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Abstract: At present Bayesian Networks (BN) are being used widely for
demonstrating uncertain knowledge in many disciplines, including biology,
computer science, risk analysis, service quality analysis, and business. But they
suffer from the problem that when the nodes and edges increase, the structure
learning difficulty increases and algorithms become inefficient. To solve this
problem, heuristic optimization algorithms are used, which tend to find a
near-optimal answer rather than an exact one, with particle swarm optimiza-
tion (PSO) being one of them. PSO is a swarm intelligence-based algorithm
having basic inspiration from flocks of birds (how they search for food).
PSO is employed widely because it is easier to code, converges quickly, and
can be parallelized easily. We use a recently proposed version of PSO called
generalized particle swarm optimization (GEPSO) to learn bayesian network
structure. We construct an initial directed acyclic graph (DAG) by using
the max-min parent’s children (MMPC) algorithm and cross relative average
entropy. This DAG is used to create a population for the GEPSO optimization
procedure. Moreover, we propose a velocity update procedure to increase
the efficiency of the algorithmic search process. Results of the experiments
show that as the complexity of the dataset increases, our algorithm Bayesian
network generalized particle swarm optimization (BN-GEPSO) outperforms
the PSO algorithm in terms of the Bayesian information criterion (BIC) score.

Keywords: Bayesian network; structure learning; particle swarm optimization

1 Introduction

Bayesian networks (BN) [1] are well accepted and broadly used class of probabilistic models in
artificial intelligence. They combine the strengths of both probability theory and graphical theory.
Due to this reason, they are always the first choice to represent knowledge while working in domains
dealing with uncertainty like risk analysis [2], bio information [3], prediction [4,5], classification [6],
estimating service quality [7], etc. They are also referred to as belief networks.
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In simple terms, BN is a DAG i.e., it consists of nodes and edge, where nodes represent random
variables and edge the conditional independence present among variables. Moreover, BN also has
some conditional probability tables (CPTs) showing the probability of the occurrence of an event given
a combination of nodes and their values [8]. The process of learning DAG is known as “structure
learning,” whereas the process of learning CPTs is known as “parameter learning.” The focus of this
research is on structure learning.

We can use three methods to learn the bayesian network structure that is score-based, where we
choose the bayesian network having the best score [9-11]. Constraint-based, where we recurrently
apply statistical tests of our choice to find the independencies between variables [ 12—14]. Hybrid, which
is the result of merging the strengths of both constraint and score-based approaches [15-17]. Both
exact and heuristic search techniques can be employed to find the optimal bayesian network structure
(i.e., exploring all possible graphs), but generally, the number of possible DAGs is large (this number
increases exponentially with an increase in the number of nodes). It is considered to be NP (non-
deterministic polynomial) hard problem [18]. Hence to find the optimal bayesian network structure in
good time (i.e., reducing search complexity) heuristic methods are preferred.

In the past decades, researchers have proposed different heuristic approaches to learning bayesian
network structure, including (but not limited to) particle swarm optimization (PSO) [9,19-24], genetic
algorithm [25], simulated annealing [26], artificial bee colony [27], artificial ant colony [28], pigeon
inspired optimization [29], firefly algorithm [30]. Among all these approaches, PSO has been widely
applied for the reason that it is simpler to code (and parallelize), has fast convergence speed, and has
better global search ability [9]. Bayesian network structure learning falls in the category of the discrete
optimization problem, while PSO is in continuous optimization, so we are required to discretize it. To
do so, some methods use coding i.e., alphabetic or binary coding [29-33] while others propose new
velocity, position updates [9,23,31], et cetera.

The remainder of the paper is systematically ordered as follows: in Section 2, we discuss recent
and past work done on our topic and our contribution. In Section 3, we present the basics of Bayesian
networks and score-based BN structure learning. In Section 4, we discuss in detail the discretization
of GEPSO and the velocity update procedure. In Section 5, we report our proposed methodology. In
Section 6, we present the experimental setup, evaluation indicators, and results. Lastly, conclusions are
presented in Section 7.

