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Abstract: Recent economic growth and development have considerably raised
energy consumption over the globe. Electric load prediction approaches
become essential for effective planning, decision-making, and contract evalu-
ation of the power systems. In order to achieve effective forecasting outcomes
with minimum computation time, this study develops an improved whale opti-
mization with deep learning enabled load prediction (IWO-DLELP) scheme
for energy storage systems (ESS) in smart grid platform. The major intention
of the IWO-DLELP technique is to effectually forecast the electric load in SG
environment for designing proficient ESS. The proposed IWO-DLELP model
initially undergoes pre-processing in two stages namely min-max normaliza-
tion and feature selection. Besides, partition clustering approach is applied for
the decomposition of data into distinct clusters with respect to distance and
objective functions. Moreover, IWO with bidirectional gated recurrent unit
(BiGRU) model is applied for the prediction of load and the hyperparameters
are tuned by the use of IWO algorithm. The experiment analysis reported the
enhanced results of the IWO-DLELP model over the recent methods interms
of distinct evaluation measures.
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1 Introduction

With an increased number of industries and rapid development of population, electricity grids
become a complex process for managing the electricity demand for industrial and household purposes
[1]. The increasing demand for electricity at certain times results in number of challenges such as failure
of transformers, short circuits. To resolve this problem of communication of electrical energy through
conventional grids, it is essential to forecast the consumption pattern of the customer to efficiently
transport the electricity [2]. A smart grid (SG) could reasonably forecast the electricity demand and
thus transfer the electrical energy based on the forecasted demands [3]. A SG through its smart
prediction and sensing could resolve various problems of the conventional grids namely reduction of
power usage, demand forecasting, reduce the risk of short circuits thus saving the loss of properties and
lives [4]. SG has different stakeholders and it is linked to many other smart regions like smart buildings,
smart vehicles, smart cities, smart power plants, and so on. In smart grid environments, there are
several possibilities to save the energy cost of smart homes that are advanced from traditional homes
by adapting three mechanisms, that is home automation, internal networks, and intelligent controls
[5]. For instance, dynamic electricity prices are employed for reducing energy costs. It is significant to
effectively handle the energy storage system (ESS). The ESS provides added value to enhance supply
reliability and power quality [6]. With this regard, we consider need to forecast the ESS charge and
energy consumption. Fig. 1 illustrates the process of ESS.

Figure 1: Energy storage systems

Despite the urgency and importance of making a transition from renewable energy (RE) to
the smart grids, still it remains a challenge for developing an efficient and effective short-term
load prediction because of this uncertainty, complexity, and variability of the RE resource [7]. Still,
thorough information mining and data cleaning are inadequate for present prediction model in
modelling future short-term load as noise could be hard to remove. Furthermore, uncertainty still
exists and could not be explained well in machine learning (ML)-based prediction method, particularly
for determining and parameter fine-tuning [8].
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In addition to prediction precision, the robustness is often neglected in present research. The
expansion of novel methods and advanced technologies with artificial intelligence to manage problems
in the smart grid is indispensable. Especially, energy storage systems, distributed generation resources,
and advanced control/operation are tackled in the SG. Generally, emerging an efficient and effective
short-term load prediction method using higher accuracy and strength becomes a topmost priority for
urban sustainability growth [9]. Artificial Intelligence (AI) is effectively employed for solving several
industrial issues like neural networks (NN), fuzzy logic control, evolutionary computation, hybrid
intelligent system, and so on. In recent times, deep learning (DL) network has gained considerable
interest since they are capable of managing nonlinear problem [10].

This study develops an improved whale optimization with deep learning enabled load prediction
(IWO-DLELP) scheme for ESS in smart grid platforms. The proposed IWO-DLELP model initially
undergoes pre-processing in two stages namely min-max normalization and feature selection. Next,
partition clustering approach is applied for the decomposition of data into distinct clusters with respect
to distance and objective functions. In addition, IWO with bidirectional gated recurrent unit (BiGRU)
model is employed to the prediction of load and the hyperparameters are tuned by the use of IWO
algorithm. The simulation analysis of the IWO-DLELP model is performed and the outcomes are
investigated under several aspects.

