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Abstract: The first major outbreak of the severely complicated hand, foot and
mouth disease (HFMD), primarily caused by enterovirus 71, was reported
in Taiwan in 1998. HFMD surveillance is needed to assess the spread of
HFMD. The parameters we use in mathematical models are usually classi-
cal mathematical parameters, called crisp parameters, which are taken for
granted. But any biological or physical phenomenon is best explained by
uncertainty. To represent a realistic situation in any mathematical model,
fuzzy parameters can be very useful. Many articles have been published on
how to control and prevent HFMD from the perspective of public health
and statistical modeling. However, few works use fuzzy theory in building
models to simulate HFMD dynamics. In this context, we examined an HFMD
model with fuzzy parameters. A Non Standard Finite Difference (NSFD)
scheme is developed to solve the model. The developed technique retains
essential properties such as positivity and dynamic consistency. Numerical
simulations are presented to support the analytical results. The convergence
and consistency of the proposed method are also discussed. The proposed
method converges unconditionally while the many classical methods in the
literature do not possess this property. In this regard, our proposed method
can be considered as a reliable tool for studying the dynamics of HFMD.
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1 Introduction

Although it can affect adults as well, HFMD is a viral illness that is only mildly contagious and
often affects young children. The two viruses most frequently responsible for the spread of HFMD
are coxsackievirusesA16 and enteroviruses71 [1,2]. The main symptoms of HFMD are fever, vomiting,
headache, malaise, lethargy, poor appetite, and a sore throat, but many infected persons don’t have any
symptoms. Another sign of HFMD is sores in the mouth or on the lips, as well as on the hands, feet,
and occasionally the buttocks and legs.

After being discovered in New Zealand in 1957, HFMD has rapidly gained popularity throughout
the world. It does not cause a particularly serious illness and is only moderately contagious. Recent
HFMD outbreaks in China, Taiwan, Singapore, Sarawak, Malaysia, etc. have spread awareness of
the disease through fatalities across the globe [3]. The HFMD virus can spread through coughing,
sneezing, and infected feces. For HFMD, there is no specific treatment. Specialists recommend
different medications for different symptoms, such as pain and fever that can be treated with
medication. Since there is no effective therapeutic treatment against HFMD, it should be controlled by
appropriate preventative measures such as isolation, personal protection against contact with infected
people, etc. In general, HFMD is not a serious condition in the infected population. Only a very
small minority of those infected require hospitalization, mainly due to neurological complications
(encephalitis, meningitis or acute flaccid paralysis) or pulmonary edema/pulmonary hemorrhage.
There is no lifelong immunity to HFMD because the disease is caused by a group of viruses very
similar to influenza.

In addition to medical issues, HFMD has tremendous social and financial repercussions on
countries. Understanding the spread of HFMD among susceptible populations is therefore very
important that will help policymakers to maximize the effectiveness of treatment resources. The subject
hasn’t been explored all that much, and there isn’t much literature on it that deals with mathematical
and numerical modeling. Roy et al. developed an SEIR model in order to better understand the
dynamics of HFMD and concluded that the transmission of HFMD depends more on the number of
actively infected individuals in the population at the start and also on the rate of disease transmission
at any given time [4].

Every community experiences changes as the climate changes. Similar to this, the parameters used
in mathematical modeling are dynamic and cannot be fixed [5]. Global warming is one of the key causes
of the rise in the earth’s average temperature. The varying temperatures also have an impact on how
quickly the virus spreads throughout society. In an effort to forecast the relationship of HFMD with
weather patterns, Urashima et al. explored the consequences of global warming [6]. By taking into
account quarantine in the population of children, Liu provided a periodic model for the simulation
of the dynamics of HFMD transmission [7]. Samanta investigated the discrete delay, non-uniform
population size, and saturation incidence rate in the delayed HFMD model. The model of a pulsed
vaccination has also been studied [8,9]. Hii et al. investigated Singapore’s HFMD incidence risk in
relation to weather variables [10].

