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Abstract: Concept drift is a main security issue that has to be resolved since it
presents a significant barrier to the deployment of machine learning (ML)
models. Due to attackers’ (and/or benign equivalents’) dynamic behavior
changes, testing data distribution frequently diverges from original training
data over time, resulting in substantial model failures. Due to their dispersed
and dynamic nature, distributed denial-of-service attacks pose a danger to
cybersecurity, resulting in attacks with serious consequences for users and
businesses. This paper proposes a novel design for concept drift analysis
and detection of malware attacks like Distributed Denial of Service (DDOS)
in the network. The goal of this architecture combination is to accurately
represent data and create an effective cyber security prediction agent. The
intrusion detection system and concept drift of the network has been analyzed
using secure adaptive windowing with website data authentication protocol
(SAW_WDA). The network has been analyzed by authentication protocol
to avoid malware attacks. The data of network users will be collected and
classified using multilayer perceptron gradient decision tree (MLPGDT) clas-
sifiers. Based on the classification output, the decision for the detection of
attackers and authorized users will be identified. The experimental results
show output based on intrusion detection and concept drift analysis systems
in terms of throughput, end-end delay, network security, network concept
drift, and results based on classification with regard to accuracy, memory, and
precision and F-1 score.

Keywords: Concept drift; machine learning; DDOS; cyber security;
SAW_WDA; MLPGDT

1 Introduction

The current technological world of present era is changing and making it harder to protect systems
and links against mischievous attacks or breaches. One sort of security technology is called an intrusion
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detection system (IDS) that has been designed to identify and prevent intrusions in a network system.
Because it contains such a big amount of data and information, the Internet has a variety of issues
in terms of making it a secure system. Businesses, industries, and different spheres of daily activity all
use computer networks. Organizations and institutions all over the world have been obliged to build
and employ modern networks for safety as a result of technological and business advancements [1].

A shift in the features of the data stream is known as concept drift. When properties of decision
attributes as well as classes to be forecasted vary unexpectedly between two given time points, it is
defined as concept drift. Classification quality may suffer as a result of this circumstance and learning
mechanisms may suffer as a result [2]. In ML, concept drift relates to a shift in relationships between
input and output data in a data stream. Data could be altered in any way. Other sorts of changes
include (i) gradual changes over time, (ii) recurring or cyclical changes, and (iii) abrupt or sudden
changes. Learning models must be able to adjust to changes swiftly and accurately. The ideal drift
detection approach is used to detect incoming new communications autonomously. The drift detector
appears to be the simplest classifier, however, it is not as straightforward as it appears. The model
should usually be rebuilt as soon as feasible after returning the signal regarding the drift [3].

Learning techniques in embedded applications have been required by recent improvements in
cyber-physical systems (CPS) to work in non-stationary, time-variant contexts [4]. Idea drift learning,
sometimes referred to as learning in non-stationary contexts, concentrates on the environment’s event-
driven changes in CPS. Changes in feature data (x) and goal variables (y) altered underlying models
developed by learning methods as a result of such evolving notions. Concept drift detection in CPS
reduces negative compounding error impact and allows for cost-effective predictive maintenance [5].
In this setting, ensemble learning algorithms that include many supervised techniques determine it
impossible as well as impractical to detect concept drifts.

A novel unsupervised ML method is required to solve these issues and to manage complicated
data patterns as well as distributional assumption breaches buried in industrial applications of CPS
data streams. In supervised ML problems, a machine learning classifier is trained using a given labeled
dataset of training samples with the goal of predicting a target variable. Concept drift in this situation
refers to the alteration over time of the relationship between the input data and the target variables.

Concept drift may emerge in dynamic environments, such as e-mail spam detection. In this
dynamic environment, malicious opponents may attempt change their e-mails to avoid spam filters.
Ineffective classifiers are unable to accurately categorize newer samples as a result of these changes in
data distribution. necessitating the development of algorithms for responding to concept drifts [6].

The following are the chief contributions of this study paper:

• To design novel architecture in concept drift analysis and detection of malware attacks like
DDOS in the network

• The network has been analyzed for detecting the intrusion and concept drift using secure
adaptive windowing with website data authentication protocol (SAW_WDA) integrated with
authentication protocol to avoid DDOS attacks and concept drift.