2 Related Works

Hong et al. [11] projected the short-term residential load forecasting (LF) structure that creates
utilize of Spatio-temporal correlation present from appliance load data with DL. Several time series
were conducted from the structure for describing consumed power performances and its internal
Spatio-temporal connection. And this approach dependent upon deep neural network (DNN) and
iterative ResBlock was presented for learning the correlation amongst distinct consumed power
actions to short-term load forecasting (STLF). In [12], a DL approach was established for forecasting
the current load accurately. The researchers presented a method that is dependent upon selective,
extracting, and classifier of historic information. Grey Correlation based random forest (RF) and
Mutual Information (MI) was carried out for feature selection (FS) and kernel principal component
analysis (KPCA) was utilized to feature extracted and improved convolution neural network (CNN)
was utilized to classifier.

Usman et al. [13] presented a DL based algorithm to forecast price and demand on big data
utilizing deeper long short term memory (LSTM). Because of adaptive and automated feature learning
of DNN, process of big data has simpler with LSTM as related to completely data driven techniques.
The presented method was estimated utilizing a famous real electricity market information. In [14],
a Bayesian DL was utilized for resolving this difficult problem. Especially, a novel multitasks proba-
bilistic load forecasting (PLF) structure dependent upon Bayesian DL was presented for quantifying
the shared uncertainty across various customer groups but accounting for its variances. Moreover, a
clustering based pooling approach was planned for increasing the data diversity and volume of the
structure.

In [15], a fast and accurate STLF technique was presented. The abstractive feature in the historical
information was removed utilizing modified mutual information (MMI) approach. The factored
conditional RBM (FCRBM) was allowed using learned for predicting the electrical load. At last,
the presented genetic wind driven optimization (GWDO) technique was utilized for optimizing the
efficiency. Syed et al. [16] presented a new hybrid clustering based DL technique to STLF at the
distributing transformer level with improved scalability. It examines the gain from trained time
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and the efficiency with respect to accuracy if clustering based DL modeling was utilized to STLF. A
k-Medoid based technique was utilized to cluster but the predict methods were created for various
clusters of load profiles. In [17], STLF and mid-term LF (MTLF) are presented utilizing smart-
metered data developed in real-life distributing grid with distinct typical and ML approaches. Data pre-
processed was complete for transforming the raw data into suitable format by extracting the outliers
existing from the data sets. The effective meteorological variable attained with correlation analysis
together with past loaded was utilized for training the LF method.

3 The Proposed Model

In this study, a new IWO-DLELP algoithm has been presented to effectually forecast the electric
load in SG environment for designing proficient ESS. The proposed IWO-DLELP model encompasses
pre-processing, partition clustering, BiGRU based prediction, and IWO based hyper parameter
tuning. For optimal tuning of the hyperparameters involved in the BiGRU, the IWO algorithm is
utilized and it results in enhanced predictive performance. Fig. 2 depicts the working process of IWO-
DLELP technique.

Figure 2: Overall process of IWO-DLELP technique
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3.1 Data Pre-processing

Initially, the input dataset is pre-processed in two stages such as min-max normalization and
feature selection. For incorporating the non-distorting scaler, mini-max normalization scale is utilized
as defined in Eq. (1):

a
′
m = c + (am − min (a)) (q − p)

(max (a) − min (a))
(1)

where a′
m and am indicates new and actual attribute values, min(a) represents least value, and [p, q] is the

scaling range. In order to elect optimal features, feature importance score gets determined by the use
of permutation feature importance approaches. In addition, a top-down search enabled model named
Sequential Backward Search (SBS) approach is applied for addressing the multi-collinearity among
distinct features in contrast to individual feature technique [18].

3.2 Partition Clustering

At this stage, the decomposition of input data into different set of clusters was carried out using
the partition clustering approach [18].

Partitional clustering methodology attempts to decompose the data (Rodriguez et al., 2019)
according to an objective and distance function and it is utilized for measuring the quality of cluster
attained whereas, distance function is utilized for identifying the similarity amongst data objects. An
arithmetical explanation of the search problem is assumed that D characterizes the whole dataset, n
denotes the data object number, and d indicates the feature number, that is, D = {x1, x2, . . . , xn}.
Partitional clustering model tries to detect the optimal set of centers C = C1, C2, . . . , CK that
partition the data set D into K disjoint cluster.

