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Abstract: Sign language includes the motion of the arms and hands to
communicate with people with hearing disabilities. Several models have been
available in the literature for sign language detection and classification for
enhanced outcomes. But the latest advancements in computer vision enable
us to perform signs/gesture recognition using deep neural networks. This
paper introduces an Arabic Sign Language Gesture Classification using Deer
Hunting Optimization with Machine Learning (ASLGC-DHOML) model.
The presented ASLGC-DHOML technique mainly concentrates on recognis-
ing and classifying sign language gestures. The presented ASLGC-DHOML
model primarily pre-processes the input gesture images and generates feature
vectors using the densely connected network (DenseNet169) model. For ges-
ture recognition and classification, a multilayer perceptron (MLP) classifier
is exploited to recognize and classify the existence of sign language gestures.
Lastly, the DHO algorithm is utilized for parameter optimization of the MLP
model. The experimental results of the ASLGC-DHOML model are tested
and the outcomes are inspected under distinct aspects. The comparison anal-
ysis highlighted that the ASLGC-DHOML method has resulted in enhanced
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gesture classification results than other techniques with maximum accuracy
of 92.88%.

Keywords: Machine learning; sign language recognition; multilayer
perceptron; deer hunting optimization; densenet

1 Introduction

Sign language is important for communicating with deaf and mute people, ordinary people, and
themselves. Sign language is a subset of communication utilized as a medium of interaction by the
deaf. Dissimilar to other natural languages, it uses body movements for communication, named as
gestures or signs. Arabic is the 4th most spoken language in the world. Arabic Sign Language (ArSL)
was a certified main language for talking and listening impaired in Arab nations [1]. Although Arabic
is one of the global key languages, ArSL was still in its initial levels [2]. The typical issue ArSL patients
experience is “diglossia.” Regional dialects were spoken than written languages around every nation.
So, several spoken dialects generated various ArSLs. They were as copious as Arab states; hitherto,
they shared numerous alphabet and terminologies [3]. “ArSL was reliable on the alphabet.” Arabic is
considered one of the Semitic languages spoken by nearly 3.8 million people globally as its primary
official language [4].

Sign language (SL) comprises 4 major manual elements: hand orientation, hand figure configu-
ration, hand location, and hand movement relating to the body [5]. Two procedures exist 2 procedures
that have an automatic sign-recognition mechanism to identify the features and classify input data.
Several techniques were brought for classifying and detecting sign languages for the betterment of
act of the automatic SL mechanism. SL was considered an interaction subset utilized as a channel
of interaction by deaf [6]. Dissimilar to other natural languages, it employs important body gestures
for communicating messages, called signs or gestures. For communicating a message, finger and hand
gestures, facial expressions, head nodding, and shoulder gestures were used. Thus, the suggested work
will be helpful for deaf people for interaction among deaf and normal individuals or deaf and deaf. If a
deaf individual attempts to express anything, they employ gestures for communication. Every symbol
indicates a special letter, emotion, or word [7]. A stage was formed by signal combination, and a string
of words invokes letters in spoken languages. Therefore, SL was a natural language with sentence and
structure grammar [8].

Conversely, DL was a subset of machine learning (ML) in AI that has networks that can perform
learning unsupervised from data that were unlabeled or unstructured, which was also called a deep
neural network (DNN) or deep neural learning [9]. In DL, a convolutional neural network (CNN)
is a class of DNN, most typically implied in the domain of computer vision (CV). The vision-related
techniques largely aim at the captured gestures image and receive the primary feature for identifying
them. This technique was implied in several tasks, which include semantic segmentation, super-
resolution, multimedia systems, and emotion recognition and image classification [10].

Hassan et al. [11] introduce a complete evaluation among 2 different recognition methods for
continual ArSLR, such as a Modified k-Nearest Neighbor that suits Hidden Markov Models (HMMs)
and sequential data methods based on 2 distinct toolkits. Moreover, in this work, 2 novel ArSL datasets
comprising forty Arabic sentences were accumulated using a camera and Polhemus G4 motion tracker.
Ibrahim et al. [12] provide an automated visual SLRS which converts isolated Arabic word signs into
text. The suggested mechanism has 4 phases: hand segmentation, classification, tracking, and feature
extraction. After that, a suggested skin-blob tracking method was utilized to identify and track the
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hands. Deriche et al. [13] suggest a dual leap motion controller (LMC)-related Arabic sign language
recognition mechanism. To be very specific, the idea of utilizing both side and front LMCs was
introduced to cater for the difficulties of missing data and finger occlusions. For feature extraction,
an optimal geometric feature set was chosen from both controllers. In contrast, in classification, a
Bayesian technique with a Gaussian mixture model (GMM) and a simple linear discriminant analysis
(LDA) method was utilized. Combining the information from 2 LMCs introduces evidence-related
fusion techniques such as the Dempster-Shafer (DS) evidence theory.

