clusters are finally generated. The most highly re-occurring voxels T are chosen using the voxel-based
histogram. Pre-built voxel clusters to identify low-ranked voxel clusters that may be connected to
higher-ranked voxel clusters were then examined. The time complexity of this inference is O(T 2), and
its space complexity is O(T). The voxel graph-based method has less computational load than the
meanshift method because the covisibility graph of voxels is pre-built from the DB images. In addition,
this method does not require the bandwidth parameter of the meanshift to be set.

Figure 9: Adjacent voxels for voxel 1(a) and voxels with high covisibility ratios (b)

The reference images were mapped to each location in these procedures, and each cluster was then
matched independently to the 2D keypoints detected in the query image. To estimate the camera pose,
a local description was extracted from the query and reference images. Because the 3D points of the
feature points in the reference images were already in the data structure, a 2D-3D correspondence from
the local matching could be established. PnP is employed to estimate the pose of a calibrated camera,
which minimizes reprojection error (the sum of squared distances between the image points and the
projected 3D points). Here the PnP-based geometric consistency within the RANSAC scheme was
checked. This PnP-based geometric consistency within the RANSAC scheme makes the final pose
more robust to outliers (false 2D-3D correspondences). The ratio of the number of inlier points to
that of all the feature points in the reference image was computed. The PnP result supported by the
most inlier points was regarded as the final camera pose. The camera pose with 6 degree of freedom
represents the rotational direction with respect to pitch, yaw, and roll, and the position in the X-, Y-,
and Z-axes.

2.3 Hierarchical Method Implementation

Learning-based hierarchical localization methods are comprised of global and local description
extractors along with their matching procedures. In this study, SuperPoint [28], R2-D2 [30], and
Superglue [31] were used as local descriptors, and NetVLAD [19] and DIR [32] were used as global
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descriptors. The input was a grayscale image with a maximum resolution of 1024 pixels vertically
or horizontally. The dimensions of the global descriptors were reduced to 1024. The weights of
NetVLAD and DIR were learned using the Pitts-30k and Google-landmarks datasets, respectively. In
both SuperPoint and R2-D2 methods, a non-maximum-suppression method was employed to avoid
obtaining too many feature points from the query image. The suppression radius for each feature
point was set to 3 pixels. The weights of SuperPoint, R2-D2, and Superglue were learned using the
MS-COCO 2014, Aachen, and MegaDepth datasets, respectively.

3 Experimental Results

Reference images were attained using global retrieval and a histogram representing the distribu-
tion of visible voxels generated. T highly ranked voxels were then selected from the histogram. After
the reference images were clustered based on the T-most highly ranked voxels, the query image and
reference image clusters were locally matched, 2D-3D correspondence established, and camera pose
estimated. In this experiment, T was set as 20, 50, and 100.

In the meanshift method, clustering results are affected by the bandwidth parameter. Here, the
bandwidth of the meanshift was determined using the K-NN technique. When the total number of
3D points and the estimation parameter q were 100 and 0.3, respectively, the meanshift continued to
expand the interest region until 30 points were included. Therefore, the bandwidth was determined
based on the average distance between 3D points within the same cluster. Table 1 shows the accuracy
according to bandwidth q of the meanshift when 100 voxels are considered. The percentage of query
images (824 and 98 queries under day and night conditions, respectively) localized within X m and
Y° of their ground-truth pose was measured [13]. In all conditions and times, three pose accuracy
intervals were defined by varying the thresholds: high precision (0.25 m, 2°), medium precision (0.5 m,
5°), and coarse precision (5 m, 10°). Table 1 shows that there were few differences in performance
when sufficient voxels (T = 100) were chosen from the visibility histogram. The best performance was
obtained in the case when q = 0.15.

Table 1: Pose estimation results according to meanshift bandwidth q (T = 100)

Bandwidth (q) Day (0.25/0.5/5.0 m) (2/5/10°) Night (0.25/0.5/5.0 m) (2/5/10°)

0.25 86.3/93.9/97.7 72.4/84.7/95.9
0.20 86.3/93.9/97.9 72.4/84.7/95.9
0.15 86.3/93.9/98.1 72.4/84.7/95.9

In Table 2, previous methods [14,33] are compared with the proposed methods regarding param-
eters T and q. The first method (HFnet with covisibility) determines the connected components in
a bipartite graph composed of frames and observed 3D points [14]. Reference images are clustered
if they observe some common 3D points. Although the previous method is similar to the proposed
method in that prior frames are clustered based on 3D structure covisibility, no schematic clustering
method is described. For example, too many or too few clusters may be generated because only the
covisibility of 3D points is considered; therefore, the obtained reference image clusters are significantly
affected by the complexity of the scene structure and continuity of the image frames. Here, the local
descriptors of the reference images in each cluster were matched with the query image, and the accuracy
of the results was computed using the most inlying set in the RANSAC-based PnP pose estimation
scheme. The second row of Table 2 shows the results obtained using HFnet [14] without considering
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covisibility, which were obtained by matching all the local descriptors of 50 reference images. The
graph-based method performed slightly better than the meanshift method under daytime conditions;
however, under nighttime conditions, the camera estimation results using meanshift were best in most
cases. Table 2 shows that the number of reference image clusters affects the performances of the two
methods.