F = 1
n

n∑
i=1

min d
(
Cj, xi

)
(2)

Whereas Cj indicates class j and d (C, x) corresponding to the squared Euclidean distance among
the point xi and the center of class Cj. SI method uses the objective function (2) to estimate the quality
of solution.

3.3 BiGRU Based Load Prediction Model

The clustered data are processed by the BiGRU model to estimate the electricity load in the SG
environment. The central component of gated recurrent neural network (GRNN) is the gated recurrent
unit (GRU) that is a different from existing popular long- and short-term memory networks [19]. The
iteration equation is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ztσ (ωzSt + λzht−1 + bz)

rtσ (ωrSt + λrht−1 + br)

h̃t tanh (ωhSt + rt ⊗ (λhht−1) + bh) ,

ht (l − zt) ⊗ ht−1 + zt ⊗ h̃t

(3)

where ⊗ refers to the cross product function. Reset threshold rt and upgrade threshold zt control
the data upgrade of all the hidden states. ω∗ and λ∗ signifies the co-efficient matrices. b∗ implies the
bias vector that is exploited for adaptably selecting and removing historical data which generates the
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existing semantics. BiGRU was utilized for extracting the condataual semantic data feature of data.
The way one GRU has positive order way of the input order, and the other is reverse order way of
the input order. If the feature extracting was executed on the input order, the GRUs from the 2 ways
could not share the state. The state alteration rules of GRU follow the transition occurrence amongst
the comparable states. But, at the similar moments, the output results of GRUs from the 2 ways were
spliced as resultant of total BiGRU layer. This not only assumes the above semantic data, along with
assumes the subsequent semantic data as follows:

ei = χT
a tanh (ωahi + b), (4)

where hi refers to the hidden state outcome ωa signifies the arbitrary initialized weight matrix, χa stands
for the arbitrary initialized vector, and b represents the offset vector. Afterward, compute the weighted
score θ as follows:

θ = exp (ei)∑L

k=1 exp (eik)
. (5)

Based on Eq. (6), the resultant vector ci weight by dynamic adaptive weighted as:

ci =
L∑

j=1

θ · hj. (6)

It is obvious that the attention model relates the target matrix with weighted matrix from the NN
with a perception functions. Afterward, utilize the softmax function for regularizing it for obtaining
the probability distribution.

3.4 IWO Based Hyperparameter Tuning

For ideal tuning of the hyper parameter involved in the BiGRU model, the IWO algorithm is
utilized [20]. It employs two methods for exploration: the initial diversification technique chooses an
arbitrary whale

→
xrand (t) from the present swarm to be the prey as follows:

a = 2 − t(2/Maxiteration); A = 2ar − a; C = 2r (7)
→
D =

∣∣∣C · →
X rand (t) − →

X (t)
∣∣∣ (8)

→
X (t + 1) = →

X rand (t) − A · →
D (9)

Whereas r denotes an arbitrary value, r indicates the present iteration amount, Max Iteration
signifies the maximal amount of iterations, a denotes a variable that has a reducing value; || signifies

the component-wise absolute value,
→
D shows the distance among present swarm member

→
X (t) and

the arbitrary whale
→
xrand (t) , C indicates a controlling coefficient, and (·) shows an component-wise

multiplication:
→
D =

∣∣∣C · −→
X ∗ (t) − →

X (t)
∣∣∣ (10)

→
X (t + 1) = −→

X ∗ (t) − A · →
D (11)

Whereas
−→
x∗ (t) indicates the optimum solution at iteration r and the parameter C, A are provided.