Parameters used in existing HFMD epidemic models use crisp numbers, while parameter uncer-
tainty and population heterogeneity are very likely to occur. In order to make the model more
realistic, the use of fuzzy parameters in these models is very important. Many researchers have applied
fuzzy theory to study disease transmission. Barros et al. developed an epidemic model with fuzzy
transmission coefficients [11]. A comparison of the average change in viral load and the average
number of people infected was done to analyze the reproduction number. Ortega et al. studied
a rabies model in fuzzy senses [12]. Verma et al. developed a Susceptible, Exposed, Infected and
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Recovered (SEIR) model with fuzzy criteria [13]. A Susceptible, Infected and Recovered (SIR) model
was presented by Das et al. with imprecise parameters [14]. A model of food chain in the fuzzy
environment with optimal harvesting was studied by Sadhukhan et al. [15]. Mishra et al. presented
a fuzzy Susceptible, Exposed, Infected, Quarantine Recovered and Susceptible (SEIQRS) computer
virus model [16]. Mangongo et al. introduced fuzzy global stability [17]. A fuzzy Susceptible, Exposed,
Infected, Quarantine and Recovered (SEIQR) model was described by Allehiany et al. [18]. The
model was solved using the NSFD technique in fuzzy senses, a development of Micken’s theory
[19]. Dayan et al. proposed a SIR model in a fuzzy environment [20]. Euler, Runge Kutta of order
4 (RK-4) and the NSFD methods were developed with fuzzy extensions for the solution of the model.
Dayan et al. also presented rumor based fuzzy model and developed an NSFD scheme for its solution
[21]. Fractal fractional operators are used for the numerical solution of a tumour-immune model by
Ahmad et al. [22]. Many researchers studied the NSFD schemes in stochastic senses. Arif et al. studied
a stochastic SIR epidemic model [23]. A stochastic model for the numerical investigation of the
computer virus was presented by Shatanawi et al. [24]. A stochastic Dengue model using NSFD
schemes was proposed by Noor et al. [25]. Shoaib Arif et al. presented a stochastic model of COVID-19
and studied it using NSFD scheme [26]. Researchers studied fractional stochastic models, for example
[27], for example. Naveed et al. studied a COVID-19 model with delay effect using NSFD theory [28].
Shatanawi et al. proposed a corona virus model in stochastic senses and developed numerical schemes
for its solutions [29]. Baleanu et al. presented a fractional chaotic system and NSFD scheme is used
to study the chaotic behavior of the model [30]. Nawaz et al. proposed a fractional order diffusive
epidemic model to study the COVID-19 [31].

The existing HFMD models employing crisp numbers are insufficient in order to construct the
fuzzy numerical and mathematical techniques. In this context, we examined a SEIR model with fuzzy
parameters. The terms susceptible, exposed, infected and recovered are uncertain due to differences
in susceptibility, exposure, infectivity and recovery among individuals in the population. Due to the
different characteristics of these parameters in the population, uncertainties may arise. Different
ages of the population considered may have different customs, habits, resistances, etc. because of
their different origins. In many real situations, collecting numerical data as a fixed value is quite
difficult, while the range of the data can be easily decided. Models are needed to deal with the above
uncertainties for these different levels of individuals. The fuzzy theory facilitates us in resolving the
troubles of quantifying uncertainty in mathematical modeling. In this context, mathematical models
with fuzziness are more meaningful and perform better. With this in mind, we have extended a classic
SEIR model by introducing fuzziness into the model. HFMD transmission, recovery and human
mortality rates due to disease are considered fuzzy numbers because these parameters are direct
functions of HFMD. In the case of a classical system, these parameters are not direct functions of
the disease. Therefore, the fuzzy model can be considered more balanced and flexible. Thus, the use
of fuzzy parameters helps us to explain HFMD transmission in more detail.

2 HFMD Model with Fuzzy Parameters

Consider the following system of 4 first order ordinary differential equations representing the
SEIR model of HFMD dynamics proposed by Putri et al. [32].

dS
dt

= b − βIS − (μ + ω) S + ηR, (1)

dE
dt

= βIS − (α + μ) E, (2)
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dI
dt

= αE − (μ + d + γ ) I , (3)

dR
dt

= γ I − (μ + ω + η) R. (4)

The corresponding fuzzy model can be written as

dS
dt

= b − β (ς) IS − (μ + ω) S + ηR, (5)

dE
dt

= β (ς) IS − (α + μ) E, (6)

dI
dt

= αE − (μ + d (ς) + γ (ς)) I , (7)

dR
dt

= γ (ς) I − (μ + ω + η) R. (8)

The HFMD transmission, recovery from HFMD and the mortality rates of the infected individ-
uals are considered fuzzy numbers due to their uncertain natures. These parameters are denoted by
β (ς) , γ (ς , ) and d (ς) respectively, and are defined below.