Table 2: Comparison of pose estimation results according to parameters of the proposed methods

Methods Day (0.25/0.5/5.0 m) (2/5/10°) Night (0.25/0.5/5.0 m) (2/5/10°)
HFnet (with covisibility) [33] 86.4/94.3/97.8 69.4/83.7/95.9

HFnet (without covisibility) [14] 86.3/93.6/97.8 71.4/83.7/95.9
Meanshift (q = 0.15) T = 20 86.3/94.3/97.7 69.4/83.7/94.9

T = 50 86.0/93.9/98.1 72.4/85.7/94.9
T = 100 86.3/93.9/97.9 74.5/84.7/95.9

Graph-based T = 20 86.8/94.2/97.9 71.4/84.7/95.9
T = 50 86.9/94.3/97.9 71.4/84.7/95.9
T = 100 86.8/94.4/97.9 71.4/84.7/95.9

As shown in Table 3, more clusters were generated using the graph-based method than the
meanshift method; therefore, the scene structure of the reference images was more refined using
the graph-based method. In general, the local matching performance was affected by the significant
difference in visual features under night and day conditions. When fewer clusters were generated,
each cluster included more reference images and local description information because the number
of reference images was fixed at 50. Therefore, when more local descriptions were considered in each
local matching, the matching performance by the meanshift method at night was slightly better. In
Table 4, the proposed method is compared with previous methods on a benchmark dataset [34]. The
pose estimation performance improved when the SuperPoint and Superglue methods were employed.

Table 3: Number of clusters of global reference images passed through the voxel cluster

Methods Average number of clusters Standard deviation

Meanshift
(q = 0.15)

T = 20 6.1 1.4
T = 50 5.6 1.5
T = 100 4.0 1.4

Graph-
based

T = 20 4.3 1.8
T = 50 7.3 2.7
T = 100 10.4 3.1
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In Table 5, the performance of the proposed method is compared with that of two global
descriptors and three regional descriptors in the hierarchical approach. In all cases, NetVLAD
yielded better results than DIR. To evaluate the accuracy of the camera pose estimation results,
the reprojection error was calculated (Table 6). In Tables 5 and 6, the best results for each case (the
global descriptor) are highlighted in red. In the experimental results, the proposed approaches have
been compared with state-of-the-art approaches for camera localization, using various parameter
configurations.

Table 4: Comparison of previous methods [34]

Methods Day (0.25/0.5/5.0 m) (2/5/10°) Night (0.25/0.5/5.0 m) (2/5/10°)
Hierarchical localization:
SuperPoint + Superglue [31]

89.6/95.4/98.8 86.7/93.9/100.0

Superglue + Patch2Pix (HLoc) [35] 89.2/95.5/98.5 87.8/94.9/100.0
Kapture-R2-D2-FUSION [36] 89.4/96.4/99.2 84.7/92.9/98.0

Proposed
method
(mean-shift)

HFnet SuperPoint + Superglue
(T = 100, q = 0.20)

89.3/96.0/98.7 85.7/92.9/100.0

HFnet SuperPoint (T = 100, q = 0.15) 86.3/93.9/98.1 72.4/84.7/95.9
NV + SIFT [15] 82.8/88.1/93.1 30.6/43.9/58.2
NV + SP [15] 79.7/88.0/93.7 40.8/56.1/74.5
HFnet [15] 75.7/84.3/90.9 40.8/55.1/72.4
Active search [6] 57.3/83.7/96.6 19.4/30.6/43.9
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4 Conclusion

In a large-scale scene, the descriptor space of the visual features becomes quite large, which
results in the increase of 2D-3D camera pose estimation matching errors. This paper introduced
two clustering methods based on the covisibility of reference images in the hierarchical approach.
Because neighboring visual features are captured simultaneously when a camera focuses on the scene
location, clustering the reference images extracted via global matching improves the local matching
performance. The reference images were clustered according to two criteria: the visibility frequency
of visual features and the covisibility of features. Voxel-based scene representation constructed using
2D-3D correspondence enabled us to efficiently identify the areas that were visible most often in
the reference images. A histogram representing the distribution of the visible voxels in the reference
images was built. The relatively important voxels (such as those that are the most visible in the scene)
were then identified in the order of the voxels’ frequency of visibility in the reference images. To
consider the distribution of neighboring voxels in the voxel clustering procedure, meanshift and graph-
based methods were employed. In the meanshift method, the center coordinates of the voxels were
weighted proportionally to the visibility frequencies of the voxels, and a meanshift was applied to the
center coordinates of each voxel. In the graph-based method, a graph of the covisibility relationship
of voxels from the training images was built. By examining the voxel graph of the highest-ranked
voxels in the reference images, reference image groups were generated. The graph-based method had
better computational efficiency than the meanshift method because the covisibility graph was built
in advance. Because reference images of similar scene locations were clustered, local matching with
the query image was easier, and the number of outliers decreased. The experimental results showed
that camera pose estimation using the proposed approaches was more accurate than that of previous
methods. The proposed clustering methods for reference images are relatively effective in improving
performance in large-scale environment.
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