• The user data of the network will be collected and classified using multilayer perceptron gradient
decision tree (MLPGDT) classifiers.

• Based on the classification output, the decision for the detection of attackers and authorized
users will be identified.
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The model of this essay is organized as follows. Section 2 of our report includes the associated
work. Section 3 of our proposal presents the system model. Performance analysis is presented in
Section 4. In Section 5, the conclusion of our research is presented.

2 Related Work

Idea drift is pertinent for malware detection when static file analysis is performed, according to
earlier research [7]. Prior studies have looked into methods for identifying idea drift in malware families
[8] and warning human analysts when it is found during malware detection. The efficiency of several
machine learning properties for detecting fraudulent websites is examined in work [9] However, the use
of Host and Content capabilities is the extent of their activity. Extract the Lexical features, as well as the
Host and With features based on content, from each URL and then keep them in feature vector form.
The supervised learning system uses these feature vectors as input to classify these URLs as harmful
or benign. Random Forest (RF), Gradient Boosted Trees (GBT), and Feed Forward Neural Networks
(FFNN) have supervised learning methods employed in our research. They use unsafe databases and
benign URLs collected from diverse sources to train their algorithms. Although the suggested method
is flexible and resistant to a range of dangers, it disregards the dynamic nature of websites. The same
training data reaches the hands of criminals and the ability to spot patterns in detection methods tries
to change some elements of harmful websites to go around the security [10].

Among the machine learning techniques suggested in [11] for identifying fake websites are
(Lagrangian Support Vector Machine) LSVM, (Logistic regression) LR, Random Forest (RF), Naive
Bayes (NB), and statistical techniques for finding Concept Drifts in websites. Only a few studies have
produced practical results, according to the author in [12], intending to foster research on intelligent
security techniques based on a cyclic process that begins with the discovery of new threats and ends
with the analysis and development of prevention measures. The authors of [13] propose a novel
Gradient Boosting Decision Tree (GBDT) training technique with narrower sensitivity limitations
and much better noise allocations. To slight the sensitivity boundaries by analyzing the gradient
characteristic and the contributions of each tree in GBDTs, they suggest flexibly regulate the gradients
of training data for every iteration and leaf node clipping Furthermore, they develop a unique boosting
structure to distribute the privacy budget among trees, reducing the precision loss even further. Their
studies reveal that our technique outperforms other baselines in terms of model accuracy. Jiang et al.
conducted a comprehensive review of several articles that used ML in security domains, resulting in a
taxonomy of machine learning models and their applications in cybersecurity [14]. Because label data is
rarely available in real-world applications, [15] classified existing solutions for detecting abnormalities
in changing data using unsupervised algorithms. The research [16] looked at adversarial assaults on
PDF malware detectors.

The state-of-the-art of ML for data streams was emphasized by the author in [17], who presented
possible research options. A lot of research is not valid in many use situations, according to [18],
which focuses on label acquisition and model deployment. In [19], the author conducted a comparative
examination of several methodologies for dealing with imbalanced data, applying them to various data
distributions and application domains. [20] Investigated some of the limitations and challenges of Deep
Learning (DL) methods in a traditional ML workflow for malware detection as well as classification
in literature such as open benchmarks, class imbalance, concept drift, model interpretability, and
adversarial learning.
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3 System Model

The novel design in concept drift analysis and malware attack detection is covered in this section.
Here the website with concept drift has been predicted and analyzed for DDOS attack in the network.
When the data drift is detected, the web server has been analyzed and predicted to be concept drift.
Then SAW_WDA has been employed for minimizing the concept drift and intrusion of the network.
The data of users has been collected and classified using MLPGDT where the decision has been made
based on classified output whether the malware user or authorized user. Fig. 1 depicts the total system
architecture.