β (ς) =

⎧⎪⎪⎨
⎪⎪⎩

0, ς ≤ ςmin

ς − ςmin

ςM − ςmin

, ςmin < ς ≤ ςM

1, ςM < ς ,

(9)

γ (ς) = γ0 − 1
ςM

ς + 1, 0 ≤ ς ≤ ςmin, (10)

and

d (ς) =
⎧⎨
⎩

(1 − ξ) − ε0

ςmin

ς + ε0, 0 ≤ ς ≤ ςmin

1 − ξ , ςmin < ς .
(11)

The death rated (ς) will be higher at the higher HFMD virus level i.e., ς0 < ς and 1 − ξ , (ξ ≥ 0)

is the maximum death.

2.1 The Fuzzy Basic Reproductive Number (BRN) Rh
f

The BRN Rh is given by

Rh = αβ (ς) b
(μ + d (ς) + γ (ς)) (μ + ω) (μ + α)

. (12)

Since Rh being direct function of HFMD virus ς can be analyzed as follows:

Case 1: If ς < ςmin, then we have β (ς) = 0 and we obtain,

Rh (ς) = 0.
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Case 2: If ςmin < ς ≤ ςM , then we have β (ς) = ς − ςmin

ςM − ςmin

and we obtain,

Rh (ς) = αβ (ς) b
(μ + d (ς) + γ (ς)) (μ + ω) (μ + α)

.

Case 3: If ςM < ς < ςmax, then we have β (ς) = 1 and we obtain,

Rh (ς) = αb
(μ + d (ς) + γ (ς)) (μ + ω) (μ + α)

.

Rh (ς) can be expressed as a triangular fuzzy number as:

Rh (ς) =
(

0,
αβ (ς) b

(μ + d (ς) + γ (ς)) (μ + ω) (μ + α)
,

αb
(μ + d (ς) + γ (ς)) (μ + ω) (μ + α)

)
.

The fuzzy reproduction number can be found as follows [17]:

Rh
f = E [Rh (ς)] ,

= αb (2β (ς) + 1)

4 (μ + d (ς) + γ (ς)) (μ + ω) (μ + α)
.

2.2 Fuzzy Equilibrium Analysis

Case 1: If ς < ςmin, we obtain:

E0
(

S0, E0, I 0, R0
) =

(
b

μ + ω
, 0, 0, 0

)
.

Case 2: If ςmin < ς ≤ ςM , then we have β (ς) = ς − ςmin

ςM − ςmin

and we obtain E∗ (S∗, E∗, I ∗, R∗), where

S∗ = (μ + α) (μ + d (ς) + γ (ς))

αβ (ς)
,

I ∗ = −(μ + ω + η) [−dαβ (ς) + (μ + d (ς) + γ (ς)) (μ + ω) (μ + α)]
(μ + α) (μ + d (ς) + γ (ς)) (μ + ω + η) − αηγ (ς)

,

E∗ = μ + d (ς) + γ (ς)

α
,

R∗ = γ (ς) I ∗

μ + ω + η
.

Case 3: If ςM < ς < ςmax, then we have β (ς) = 1 and we obtain E∗∗ (S∗∗, E∗∗, I ∗∗, R∗∗), where

S∗∗ = (μ + α) (μ + d (ς) + γ (ς))

α
,

I ∗∗ = −(μ + ω + η) [−dα + (μ + d (ς) + γ (ς)) (μ + ω) (μ + α)]
(μ + α) (μ + d (ς) + γ (ς)) (μ + ω + η) − αηγ (ς)

,

E∗∗ = μ + d (ς) + γ (ς)

α
,
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R∗∗ = γ (ς) I ∗∗

μ + ω + η
.

3 Numerical Modeling
3.1 Non-Standard Finite Difference (NSFD) Scheme

NSFD scheme for the system (5–8) is

sn+1 = sn + h [b + ηrn]
1 + hβ (ς) in + h (μ + ω)

, (13)

en+1 = en + hβ (ς) sn+1in

1 + h (α + μ)
, (14)

in+1 = in + hαen+1

1 + h (μ + d (ς) + γ (ς))
, (15)

rn+1 = rn + hγ (ς) in+1

1 + h (μ + ω + η)
. (16)

3.2 Convergence Analysis

In this segment, the convergence of the developed NSFD scheme at DFE point E0
(
S0, E0, I 0, R0

)
is discussed here.