WOA selects among the two divergence methodologies according to the accurate value of A variable.
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For the intensification stage, WOA considering the optimal solution
−→
X ∗ (t) to be the prey and designs

a spiral formula among the present whale
→
x (t):

→
D =

∣∣∣−→
X ∗ (t) − →

X (t)
∣∣∣ (12)

→
X (t + 1) = →

D · ebl · cos (2π l) + −→
X ∗ (t) (13)

Whereas t denotes number of iterations,
→
D indicates the distance among present swarm member

and the optimal solution, b denotes a constant and l denotes an arbitrary value in the within [−1, 1].
WOA selects among the exploration and exploitation stages arbitrarily based on the value of p variable
that has a value in the range.

x (t + 1) =
{−→

X ∗ (t) − A · →
D if p < 0.5

→
D · ebl · cos (2π l) + −→

X ∗ (t) if p ≥ 0.5
(14)

where p denotes an arbitrary value. Alternating the two stages ensures the balance among diversifi-
cation and intensification methods, applying all the 50% of the time. Generally, the operation and
structure of WOA are simpler that facilitate its improvement.

To optimize the efficiency of the conventional algorithm, the IWO approach is derived by the use
of levy flight (LF) concept. LF was firstly established by the French mathematician in 1937 named
Paul Levy [21].

Levy (β) ∼ u = t−1−β , 0 < β ≤ 2 (15)

β indicates Levy index for altering the stability. The Levy arbitrary amount is evaluated by:

Levy (β) ∼ ϕ × μ

|v|1/β
(16)

Algorithm 1: The WOA algorithm
1) Load the whale population Xi(i = 1, 2, 3, . . . , n).
2) Evaluate the fitness of a whale.
3) Fix X ∗ as optimum whale.
4) while (t < maximum number of iterations) do

for (each search whale) do
Upgrade a, A, C, l p.
if (p < 0.5) then

if (|A| < 1) then
The whale location is increased.

else
if (|A| ≥ 1) then

Decide the arbitrary whale Xrand

The whale location is upgraded.
End

End
(Continued)
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Algorithm 1: Continued
else

if (p ≥ 0.5) then
Modify the whale location.

end
end

end
Validate if any searching agent exceeds the searching region.
Evaluate the fitness of a searching agent.
Upgrade X ∗ once an optimal solution is accomplished.
t = t + 1
end

In which μ & v indicates regular distribution, 
 shows standard Gamma function, β = 1.5, & ϕ

as follows:

ϕ =

⎡⎢⎢⎣ 
 (1 + β) × sin
(

π × β

2

)



((
1 + β

2

)
× β × 2

β−1
2

)
⎤⎥⎥⎦

1
β

. (17)

For gaining a tradeoff amongst the exploitation and exploration capacities of metaheuristic
model, LF approach is employed to upgrade searching agent position as follows:

X levy
i = Xi + r ⊕ levy (β) (18)

In which X levy
i indicates position of i th searching agent Xi after that upgrading and r indicate

arbitrary vector in zero and one ⊕ designates dot product. The IWO algorithm computes an objective
function with the minimization of mean square error (MSE), as defined in Eq. (19):

MSE =
∑i

N

∣∣yi − ŷi

∣∣2

N
(19)

where y states the number of rounds, yi indicates the experimental value, and ŷi symbolizes forecasted
values, correspondingly.

4 Experimental Validation

The experimental analysis of the IWO-DLELP method is performed using the historical hourly
load dataset of 3 USA power grids, collected from openly accessible PJM electricity market. The
three power grids are formula electric (FE) grid, Dayton grid, and East Kentucky Power Cooperative
(EKPC) grid. The proposed is simulated using Python tool.

Table 1 and Fig. 3 showcases the predictive outcomes of the IWO-DLELP model with existing
models such as mutual information-based artificial neural network (MI-ANN), bi-level, ANN-based
accurate and fast converging (AFC-ANN), and factored conditional restricted Boltzmann machine
(FCRBM) under distinct hours on FE grid [22]. The experiment value indicates that the IWO-DLELP
model has accomplished effectual results with the least difference among the actual and predicted
values. For instance, on hour 1 with actual load of 671.8923 kW, the IWO-DLELP technique has
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obtained predicted value of 670.3248 kW whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN
models have attained predicted values of 670.0814, 684.6426, 646.4398, and 652.2836 kW respectively.
Besides, on hour 10 with actual load of 717.9577 kW, the IWO-DLELP technique has reached
predicted value of 714.9781 kW whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN models
have attained predicted values of 714.5973, 705.7591, 698.4807, and 720.5594 kW respectively.