2 Related Work

Recently researchers have adopted the following approaches to learning BN structure using
PSO: local-information PSO (LIPSO) [9] that incorporates local information in the BN structure
learning process by applying the max min parent’s and children (MMPC) algorithm [34] followed
by mutual information to get initial DAG. Peter and Clark-PSO (PC-PSO) [20] where the PC [35]
algorithm is used to generate an initial DAG for PSO, followed by a genetic algorithm step to
vary the search process. Novel discrete-PSO (NDPSO-BN) [21] is proposed, here each particle (for
PSO) is characterized as a matrix corresponding to a candidate solution (BN), to avoid premature
convergence neighborhood searching operators are used. Particle swarm optimization-BN (PSOBN)
[19] approaches the problem from a new angle by using likelihood to represent the particle position and
velocity. But three-phase dependency analysis (TDPA) [36] is used to get the initial DAG, which can
fail to construct the right BN structure (due to TDPA faithfulness condition for monotone DAG).
Modified particle swarm optimization (MPSO) [22] is proposed which uses mutation to avoid local
optima problems [24] combines PSO [37] and the K2 algorithm [38], while [39] combines chaotic PSO
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(CPSO) with the K2 algorithm. PSO searches in space of orderings to obtain the ordering of the
global best solution then K2 uses the ordering to find the optimal solution. Maximum likelihood tree-
immune-based PSO (MLT-IBPSO) [40] is proposed which uses MLT (maximum likelihood tree) [41] to
get an initial DAG followed by binary PSO combined with an immune strategy to search. An approach
focused on learning with small datasets is proposed in [42].

It is a common issue to face challenges regarding the time taken and accuracy while experimenting
on higher complexity networks.

Generalized particle swarm optimization (GEPSO) [43] proposes variations in the PSO algorithm.
It enhances the original PSO by integrating more terms (two) into the velocity update equation.
The purpose of these terms is: to increase knowledge sharing and interrelations between particles, to
diversify the swarm, and to enhance searching ability in unexplored areas of the search space. Table |
shows the different methodologies that fellow researchers have used. We can see that different scoring
functions have been used that include Bayesian information criterion (BIC), K2, Akaike information
criterion (AIC), Minimum description length (MDL), and Bayesian Dirichlet equivalent (BDe).

Table 1: Comparison of related works

Ref. No.  PSO/Variant Hybrid or Score-based  Scoring function used

9 PSO Hybrid BIC
19 PSO Score-based BIC
20 Variant Hybrid BIC
21 Variant Score-based K2
22 Variant Score-based BIC
24 Variant Score-based AIC
39 Variant Score-based BDe
40 Variant Score-based MDL

In this paper, we have made two contributions: firstly, we discretize GEPSO and use it to learn
BN structure (the discretization was inspired by [9,31]). Secondly, we propose a novel velocity update
procedure that optimizes the Bayesian network-generalized particle swarm optimization (BN-GEPSO)
search process.

3 Brief Introduction to Bayesian Networks

Two basic components that make a BN are a DAG denoted as DAG = G = (Nodes, Edges) and
more than one table that describe CPTs. Because BN’s follow Markov property a CPT for a particular
node shows the effect of parents on that node. An example of a bayesian network is provided in Fig. 1.

An edge that goes from node N1 to node N2 (denoted as N1—N2) means that node N1 is the
cause (parent) of node N2. Non-appearance of an arrow tells that variable under observation does not
depend on each other (marginal or conditional independence). Leveraging the Markov property, we
can write the following, see Eq. (1) for a node B and its parents Pa(B):

PB) =[] _ PBIP.(B) (1)
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Figure 1: ASIA (lung cancer) Bayesian network

Score-Based Approach for BN Structure Learning

The aim of the score-based BN structure learning is to use the training dataset (D) to determine
the network structure (T) having the best score see Eq. (2).
P(T,D)
P(D)
Since P(D) is independent of structure, P(T, D) is used as a scoring metric. There are different
scoring metrics, but the one we will be using is the BIC score see Eq. (3).

BIC,,.(T|D) = Zn: "Z“: i M, log (];\44”‘”)

u=l v=1 w=l

P(T|D) = = P(T,D) 2

1 n
) Z Guru—1)logar) 3)
u=1

Here M represents samples in the dataset, z is the total number of nodes, r, is the possible values
of u" node x,, ¢, the possible values of the parent node of x,, M,,, is the number of cases in which
parent nodes of x, take v value and x, take w” value and M,, the number of cases where parent nodes
of x, take v value.