Figure 1: shows the proposed systems’ overall architecture

3.1 Secure Adaptive Windowing with Website Data Authentication Protocol (SAW_WDA)

The intrusion detection system and concept drift of the network has been analyzed using secure
adaptive windowing with website data authentication protocol (SAW_WDA). To detect the adaptive
windowing change, we have performed the SAW_WDA protocol. The detailed SAW_WDA protocol
is given below:

When no obvious change is found, the window is dynamically magnified, and when a change is
determined it is compressed. In section W0 · W1 of W, the cut value is evaluated as under. Let W stand
for W length, ∧μW for the average of W’s elements, and W for the average of μt for t ∈ W. Let n0 show
the size of W0, n1 show the size of W0, and W1 and n show the length of W, resulting in n = n0 + n1.
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W0 and the predicted values are characterized by W1 To achieve the most stringent performance
guarantees are given by Eq. (1)

m = 1
1/n0 + 1/n1

(harmonic mean of n0 and n1)

δ′ = δ

n
, and εcut =

√
1

2m
· ln

4
δ′

(1)

If we undertake S as a data stream and E is an ensemble. When the case is received, the internal
change detector D is used to train the online classifier gradually. The ensemble member’s Ci ∈ E are
weighted after every incoming instance, rather than calculating component classifiers by Eq. (2).

Wo =
∑

1≤t≤T
W (sc(P(t))) , We = W (sc(C)) − Wo (2)

W (sc (P (t1)) ∩ sc (P (t2))) = a1

For all 1 ≤ t1, t2 ≤ T

A1 =
{

W (sc (P (t1))) if t1 = t2

0 if t1 �= t2

A (sc (Pls (t1)) ∩ sc (Cf)) +
∑

1≤t2≤T,t2 �=t1
A (sc (Pls (t1)) ∩ sc (Pus (t2))) ≥ 0.6 × A (sc (Pls (t1)))

For all 1 ≤ t1 ≤ T

W (sc (P (t1)) ∩ sc (C)) = W (sc (P (t1))) (3)

For all 1 ≤ t1 ≤ T

When the underlying function that creates instances evolves, concept drift is said to occur.
Formally, it can be described as any situation where the joint probability shifts. Thus, it may appear as
a change in the class prior probabilities, a change in the class-conditional PDF, or a combination of the
two. The transition probability of road segment Rj at time t − 1 is used to compute the under-mention
method that can enter road segment Ri at time t given by Eq. (4). Here ‘traffic’ denotes the average
network traffic.

Pr
(
Rj at t − 1 | Ri at t

) = pj = trafficj∑n

p=1 trafficp

Sc(P(t)) =
{
(

↼

x,
↼

y,
↼

z) ∈ R3 | px,p(t) ≤ ↼

x ≤ px,P(t) + lx,P(t), py,P(t) ≤ ↼

y ≤ py,P(t) + ly,P(t), pz,P(t) ≤ ↼

z ≤ pz,P(t) + lz,P(t)

}
sc© =

{
(

↼

x,
↼

y,
↼

z) ∈ R3 | 0 ≤ ↼

x ≤ Lx, 0 ≤ ↼

y ≤ Ly, 0 ≤ ↼

z ≤ Lz

}

sc (Cf) =
{
(

↼

x,
↼

y,
↼

z) ∈ R3 | 0 ≤ ↼

x ≤ Lx, 0 ≤ ↼

y ≤ Ly,
↼

z = 0
}

sc

(
Ch

f

) =
{
(

↼

x,
↼

y) ∈ R2 | (
↼

x,
↼

y) ∈ sc (Cf)
}

(4)



3748 CMC, 2023, vol.75, no.2

Assume that E is an ensemble and S is a data stream. When the case is received, the internal change
detector D is used to train the online classifier gradually. Each incoming instance results in a weighting
of the ensemble members Ci and E, rather than calculating component classifiers by Eq. (2).

E = −
∑

j

(
pj · log pj

)
(5)

The Hoeffding bound asserts that the estimated mean will not deviate from the true mean by more
than with probability 1 by Eq. (6) after n independent observations of range R.

E = R2 ln(1/δ)

2n
(6)

where a user-defined confidence parameter δ ∈ (0, 1) is used. Let’s call the two subwindows W0 and
W1. With 1−δ probability, we obtains |μW 0 − μW 1 | ≤ 2ε.

Such that ε is Hoeffding bound while μW 0 and μW 1 are average of two sub-windows.