Table 1: Actual and predicted values of IWO-DLELP model on FE grid

Hours Actual (kW) Predicted values
IWO-DLELP FCRBM AFC-ANN Bi-level MI-ANN

1 671.8923 670.3248 670.0814 684.6426 646.4398 652.2836
2 677.7923 680.9394 674.3200 659.7464 664.9966 629.4997
3 700.3192 698.7744 702.2352 717.1355 633.8909 727.1357
4 734.5654 738.1555 738.5565 725.9191 746.7706 758.8978
5 760.9115 755.7781 755.3893 744.3557 776.5063 741.9420
6 767.4346 769.7439 770.0551 756.7706 796.9988 796.4177
7 754.7077 751.9659 757.9168 728.5175 745.6620 752.3842
8 744.3962 746.0192 746.5117 713.3715 754.3015 740.8047
9 731.4692 729.5952 729.0985 700.5927 716.9274 736.8293
10 717.9577 714.9781 714.5973 705.7591 698.4807 720.5594
11 706.0231 707.8816 708.1387 701.0535 730.3990 760.7012
12 699.6500 695.8466 703.7537 710.2087 699.3351 686.2797
13 703.1462 707.3957 707.8183 730.0849 726.8572 709.0619
14 726.0346 728.7234 729.1591 706.4077 751.9937 710.5707
15 753.6077 758.6295 758.9644 754.3459 701.0167 741.5006
16 768.8000 765.5264 772.4617 784.2367 787.4651 766.1960
17 768.8538 773.9116 774.3989 739.5004 779.3322 721.7944
18 754.7423 751.5026 751.2915 720.2147 738.4580 762.0327
19 730.7462 727.3026 734.6504 740.3744 692.6104 754.7735
20 703.3885 701.2318 700.7822 716.9534 670.8546 742.8857
21 682.3577 679.2816 678.9207 759.4604 657.0928 763.9875
22 661.9192 666.1867 666.6637 676.7575 630.0183 683.6624
23 672.6923 674.5807 674.8346 681.8295 630.5106 675.6675
24 676.6923 673.7681 679.8514 684.9512 635.0780 678.9070

Table 2 and Fig. 4 demonstrates the overall predictive results of the IWO-DLELP model with
recent techniques under diverse hours on Dayton grid. The results reported that the IWO-DLELP
model has attained proficient results with the minimal variation amongst the actual and predicted
values. For instance, on hour 1 with actual load of 175.3224 kW, the IWO-DLELP technique has
gained predicted value of 172.5558 kW whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN
models have achieved values of 178.5829, 168.5829, 171.5829, and 169.8923 kW respectively. In
addition, on hour 10 with actual load of 215.6234 kW, the IWO-DLELP technique has attained
predicted value of 714.9781 kW whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN models
have provided predicted values of 215.9234, 217.4214, 216.4214, and 222.9577 kW respectively.
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Figure 3: Actual and predicted values of IWO-DLELP model on FE grid

Table 2: Actual and predicted values of IWO-DLELP model on dayton grid

Hours Actual (kW) Predicted values
IWO-DLELP FCRBM AFC-ANN Bi-level MI-ANN

1 175.3224 172.5558 178.5829 168.5829 171.5829 169.8923
2 171.7990 169.0908 174.8321 165.4538 167.4538 165.7923
3 167.3052 174.6203 174.8754 166.7687 164.7687 162.3192
4 169.5134 163.9155 163.5234 162.1835 178.1835 162.5654
5 173.9342 166.8482 166.3543 183.1637 179.1637 180.9115
6 182.3425 187.0316 177.3824 178.2146 207.2146 198.4346
7 200.6273 186.2788 185.9854 211.4250 218.4250 208.7077
8 212.3932 226.3702 197.9234 218.0627 209.0627 221.3962
9 213.4532 217.1451 209.4321 213.8664 217.8664 215.4692
10 212.4507 215.6234 215.9234 217.4214 216.4214 222.9577
11 209.2531 216.4374 216.8374 220.5006 215.5006 220.0231
12 205.1459 209.4657 209.9321 221.0961 200.0961 217.6500
13 201.1462 206.3326 206.5612 197.6095 206.6095 198.6213
14 197.3546 208.4295 208.6578 210.6107 203.6107 209.1462
15 193.6077 203.9518 204.3196 203.3196 192.3196 200.0346
16 192.8345 191.1147 194.9134 187.5867 194.5867 189.6077
17 191.8538 190.9781 190.7534 202.6408 195.6408 200.8000
18 192.7023 195.5361 195.8034 203.0248 192.0248 201.8538
19 198.7462 194.7165 194.3480 203.3454 192.9239 201.7423
20 205.2805 208.0284 208.4567 185.9239 188.9967 187.7462
21 200.3075 197.3800 203.6512 181.9967 190.1795 189.3885
22 200.9032 188.4103 187.9234 210.1795 210.0057 213.3577
23 190.6533 187.9512 187.5915 203.2057 210.1417 200.9192
24 180.2476 182.4919 177.7435 175.5057 178.1530 170.6923
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Figure 4: Actual and predicted values of IWO-DLELP model on dayton grid