The system (13–16) can be written as:

B1 = s + h (b + η)

1 + hβ (ς) i + h (μ + ω)
, (17)

B2 = e + hβ (ς) si
1 + h (α + μ)

, (18)

B3 = i + hαe
1 + h (μ + d (ς) + γ (ς))

, (19)

B4 = r + hγ (ς) i
1 + h (μ + ω + η)

. (20)

The Jacobian matrix corresponding to the system (17–20) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂B1

∂S
∂B1

∂E
∂B1

∂I
∂B1

∂R
∂B2

∂S
∂B2

∂E
∂B2

∂I
∂B2

∂R
∂B3

∂S
∂B3

∂E
∂B3

∂I
∂B3

∂R
∂B4

∂S
∂B4

∂E
∂B4

∂I
∂B4

∂R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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∂B1

∂S
= 1

1 + hβ (ς) i + h (μ + ω)
,
∂B1

∂E
= 0,

∂B1

∂I
= s + h (b + η)

1 + hβ (ς) i + h (μ + ω)
,

∂B1

∂R
= hβ (ς) [s + h (b + η)]

[1 + hβ (ς) i + h (μ + ω)]2 ,

∂B2

∂S
= hβ (ς) i

1 + h (α + μ)
,
∂B2

∂E
= 1

1 + h (α + μ)
,
∂B2

∂I
= hβ (ς) s

1 + h (α + μ)
,
∂B2

∂R
= 0,

∂B3

∂S
= 0,

∂B3

∂E
= hα

1 + h (μ + d (ς) + γ (ς))
,
∂B3

∂I
= 1

1 + h (μ + d (ς) + γ (ς))
,
∂B3

∂R
= 0,

∂B4

∂S
= 0,

∂B4

∂E
= 0,

∂B4

∂I
= hγ (ς)

1 + h (μ + ω + η)
and

∂B4

∂R
= 1

1 + h (μ + ω + η)
.

The above Jacobian matrix becomes

J1 =

⎡
⎢⎢⎣

B11 0 B13 B14

B21

0
0

B22

B32

0

B23

B33

B43

0
0
B44

⎤
⎥⎥⎦

where B11 = 1
1 + hβ (ς) i + h (μ + ω)

, B13 = s + h (b + η)

1 + hβ (ς) i + h (μ + ω)
, B14 = hβ (ς) [s + h (b + η)]

[1 + hβ (ς) i + h (μ + ω)]2 ,

B21 = hβ (ς) i
1 + h (α + μ)

, B22 = 1
1 + h (α + μ)

, B23 = hβ (ς) s
1 + h (α + μ)

, B32 = hα

1 + h (μ + d (ς) + γ (ς))
,

B33 = 1
1 + h (μ + d (ς) + γ (ς))

, B43 = hγ (ς)

1 + h (μ + omega + η)
and B44 = 1

1 + h (μ + ω + η)
.

The above Jacobian matrix at the Disease Free Equilibrium (DFE) E0
(

S0, E0, I 0, R0
) =(

�

μ
, 0, 0, 0

)
is

J1
∗ =

⎡
⎢⎢⎣

B11 0 0 0
0
0
0

B22

B32

0

0
B33

B43

0
0
B44

⎤
⎥⎥⎦

The proposed NSFD scheme will be unconditionally convergent iff |λi| < 1, i = 1, 2, 3, 4.

Here, λ1 = 1
1 + h (μ + ω)

, λ2 = 1
1 + h (α + μ)

, λ3 = 1
1 + h (μ + d (ς) + γ (ς))

and

λ3 = 1
1 + h (μ + ω + η)

. Since all eigen values are less than 1, which proves the desired result.

3.3 Consistency Analysis

To check the consistency of the proposed scheme, we apply the Taylor’s series. From Eq. (13),

sn+1 [1 + hβ (ς) in + h (μ + ω)] = sn + h (b + ηrn) . (21)
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For the consistency, following procedure is adopted, considering the Taylor’s series expansion

sn+1 = sn + h
ds
dt

+ h2

2!
d2s
dt2

+ h3

3!
d3s
dt3

+ . . . ,

Substituting the value of sn+1 in the above equation and after some simplifications, we get(
h

ds
dt

+ h2

2!
d2s
dt2

+ h3

3!
d3s
dt3

+ . . . ,
)

+ hβ (ς) in

(
sn + h

ds
dt

+ h2

2!
d2s
dt2

+ h3

3!
d3s
dt3

+ . . . ,
)

+h (μ + ω)

(
sn + h

ds
dt

+ h2

2!
d2s
dt2

+ h3

3!
d3s
dt3

+ . . . ,
)

= hb + hηrn,

Taking h → 0, we get

dS
dt

+ β (ς) IS + (μ + ω) S = b + ηR,

Or
dS
dt

= b − β (ς) IS − (μ + ω) S + ηR.