P(t) : pP(t) = (
pI,P(t), pj,P(t), pk,P(t)

) ∈ I3
++, lP(t)

= (
lI,P(t), lj,P(t), lk,P(t)

) ∈ I3
++

LI,P(t) = lx,P(t)

1x

, lj,P(t) = ly,P(t)

1y

, lk,P(t) = lz,P(t)

1z

Li = Lx

1x

, Lj = Ly

1y

, Lk = Lz

1z

(7)

I
n
++ is the n-dimensional space of positive integers.

Assume that W’s true mean is μ. |μW 0 − μ| ≤ ε and |μW 1 − μ| ≤ ε might be obtained independently,
according to the Hoeffding bound. After that, they can be turned into −ε ≤ |μW 0 − μ| ≤ ε and −ε ≤
|μ − μW 1 | ≤ ε. In addition, these two inequalities together by Eq. (8).∣∣MW0

− μW1

∣∣ ≤ 2ε

∣∣μW0
− μW1

∣∣ ≤
√

2R2 ln
(

1
δ

)
n

(8)

Two equal-length sub windows made up sliding window W. From WL to WR, the Kullback-Leibler
distance is given by Eq. (9).

KL (WL ‖ WR) =
∑

x∈X
pWL

(x) log
pWL

(x)

pWR
(x)

(9)

We make sure that the sum is calculated over X atoms (in a discrete setting, X is the event space).
When the distance exceeds the threshold calculated using, a change is recognized (4). Then window
WL’s older portion is taken out.

s is the discrete-window analog of the operator sc given by Eq. (10)

The method takes as inputs a confidence value (0, 1) and a sequence of real values x1, ... , xt. Note
that, the value of xt is only accessible at time point t. According to a certain Dt distribution, each xt
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is independently formed for each t. Indicate the anticipated value and variance with t and t2t when xt
is drawn following Dt.

S (PLs (t)) =
{(

↼

t ,
↼

J,
↼

k
)

∈ I3
++ | pI,P(t) ≤ τ ≤ pI,p(t) + lI,p(t)–1, pj,p(t) ≤

↼

j (10)

≤ pj,p(t) + lj,P(t)–1,
↼

k = pk,p(t)

}
S

(
Ph

ls(t)
) =

{
(

↼

i ,
↼

j ) ∈ I2
++ |

(
↼

I,
↼

J, pk,P(t)

)
∈ s (PIs(t))}

S (Pus (t)) =
{(

↼

l ,
↼

j ,
↼

k

)
∈ I3

++ | pI,P(t) ≤ ↼

l ≤ pI,p(t) + lI,p(t)–1, pj,p(t) ≤
↼

j

≤ pj,p(t) + lj,p(t)–1,
↼

k = pk,p(t) + lk,p(t)–1
}

S (C) =
{(

↼

I,
↼

j ,
↼

k

)
∈ I3

++ | 1 ≤ ↼

I ≤ LI, 1 ≤
↼

j ≤ Lj, 1 ≤ ↼

k ≤ Lk

}

S
(
Ch

f

) =
{
(

↼

l ,
↼

j ) ∈ I2
++ | (

↼

l ,
↼

j , 1) ∈ s (Cf)

}
(11)

One can infer that the window will begin to contract after “O” (“ln(1/)/” “” “2” ) steps if t has been
fixed at a value for a long time and suddenly changes to a value.

ρi,j(t) =
{

max
{
ρt,(t − 1) | (τ ,

↼

J) ∈ s
(
Ph

ls(t)
)}

ρi,j(t − 1)
. . .

{
+lk,P(t) for (i, j) ∈ s

(
Ph

ls(t)
)

for (i, j) /∈ s
(
Ph

ls(t)
) ,

ρI,j(0) = 0 for (I, j) ∈ s
(
Ch

f

)
ρI,j(t) ≤ Lk for (I, j) ∈ s

(
Ph

Ls(t)
)

Num
({

(
↼

i , j) ∈ s
(
Ph

ls(t)
) | ρtJ(t − 1) ≥ ρI,j(t − 1) for (I, j) ∈ s

(
Ph

ts(t)
)}) ≥ 0.6 × lI,P(t) × lj,P(t)

e − ∑MaxW−1

k=1 ak

h
= h2 + (3 − MaxW)h + 1 − MaxW + (−1/h)MaxW−1

h(h + 1)2
ε

Proof: MaxW refers to the window size at time point t = tMaxW. Thus, the
(

e − ∑MaxW−1

k=1 ak

)
/h

is the privacy budget at t = tMaxW.(e − ∑MaxW−1

k=1 ak

)
/h and

∑MaxW−1

k=1 ak = ∑Max−1

k=1 {ε/h(h + 1).