4 Discretization of GEPSO

After selecting the scoring function, we apply GEPSO to search for the optimal solution. Since
we are working on a discrete optimization problem, Discrete binary PSO coding is used where particle
position is represented with a matrix (see Eq. (4)) having values {0, 1} and velocity by a matrix (see
Eq. (5)) having values {—1, 0, 1}. If n is the total number of nodes in the network, then:

X e X Xin
ann = ' ’ ) ’ (4)
xn—l,l CR xn—l,n—l xn—l,n
- xn,l LR xn,n—l xn‘n
™ Vi ce Vin-1 Vin
I/nxn = ' ' ’ : (5)
vn—l,l e vn—l,nfl vn—l,n
- vn,l e vn,nfl vn,n

Both these matrices have size n x n. Fig. 2 is an example of coding, i.e., from a DAG to a matrix.
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Figure 2: Position “Node coding” example

The GEPSO formula is redefined to work in discrete space (using DBPSO). Refer to Egs. (6)
and (7):
Prtvel, = Privel;”" + (Pbpos,” — Pripos,™

J

+ (Gbpos™ — Prtpos™
J J

i—1
random

+ (Pbpos,,,, — Pripos;") + Pvelrandom (6)

Pripos, = Pripos;" + +Prtvel, (7

where the terms used are j = Particle number, i = Iteration number, Prtvelj’lz Previous/initial velocity
randomly initialized in the start, Prtvel = Particle velocity, Pbpos = Personal best position, Gbpos
= Global best position, Prtpos = Particle position, Pbpos’.|, = Best position of randomly chosen
particle till iteration i, Pvelrandom = Randomly generated velocity.

Pbhpos’!. term incorporates the knowledge of neighboring particles at every iteration, thus
leading us toward good results and bringing variety to the search process. On the other hand,
Pvelrandom term prevents the algorithm from getting stuck at local optima. Below are examples (see
Figs. 3 and 4) showing how particle velocity is calculated using DBPSO, and how we update the
position when we have velocity.

()—(e) (8)—(2)
g =

A B C A B C A B C
Afo 1 0 Afo 1 1 Afo o -1
Bjo o 1 |™BJo o 1 |= BJo 0 0O
clo oo clo o o clo o o

X, X, vy

Figure 3: New velocity using subtraction

We update the personal and global best position as shown in Eqs. (8) and (9):
If (BIC (Prtpos_;) > BIC (Prtpos;_l)) ®)

then Pbpos, = Pripos,
If (BIC (Pbpos)) > BIC (Gbpos. "))

then Gbpos; = Pbposj )]
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Figure 4: New position using addition

Velocity Update Procedure

In our research, we keep the position updated as it is, while we propose to use a selection method
to update velocity. We define the five velocities shown in Eq. (6) as V1, V2, V3, V4, and V5. Where
V1 is the previous/initial velocity and we obtain the others as follows: V2 by subtracting the personal
best position from the previous position, V3 by subtracting the global best position from the previous
position, V4 by subtracting a random particles personal best position from the previous position,
finally V5 is the randomly generated velocity. For each velocity, first, we find out the corresponding
position update by addition, then we calculate the BIC score of the new position (pos,, for V1 by using
function BIC (input). This is shown in Eq. (10)

temp, = pos,, + V,
cyclecheck
bic = BIC(temp,) (10)
After that, we save all BIC scores in an array and normalize the array by its sum (so that the
outputs are between {0,1}. We sort the array (array = [a, b, ¢, d, e]) in ascending order (while doing so,
we keep the velocity linked with array indexes, such that we know whether “a” corresponds to V1 or

V2 and so on). To be unbiased a random number in the interval {0,1} and we pick the update velocity
asin Eq. (11). Suppose that a, b, ¢, d, e belongs to V1, V2, and so on after sorting.

If a>rand V.=V

Elself b > rand V. yu. = V>

Elself ¢ > rand V. = V5

Elselfd > rand V . =V,
Else Ve = Vs (11)

5 Proposed Methodology

In our proposed method, we get an initial DAG (initial structure) to generate PSO particles
by combining the MMPC algorithm [34] with cross-relative average entropy (CRAE). Algorithm 1,
describes a short pseudo code for obtaining candidate parents and children (CPC) of a node using
MMPC, while Algorithm 2, describes the complete procedure.
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Algorithm 1: MMPC