From Eq. (14),

en+1 [1 + h (α + μ)] = en + hβ (ς) sn+1in (22)

The Taylor’s series expansion of the compartment E is

en+1 = en + h
de
dt

+ h2

2!
d2e
dt2

+ h3

3!
d3e
dt3

+ . . . ,

Substituting the value of en+1 in Eq. (22) and after some simplifications, we get(
h

de
dt

+ h2

2!
d2e
dt2

+ h3

3!
d3e
dt3

+ . . . ,
)

+ h (α + μ)

(
en + h

de
dt

+ h2

2!
d2e
dt2

+ h3

3!
d3e
dt3

+ . . . ,
)

= hβ (ς) insn,

Taking h → 0, we get

dE
dt

= β (ς) IS − (α + μ) E.

Similarly, we can get

dI
dt

= αE − (μ + d (ς) + γ (ς)) I ,

and
dR
dt

= γ (ς) I − (μ + ω + η) R

by applying Taylor’s series on Eqs. (13–16). It is therefore concluded that our proposed scheme is
consistent of order 1.
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4 Numerical Simulations

Dynamics of the subpopulations are shown in Figs. 1 and 2 for DFE at h = 0.1 and h = 10
respectively. All compartment of the studied model are clearly converging to their steady states in
both cases. It can be concluded that the increase in the value of the time step sizes does not affect the
convergence of our proposed NSFD scheme. This is an interesting feature of the developed method
which many other classical methods such as Euler Maruyama, Euler’s Stochastics and RK-4 do not
keep it at increasing step sizes as pointed out by Raza et al. [33].

Fig. 3 shows the solutions of the exposed and infected compartments respectively at the first EE
point, i.e., case 2 at a small step size h = 0.1. Then the step size is increased to h = 10, the results of
which are depicted in Fig. 4. The graphs are positively converging to their steady states in both cases.
We can conclude from this behavior that the constructed method is capable of reflecting the dynamics
of the studied model for case 2. The typical standard schemes that exist in the literature can cause
chaos and misleading variations for some passions of the discretization constraints [34].

Figure 1: Dynamics of subpopulations at DFE at h = 0.1
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Figure 2: Dynamics of subpopulations at DFE at h = 10

Figure 3: Dynamics of exposed and infected populations at first EE at h = 0.1
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Figure 4: Dynamics of exposed and infected populations at first EE at h = 10

Dynamics of the exposed and infected populations for case 3 are shown in Figs. 5 and 6
respectively. An increase in both compartments can be seen with the increase in the value of the
transmission rate of the disease. The consistency, convergence and positive solutions at both smaller
and large step sizes can also be observed which are the most important features of such kinds of
models. Many standard schemes fail to preserve these characteristics. From the above graphs, it can
be concluded that the method developed in this work can be considered a more reliable strategy for
investigating the disease of FHMD in the human population at EE.

A comparison of the exposed and infected compartments of the studied model at DFE and EEs is
shown in Figs. 7 and 8 respectively. The proposed method gives convergent solutions at both small and
a large step values of h. Moreover, an increase in the compartments of exposed and infected population
can also be easily observed with increasing the value of the virus load.

Figure 5: Dynamics of subpopulations at second EE at h = 0.1
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Figure 6: Dynamics of subpopulations at second EE at h = 10

Figure 7: Comparison of subpopulations at DFE and EE at h = 0.1

Figure 8: Comparison of subpopulations at DFE and EE at h = 10
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5 Conclusion

A model of HFMD with fuzzy parameters is studied in this work. In general, due to the natural
immune power of mankind, with a small amount of viruses, a disease may not be effective. The system
will be endemic if the virus quantity is higher. Therefore, for a small amount of virus, heavy treatment is
not necessary. This phenomenon can only be observed in the fuzzy model, and the crisp model does not
have the ability to sustain it. Therefore, fuzzy models are more flexible than corresponding classical
models. Further, while considering the problems associated with human health in the world, more
reliable models are needed and the fuzzy models are quite capable of this. The parameters β (ς) , γ (ς , )
and d (ς) are considered as fuzzy numbers in this study. The reproduction number and equilibrium
analysis in fuzzy sense are analyzed. To solve the studied model numerically, an NSFD scheme is
implemented in fuzzy environments and its stability is analyzed. Consistency of the proposed method
is also studied. The proposed method preserves the convergence and positive behavior of the numerical
solutions at each time step, which are the main characteristic of this type of model. This present work
relies mainly on the involvement of the TFN. In future work, we will try to consider other fuzzy
numbers like trapezoidal and pentagonal fuzzy numbers depending on the disease virus. This study
will open some new windows for researchers in this field. Delayed, stochastic and fractional models
respectively with fuzziness and many more directions can also be considered as future directions. The
proposed approach can also be extended to machine learning problems as mentioned a few.
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