(−1/h)k−1 + ε/(h + 1)
}
. After evaluation,

∑MaxW−1

k=1
ak = ε

h (h + 1)

∑MaxW−1

k=1

{(
−1

h

)k−1

+ h

}

= ε

h(h + 1)

{
1 − (−1/h)MaxW−1

1 + 1/h
+ h · (MaxW − 1)

}
(12)

Thus,
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e− ∑Max−1

k = 1 ak

h
=

h2 + (3 − MaxW)h + 1 − MaxW + (−1/h)MaxW−1

h(h + 1)2 ε (13)

Algorithm: SAW_WDA
Input:
If S: stands for the stream of data, C0: stands for the online machine learning learner, D: change
detector (adaptive windowing detector), d: is size of the working buffer; k: quantity of ensemble
participants, B; long-term
Output:
E: is the ensemble of classifiers with weight k
For each example x1 ∈ S do
Use incremental training approach to train C0 and D with x1;
B ← B ∪ {xl}
if detecting change = = True || |B| = d then
Use B to build C’;
Weight the new classifier C’
weight each classifier CI (in ensemble);
if |E| < k then
E – E ∪ {C’}.
else
Let C’ be the weakest ensemble member
C0 = B (reinitialization)
reinitialize D
B ← φ

End For
Maximum Window Size MaxW
OUTPUT: Decaying Factor h
Set f(h, MaxW) = (

h2 + (3– MaxW)* h + 1– MaxW + (−1/h)Max−1
)
/h* (h + 1)2

Set L = 1 and R = MaxW − 1
Set h = MaxW − 1
While L < R do
Set M = (L + R)/2
If the value of the function f(mid, MaxW) > 0 then
if h > M then
Set h = M and R = M
else
Return h
End While

3.2 Multilayer Perceptron Gradient Decision Tree (MLPGDT)

Consider an M − 1 intermediate layer and one final output layer in a multi-layered feed-forward
arrangement. The equivalent output for each layer for a given input data x is in Rdi, where i ∈ {0, 1,
2. . . M}. We aim to learn Fi: Rdi−1 → Rdi mappings for each layer i where the value if i > 0. The
final output oM aims to minimize empirical loss L on the training dataset. The loss L is commonly
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calculated using mean squared errors or cross-entropy with additional regularization components.
Backpropagation can be used to efficiently complete such learning tasks when each Fi is parametric
and differentiable. The chain rule is used to evaluate gradients of the loss function concerning each
specification at each layer, and then gradient descent is used to update the parameters. The output for
intermediate layers is considered the model’s new representation once training is completed.

Formally, MLPGDT lowers the following regularized objective by Eq., given a convex loss
function l and a training dataset. This given dataset has n cases (tuples) and d features.

L̀ =
∑

i
l(ỳi, yi) +

∑
k

� (fk)

yj(p) = f
(∑n

i=1
xi(p) · wij − θj

)
(14)

where a regularisation term is “(f) = ” “1” /“2” “V” “” “2”. The λ regularization parameter is R, and
the leaf weight is V. At the t-th iteration, GBDT minimizes the following objective function by forming
an approximation function of the loss by Eq. (15).

L̀(t) =
∑n

i=1

[
gift (xi) + 1

2
f2

t (xi)

]
+ � (ft)

Yk(p) = f
(∑m

i=1
xjk(p) · wjk(p)–θk

)

E = E + (ek(p))
2

2
(15)

G (IL, IR) =
(∑

i∈IL
gi

)2

|IL| + λ
+

(∑
i∈IR

gi

)2

|IR| + λ
(16)

To discover the split that optimizes the gain, GBDT explores all feature values. If the current node
fails to match the splitting criteria, With the best leaf value provided by Eq, it turns into a leaf node
(17).