Input: Targetnode, Dataset D

Output: CPC of Targetnode

CPC= {}

repeat
Fill CPC of Targetnode using max-min heuristic (Forward Phase)
until CPC does not change

for all nodes in CPC
Check independence between nodes in CPC (Backward Phase)
end for
Return: CPC

Algorithm 2: BN-GEPSO

Input: Dataset D, Number of iterations N, particle population size ns
Output: Bayesian Network Structure, Corresponding BIC score
CPC= {}
Repeat for all nodes CPC = MMPC (targetnode, D)
for i = 1 to nodesize do
if CRAE (X, to X;) > CRAE ( X, to X,) then X, =1
end if
end for
Check for cycles if any remove for i = 1 to ns do
Generate initial population by adding and reversing edges
Check for cycles if any remove end for
Initialize velocity, position, other parameters
forj=1to Ndo
fori=1tonsdo
Update Velocity matrix as per Velocity Update Procedure [SEC-4]
Update Position matrix using
Check for cycles if any remove (for position)
Update Personal best position by employing Eq. (8)
Update Global best positions by employing equation
end for
end for
BestStr = Global best position
bic=BIC (BestStr)
Return: BestStr, bic

MMPC algorithm takes the target node and dataset as input and outputs a set that consists
of possible parents and children of the target node (this set is not constrained in our approach).
The max-min heuristic outputs the maximum association achieved (maximum from all the minimum
associations, given target node and CPC set) and the node that has this value. If this association value
is greater than zero, we add that node to our CPC set. In the backward phase, we double-check our
CPC set for false positives (if there is some node in CPC that can cause another node in CPC to be
independent of the target variable when conditioned on it, we remove that (another) node).
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After MMPC executes, we have an un-directed graph between the target node and its CPC, so we
use CRAE (Egs. (12) and (13)) to determine the edge direction. This results in a directed graph. Since
BN is a DAG by definition, we remove cycles from the directed graph, making it a DAG.

For two variables A; A;, where |A;| and |A;| represent the count of values of the variables A; and
A;. CRAE is given as follows:

CRAE (A_ - A-) — 2 Z;n:lp (af’aj) logp(ai|a;)
/ T - er":lp (a;) logp(a;)| 4]

S (an @) logp(ala
CRAE (4, > A4)) = 2 25 p (@.a) logp(ala) (13)

- ;‘”:lp (aj) logp(a;)| A,

We perform two operations similar to those used in [8] i.e., adding new edges and reversing the
edges randomly. To produce an initial population for PSO search and to diversify it. These operations
will create cycles, so we remove them to ensure all particles are DAGs. Last but not least, PSO
initial parameters are initialized along with position and velocity matrices, followed by the PSO
search. During the search when we update the position, cycles might be created, so we remove them
accordingly.

(12)

6 Experiments and Results
6.1 Experimental Setup

The experimental setup consisted of a personal laptop having the 10th generation Intel Core
i7-10750H CPU with a frequency of 2.60 GHz, MS-Windows 10 (x64), and 16 GB RAM. The
programming language used was Python (3.9.7), the main library used was “bnlearn,” and the compiler
was “Spyder IDE 5.1.5” (Anaconda). The datasets used for testing our algorithm are the ASTA
network (benchmark dataset), a small dataset that relates a visit to Asia and lung diseases, and
the SACHS network, which consists of data regarding 11 proteins and phospholipids derived from
immune system cells. For each dataset, we use four different sample sizes. These datasets are available
in the bnlearn library. Samples are generated by using the python “bn.sampling” (model, number-
samples) command. Table 2 gives basic details about the datasets used.

Table 2: Basic information about datasets

Dataset Nodes Edges  Samples

ASIA 8 8 500, 1000, 3000, 5000
SACHS 11 17 500, 1000, 3000, 5000

6.2 Evaluation Indicators

To evaluate our results, i.e., the learned Bayesian network structure we use the Mean BIC score
of the final global best structure. BIC score outputs a negative value. The smaller the value, the better
the result. In other words, BIC score furthest away from 0 is better. Time taken per iteration of PSO
(TPI) in seconds and the total time taken for complete execution in minutes (TTT). Each experiment is
repeated five times to get mean values. The number of particles is 100, total iterations for the GEPSO
search procedure are 50.
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6.3 Results

We have named our method BN-GEPSO, and we compare our results against discrete binary
PSO (DBPSO) and LIPSO. DBPSO is in fact classic PSO, where we code position and velocity into
matrices followed by adding the three velocity matrices and updating the position by the addition of
velocity and position matrix. Table 3 displays the results for the ASIA dataset while Table 4 displays
the performance for the SACHS dataset on DBPSO, BN-GEPSO, and LIPSO using sample sizes of
500,1000,3000, and 5000.