Table 3 and Fig. 5 highlights the comprehensive prediction outcomes of the IWO-DLELP model
with recent techniques under distinct hours on EKPC grid. The table values indicated that the IWO-
DLELP model has reached proficient outcomes over the other methods with the minimal variation
between the original and predicted values. For instance, on hour 1 with actual load of 132.8923 kW,
the IWO-DLELP technique has gained predicted value of 134.9866 kW whereas the FCRBM, AFC-
ANN, Bi-level, and MI-ANN models have depicted predicted values of 136.5019, 138.9234, 138.9234,
and 139.8923 kW respectively. Meanwhile, on hour 10 with actual load of 150.4692 kW, the IWO-
DLELP technique has exhibited predicted value of 151.6949 kW whereas the FCRBM, AFC-ANN,
Bi-level, and MI-ANN models have demonstrated predicted values of 148.8664, 150.4214, 153.1423,
and 150.4000 kW respectively.

Table 3: Actual and predicted values of IWO-DLELP model on EKPC grid

Hours Actual (kW) Predicted values
IWO-DLELP FCRBM AFC-ANN Bi-level MI-ANN

1 132.8923 134.9866 130.5829 136.5019 138.9234 139.8923
2 131.7923 129.7379 129.4538 123.3458 128.4832 127.7923
3 131.3192 132.5780 129.7687 123.6685 129.8723 127.3192
4 132.5654 130.4093 130.1835 145.1345 127.1358 139.5654
5 138.9115 141.2689 136.1637 147.1370 140.1378 142.9115
6 147.4346 149.1664 145.2146 153.1106 149.4634 151.4346
7 161.2115 157.9161 157.4474 168.4130 167.4013 168.2115
8 167.7077 163.7719 163.4250 170.2327 170.2723 173.7077
9 163.3962 161.3346 161.0627 175.6234 168.8602 170.3962
10 150.4692 151.6949 148.8664 150.4214 153.1423 150.4000
11 145.9577 143.7338 143.4214 157.0023 154.5602 153.9577
12 141.0231 142.2508 139.5006 140.3261 142.6101 140.0231

(Continued)
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Table 3: Continued
Hours Actual (kW) Predicted values

IWO-DLELP FCRBM AFC-ANN Bi-level MI-ANN

13 138.6500 140.9271 136.0961 146.9501 144.1295 146.6500
14 136.1462 141.3745 130.6095 130.6107 132.6071 130.1462
15 130.0346 128.9351 128.6107 130.3602 134.3106 136.0346
16 130.6077 128.8003 128.3196 127.5671 128.5027 123.6077
17 130.8000 130.9168 130.5867 124.6418 130.4082 124.8903
18 133.8538 132.0544 131.6408 143.3485 137.1348 139.8038
19 137.7423 135.5053 135.0248 146.3541 139.3924 141.0233
20 142.7462 140.7647 140.3454 137.9339 139.2267 137.7053
21 152.3885 151.3986 150.9239 149.9557 149.1534 147.3885
22 151.3577 152.3215 149.9967 156.9520 153.2357 157.3577
23 136.9192 139.2480 134.1795 135.1257 140.1017 139.9192
24 132.6923 130.4298 130.0057 133.5231 138.1530 139.6053