V(I) = −
∑

i∈I gi

|I| + λ
(17)

Each A shrinkage rate is frequently applied to the leaf values, similar to the learning rate η in
stochastic optimization, to reduce the effects of every specific tree and make room for subsequent
trees to be enhanced model. Let f be a randomized function and ε be a positive real number. If given
datasets, say D and D0, differ in at least one case or tuple and differ in any output O of function f, the
function f is said to give -differential privacy as given by Eq. (18).

Pr[f(D) ∈ O] ≤ ec · Pr
[
f
(

D

‘)
∈ O

]
(18)

Here ε denotes the secrecy budget. The Laplace and exponential methods are commonly utilized
to obtain ε-differential privacy by summing noise calibrated to a function’s sensitivity. Error gradients
for neurons in the output layer are calculated as follows (19):

δk(p) = f · ek(p) (19)
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where f ’ is the derived function for activation and error ek (p) = yd,k (p)−yk (p) is given by the following
equations Eq. (20) through Eq. (22).

f ′(x) = e−x

(1 + e−x)
2 = f(x) · (1 − f(x)) (20)

f ′(x) = 2a · e−a·x

(1 + e−a·x)2 = a
2

· (1 − f(x)) · (1 + f(x)) (21)

δk(p) = yk(p) · (1 − yk(p)) · ek(p) (22)

Weight gradients between the hidden and output layers have been updated by Eq. (23).

�wy(p) = �wj(p) + xi(p) · δj(p)

wij = wij + η · �wij (23)

This term is proportionate to the most recent weight modification, i.e., the values used to alter the
weights are saved and have a direct impact on all subsequent adjustments by Eq. (24).

�wij(p) = �wij(p) + α · �wij(p − 1) (24)

The variable learning rate technique [19] not only uses different learning frequency for each
weight but also changes the learning parameters in each repetition based on the gradients’ successive
indications by Eq. (25).

ηp (p) =
{

u · ηy(p − 1), sgn
(
wvj(p)

) = sgn
(
bvj(p − 1)

)
d · ηy(p − 1), sgn

(
bvξ (p)

) = − sgn
(
wj(p − 1)

)} (25)

We use the softmax extension of the single-pole sigmoid to classify the given n classes. Each class
is corresponding to a binary output of the network as given by Eq. (26).

yk = eyk∑n

i=1 eyi
(26)

Letting g∗ = maxI∈D |gI|, we have �G ≤ 3g∗2
(∑

i∈IL
gi

)2

. Let ∂gs h = 0 and ∂Σee∼IL
gi

h = 0, we

can get gs = 0 and
∑

I∈IL
gI = 0. Matching stationary point and border (i.e., gs = ±g∗ and

∑
I∈IL

gI =
±nig∗), determine gs = −g∗,

∑
I∈IL

gI = nig∗ (or gs = g∗ and
∑

I∈I2
gI = −nig∗

)
and nl → ∞, Eq. (9) can

achieve maximum. Where If is the filtered instance set and Ic
f is remaining denote the approximation

error of GDF on leaf values as ξI = ∣∣V(I)–V
(
Ic

f

)∣∣. Then, ξI ≤ p
(∣∣∣↼

gf

∣∣∣ + g∗
l

)
.

The incline of case xi is initialized as gI = ±nig∗ at the start of the training. Allow g∗
l = ±nig∗

be the greatest feasible 1-norm gradient in the initialization. It’s worth noting that g ∗ l is unaffected
by training data and is solely dependent on the loss function l. The values of 1-norm gradients tend
to drop as the number of trees in training rises because the loss function l is convex. As a result, the
majority of examples have a smaller 1-average incline than g∗

l during the whole training procedure.
As a result, use g∗

l threshold to filter training examples. Filter the cases that have a 1-norm gradient
greater than g∗

l at the start of each iteration. In this cycle, just the lasting cases are used as input to
create a new differentially private decision tree. It’s worth noting that filtered illustrations may still be
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used in the training of later trees. Assure that the gradients of the used instances are no bigger than g∗
l

using a gradient-based data filtering strategy like this.