Table 3: Results of different algorithms used to construct the ASIA dataset

Dataset/Samples Evaluation criteria  DBPSO BN-GEPSO LIPSO
ASIA BIC —1233.88  —1231.19 —1226.69
500 TPI 62 187 104

TTT 5 15 9
ASIA BIC —2284.15  —2296.82 —2299.74
1000 TPI 60 171 99

TTT 5 14 8
ASIA BIC —6780.23  —6796.50 —6795.45
3000 TPI 63 172 104

TTT 5 14 8
ASIA BIC —11352.54 —11343.17 —11342.68
5000 TPI 60 166 100

TTT 5 14 8

Table 4: Results of different algorithms used to construct the SACHS dataset

Dataset/Samples Evaluation criteria ~ DBPSO BN-GEPSO LIPSO
SACHS BIC —4818.6 —6114.9 —7500.3
500 TPI 72 200 140

TTT 6 16 12
SACHS BIC —8691 —9402.5 —10989.04
1000 TPI 80 214 151

TTT 7 18 13
SACHS BIC —24270.7  —25015.5 —26956.63
3000 TPI 75 205 140

TTT 6 17 12
SACHS BIC —39610.92 —41256.84 —44806.97
5000 TPI 75 222 150

TTT 6 18 12
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If we compare our BIC score with DBPSO and LIPSO on the ASIA dataset, we perform better
than both of them. If in any case, we do lose, the margin is small. Contrary to that, on the SACHS
dataset, LIPSO stays ahead of BN-GEPSO while using a dataset with more edges and nodes. A
reason for this behavior is that LIPSO adds more information into the initial DAG using the mutual
information step. In contrast, we don’t use this step. Another important behavior to see is that as the
dataset gets bigger, we are outperforming the DBPSO algorithm, which was our target in this research,
to prove that GEPSO works better than PSO while learning the BN structure.

Now, if we compare TTI and TTT terms we are losing here. The reason is that we have five velocity
terms (PSO has three). Another reason is that we are not using any constraining step to limit the
maximum number of CPC nodes for each target node.

While DBPSO does not have CPC and LIPSO constrains it to a maximum of 2. We did this to
show how knowledge sharing in GEPSO is working. Note that the fourth term in GEPSO, which
choose the random best position of a random particle, works to share information between particles.
From our experiments, we can see that this information sharing is not as effective as using mutual
information at the beginning phase before the CRAE step.

7 Conclusions

We have discretized GEPSO (a new generalized PSO algorithm) and used it to learn the Bayesian
network (BN) structure. We name this Bayesian network generalized particle swarm optimization (BN-
GEPSO). The discretization was inspired by discrete binary particle swarm optimization (DBPSO).
BN-GEPSO uses the max min parent’s and children (MMPC) algorithm and crosses relative average
entropy (CRAE) to generate an initial directed acyclic graph (DAGQG) structure. Then two operations
of adding and reversing edges are performed to generate an initial population for GEPSO. Finally,
GEPSO iterates, and we choose the best global solution as our output. We also proposed a way to
update the velocity hence improving the search process. Experiments were performed on datasets
of different sample sizes, which concluded that BN-GEPSO outperforms DBPSO as the complexity
of the dataset increases. Future research directions include: reducing total time taken per iteration
(TTI) and total time taken for complete execution (TTT) values by constraining candidate parents
and children (CPC) set, applying this approach to continuous data (learning BN structure from
continuous data, and instead of using our equations, the GEPSO paper is to be the reference. GEPSO
has different parameters, weights, etc., which are not taken into consideration when discretizing. This
means that we still have to fully unleash the power of this algorithm). This approach can also be
extended towards time-based data as in dynamic Bayesian networks (where we work with data at
different time slices), experimenting on large samples sizes and datasets by leveraging the parallel
power of graphics processing units (GPUs), improving the velocity update procedure, application-
based studies, for example, using BN-GEPSO for the analysis of disease, making an application for
insurance companies to predict the risk of each customer to decide whether they are a good or bad fit
(this approach will focus more on BN prediction, BN classification, and BN inference).
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