Figure 5: Actual and predicted values of IWO-DLELP model on EKPC grid

A comparative MSE inspection of the IWO-DLELP with recent methods is made under distinct
hours in Fig. 6 on FE grid. The results indicated that the IWO-DLELP model has accomplished
proficient results with the minimal MSE values under several hours. For instance, with 1 h, the IWO-
DLELP model has obtained lower MSE of 1.5675 whereas the FCRBM, AFC-ANN, Bi-level, and
MI-ANN techniques have attained higher MSE of 1.8109, 12.7503, 25.4525, and 19.6087 respectively.
At the same time, with 15 h, the IWO-DLELP model has obtained lesser MSE of 5.0218 whereas the
FCRBM, AFC-ANN, Bi-level, and MI-ANN techniques have attained higher MSE of 5.3567, 0.7382,
52.5910, and 12.1071 correspondingly. Along with that, within 24 h, the IWO-DLELP approach has
reached lower MSE of 2.9242 whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN algorithms
have attained higher MSE of 3.1591, 8.2589, 41.6143, and 2.2147 correspondingly.
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Figure 6: MSE analysis of IWO-DLELP technique under FE grid dataset

A brief MSE inspection of the IWO-DLELP with recent methods is made under distinct hours
in Fig. 7 on Dayton grid. The outcomes exposed that the IWO-DLELP model has accomplished
proficient results with the lesser MSE values under different hours. For instance, with 1 h, the
IWO-DLELP algorithm has reached lower MSE of 2.7666 whereas the FCRBM, AFC-ANN, Bi-
level, and MI-ANN techniques have attained higher MSE of 3.2605, 6.7395, 3.7395, and 5.4301
correspondingly. Followed by, with 15 h, the IWO-DLELP model has obtained lesser MSE of 10.3441
whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN techniques have attained higher MSE of
10.7119, 9.7119, 1.2881, and 6.4269 correspondingly. Next, within 24 h, the IWO-DLELP technique
has obtained reduced MSE of 2.2443 whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN
methods have attained higher MSE of 2.5041, 4.7419, 2.0946, and 9.5553 respectively.

Figure 7: MSE analysis of IWO-DLELP technique under Dayton grid dataset
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A detailed MSE inspection of the IWO-DLELP with recent methods is made under distinct hours
in Fig. 8 on EKPC dataset. The results indicated that the IWO-DLELP model has accomplished
proficient results with the minimal MSE values in several hours. For instance, with 1 h, the IWO-
DLELP approach has obtained lower MSE of 2.0943 whereas the FCRBM, AFC-ANN, Bi-level, and
MI-ANN techniques have reached higher MSE of 2.3094, 3.6096, 6.0311, and 7.0000 correspondingly.
Simultaneously, with 15 h, the IWO-DLELP model has obtained lower MSE of 1.0995 whereas
the FCRBM, AFC-ANN, Bi-level, and MI-ANN techniques have attained maximum MSE of
1.4239, 0.3256, 4.2760, and 6.0000 respectively. Lastly, within 24 h, the IWO-DLELP methodology
has obtained decreased MSE of 2.2625 whereas the FCRBM, AFC-ANN, Bi-level, and MI-ANN
approaches have attained maximum MSE of 2.6866, 0.8308, 5.4607, and 6.9130 correspondingly. After
examining the results and discussion, it is ensured that the IWO-DLELP model has accomplished
superior results over the other methods.

Figure 8: MSE analysis of IWO-DLELP technique under EKPC dataset

5 Conclusion

In this study, a new IWO-DLELP technique has been presented to effectually forecast the electric
load in SG environment for designing proficient ESS. The proposed IWO-DLELP model encompasses
pre-processing, partition clustering, BiGRU based prediction, and IWO based hyperparameter tuning.
The simulation analysis of the IWO-DLELP model is performed and the results are inspected
under several aspects. The comparison study reported the enhanced outcomes of the IWO-DLELP
model over the recent methods interms of distinct evaluation measures. Therefore, the IWO-DLELP
technique can be utilized for the promising load prediction performance in the SG environment.
In future, metaheuristics based feature selection models can be derived to enhance the predictive
performance.
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