ξI =
∣∣∣∣∣
∑

i∈If
gi + ∑

i∈If
gi

|I| + λ
−

∑
i∈If

gi

(1 − p)|I| + λ

∣∣∣∣∣
= p

∣∣∣∣∣
∑

i∈If
gi

|If | + pλ

∣∣∣∣∣ + p

∣∣∣∣ |I|
(|I| + λ)((1 − p)|I| + λ)

∑
i∈Ij

gi

∣∣∣∣
≤

∣∣∣∣∣
∑

i∈If
gi

|I| + λ
| + |

(
1

|I| + λ
− 1

(1–p)|I| + λ

)∑
I∈If

gi

∣∣∣∣∣
≤ p

∣∣∣∣∣
∑

I∈If
gi

|If |

∣∣∣∣∣ + p

∣∣∣∣∣
∑

I∈Ij
gi

(1–p)|I|

∣∣∣∣∣ ≤ p
(∣∣∣↼

gf

∣∣∣ + g∗
i

)
≤ p

(∣∣∣↼

gf

∣∣∣ + g∗
i

)
(27)

For the sake of simplicity, assume the instance’s label is −1 and the gradient is g∗
l . Consider V1 =

− gi

1 + λ
≥ −g∗

i for the first tree. The enhancement in prediction value on the first tree is −ng∗
l , because

the shrinkage rate is η by Eq. (28).

|V2| ≤
∥∥∥∥∥ ∂l (−1, y)

∂y

∣∣∣∣
y=ηVi

∥∥∥∥∥ ≈
∥∥∥∥∥ ∂l(−1, y)

∂y

∣∣∣∣
y=0

+ ηV1

∥∥∥∥∥ ≤ g∗
i (1 − η) (28)

In the same way, |VI| ≤ g∗
i (1–η)t–1 is obtained.

Algorithm: MLPGDT
Input:
M is the Number of Layers, di is layer dimension, X, and Y are training data, L is the final loss function,
gamma, alpha, K1, K2, noise injection σ2, epoch E
Output:
A trained mGBDT

F0
1: M ← Assign () ; G0

2: M ← Assign () ; oo ← X; oj ← F0
j (oj − 1)

where j = 1, . . . , M
For t = 1 to E do
For j = M to 2 do

Linv
j ← ‖ Gt

j

(
Ft−1

j

(
onoine

j - 1

)) − onoine
j −1 ‖

rk ← −
[

∂Linv
j

∂Gt
j

(
Ft−1

j

(
onase

j−1

))
]

Fit regression tree hk to rk, i.e. utilizing training set
(
Ft−1

j

(
onoisc

j−1

)
, rk

)
Gt

j ← Gt
j + γ hk

Gt
j

(
Ft−1

j

(
onoine

j−1

))
End For
Zt

j−1 ← Gt
j

(
Zt

j

)
// evaluate pseudo-label for layer j−1

(Continued)
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Algorithm: Continued
End For
For j=1 to M do
Ft

j ← Ft
j // update Ft

j using Zt
j. This update is for k2 rounds

For (k = 1; k <= k2; k++) do
Lj ←‖ Ft

j

(
oj−1

) − zt
j ‖

rk ← −
[

∂Lj

∂Fj

(
oj−1

)
]

Fit hk to rk, where hkis the regression tree. We do this via dataset
(
oj−1, rk

)
Ft

j ← Ft
j + γ hk

End For
End For
End For
Return F0

1: M, G0
2: M

4 Performance Analysis

Python was used to test the suggested technique on Windows 10. In addition, the OpenCV library
was used to recognize and test datasets. The following is a description of the dataset.

DDoS 2016: The data were obtained in a controlled setting and included four types of malicious
network attacks: Hypertext Transfer Protocol (HTTP) Flood, SQL Injection Dos (SIDDOS), User
Datagram Protocol (UDP) Flood, and Smurf. There are 27 characteristics, 5 classes, and 734,627
records in the dataset.

UNSW-NB15: It was created in a small network environment over a short period of time (31 h),
using the IXIA Perfect Storm tool, and it combines real average network traffic activities with fictitious
attack behaviors, producing 175,341 records for training and 82,332 records for testing.

IXIA tool was used to simulate nine different sorts of attacks. Basic, content, time, and further
produced features based on statistical characteristics of connections are among the 49 features
available for study in the dataset.

CICIDS 2017: The Canadian Institute for Cybersecurity (CIC) made the data available to the
public. In the creation process, There are two different types of user profiles, multistage attacks like
Heart bleed, and several DoS and DDoS attacks were used. The CICFlowMeter utility extracts 80
network traffic features from the data. The background traffic was generated using user profiles based
on the abstract human behavior of 25 users using HTTP, File Transfer Protocol (FTP), HTTPS, Secure
Shell (SSH), and email protocols. Traffic was created for a brief time (5 days).

The suggested strategy and existing methods are compared in Table 1 in terms of accuracy,
precision, recall, and F-1 score. Here comparative analysis has been carried out for various datasets
namely LR, LSVM, feed foreword neural network (FFNN), and SAW_WDA_MLPGDT.

The comparison of multiple data sets’ accuracy, precision, recall, and F-1 scores is shown in
Figs. 2–4. Comparative analysis is made between the proposed SAW_WDA_MLPGDT and existing
LR, LSVM, and FFNN. Based on this comparison research, the suggested technique found the virus
and concept drift of the website with the best accuracy. The above results show enhanced output in
web data classification and website concept drift detection.
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Table 1: Comparative analysis of parameters for various datasets in terms of web data classification

Dataset Techniques Accuracy Precision Recall F1_score

DDoS 2016 LR 97.1 90.6 89.3 86.3
LSVM 97.3 90.8 89.5 86.5
FFNN 97.6 91 89.8 87
SAW_WDA_MLPGDT 98 92 90 88

UNSW-NB15 LR 96.8 90 88.1 86.5
LSVM 97.1 90.5 88.5 87
FFNN 97.5 91 90 87.3
SAW_WDA_MLPGDT 97.8 92 90 88

CICIDS 2017 LR 97.3 90.5 88.5 87
LSVM 97.5 91 88.9 87.3
FFNN 97.8 91.8 90 87.8
SAW_WDA_MLPGDT 98.1 94 90.5 88

Figure 2: Analysis based on the DDoS 2016 dataset
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Figure 3: Analysis based on the UNSW-NB15 dataset

Figure 4: Analysis based on the CICIDS 2017 dataset
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The proposed SAW_WDA_MLPGDT is compared to existing LR, LSVM, and FFNN with the
DDoS 2016 dataset, UNSW-NB15 dataset, and CICIDS 2017 dataset. Figs. 2–4 show a comparison
of the DDoS 2016 dataset, UNSW-NB15 dataset, and CICIDS 2017 dataset in terms of accuracy,
precision, recall, and F-1 score.

Table 2 shows the output for the proposed technique in terms of malware and concept drift
detection. After applying the proposed protocol, the data transmission rate, delay, and security have
been evaluated.

Table 2: Parametric analysis for proposed and existing technique in terms of network performance

Parameters LR LSVM FFNN SAW_WDA_MLPGDT

Throughput 96.5 97 97 99
End-end delay 53.5 50 49.9 48.2
Network security 85.5 85.9 86 94.5
Network concept drift 48.5 45 44.9 43.5

Figure 5: Parametric analysis of malware detection and concept drift mitigation in terms of
(a) Throughput, (b) End-end delay, (c) network security, (d) network concept drift

Fig. 5 shows a parametric analysis of malware detection and concept drift comparison between
existing and proposed techniques. This comparison research showed that the suggested method
produced the best results for reducing concept drift on the website. This comparison research showed
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that the suggested method produced the best results for reducing concept drift on the website
and detect malware DDOS attacks in the network. Here the data transmission efficiency has been
calculated in terms of throughput and minimal end-end delay. Malware attack mitigation has been
calculated by network security in which the proposed technique has enhanced the security of the
network and concept drift analysis has been made after establishing the proposed protocol.

5 Conclusion

This paper proposed a novel technique for designing the architecture in concept drift analysis and
detection of malware attacks like DDOS in the network. The network has been analyzed for detecting
the intrusion and concept drift using secure adaptive windowing with website data authentication
protocol (SAW_WDA) integrated with authentication protocol to avoid DDOS attacks and concept
drift. The user data of the network will be collected and classified using multilayer perceptron gradient
decision tree (MLPGDT) classifiers. Based on the classification output, the decision for the detection
of attackers and authorized users will be identified. The experimental results show output based on
intrusion detection and concept drift analysis system in terms of throughput, end-end delay, network
security, network concept drift, and results based on the classification in terms of accuracy, memory,
and precision, and F-1 score.
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