Elpeltagy et al. [14] suggested technique is made up of 3 major phases: sign classification,
hand segmentation, hand shape sequence, and body motion description. The hand shape segmenting
depended on the position and depth of the hand joints. Histograms of related gradients and principal
component analysis (PCA) were implied on segmented hand shapes for obtaining hand shape series
descriptors. The co-variance of 3-dimension joints of the upper half of the skeleton, along with the
face properties and hand states were implemented for motion sequence description.

This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting
Optimization with Machine Learning (ASLGC-DHOML) model. The presented ASLGC-DHOML
technique mainly concentrates on recognising and classifying sign language gestures. The presented
ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature
vectors using the densely connected network (DenseNet169) model. For gesture recognition and
classification, a multilayer perceptron (MLP) classifier is exploited to recognize and classify the
existence of sign language gestures. Lastly, the DHO algorithm is utilized for parameter optimization
of the MLP model. The experimental results of the ASLGC-DHOML model are tested, and the
outcomes are inspected under distinct aspects.

2 Materials and Methods

In this study, a new ASLGC-DHOML technique was developed for recognising and classifying
sign language gestures. The presented ASLGC-DHOML model primarily pre-processes the input
gesture images and generates feature vectors using the DenseNet169 model. For gesture recognition
and classification, the MLP classifier is exploited to recognize and classify the existence of sign
language gestures. Lastly, the DHO algorithm is utilized for parameter optimization of the MLP
model.

2.1 Level I: Feature Extraction

The presented ASLGC-DHOML model primarily pre-processes the input gesture images and
generates feature vectors using the DenseNet169 model. DenseNet is a DL structure where every layer
is directly linked, achieving effectual data flow. All the layers get extra inputs in every preceding layer
and transmissions their feature map (FM) for each following layer [15]. The resultant FM attained
in the existing layer is integrated with the preceding layer utilizing concatenation. All the layers are
connected to every subsequent layer of the network, and it can be mentioned that DenseNets. This
method needs some parameters related to typical CNNs. It also decreases the overfitting issue with
a lesser malware-trained set. Assume that input image x0 is approved with the presented convolution
network. The network comprises N layer, and every layer implements a non-linearity transformation
Fn (.). Assume that layer n contains FMs of all the earlier convolutional layers. An input FM of layers
0 to n − 1 is concatenated and demonstrated as x0, . . . , xn−1. So, this method takes N (N + 1)/2 links
on N layer network. The resultant of nth layer was provided as:
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xn = Fn ([x0, . . . xn−1]) , (1)

whereas xn refers to the present nth layer, [x0, . . . , xn−1] signifies the concatenation of FMs attained in
0 to n − 1 layers and Fn (.) denotes the composite functions of batch normalization (BN) and rectified
linear unit (ReLU).

The consecutive functions from the transition layer comprise BN, ReLU, and 3 × 3 convolutions.
The concatenation function could not possible when the size of FMs was altered. Thus, the layers
which contain distinct FM sizes were downsampled. The transition layers containing 1 × 1 Conv and
2 × 2 average pooling functions were provided amongst 2 neighboring Dense Conv blocks. Afterward,
in the last Dense Conv block, the classifier layer containing global average pooling as well as softmax
classification were linked. The correct forecast was complete utilizing every FM from the NN. A
resultant layer with K neurons provides the correct match of the K malware family. The convolutional
function learns the image features and continues the link between the pixels. Next the convolutional
was executed on the image, ReLU was executed to the resultant FMs. This function establishes non-
linearity from CNNs. The ReLU function was provided as:

f (x0) = max (0, x0) . (2)

The pooling was executed to reduce the dimensionality of resultant FM. This pooling was
implemented also utilizing average or max pooling. The max pooling contains taking the biggest
element in the enhanced FM. The average pooling divides the input as to the pooling area and estimates
the average value of each region. The global average pooling (GAP) calculates the average of every
FM, and the outcome vector was obtained from the softmax layer. During this case, the DenseNet-
169 method was employed dependent upon the fundamental DenseNet structure, and DenseNet takes
L (L + 1)/2 direct connection.

2.2 Level II: Sign Language Classification

For gesture recognition and classification, the MLP classifier is exploited to recognize and classify
the existence of sign language gestures. MLP comprises three (output, input, and hidden) layers. The
trial-and-error mechanism defines the number of neurons in every layer [16]. The primary weight of
this neural network is randomly defined. The error backpropagation model is applied for training the
NN model, whereby the weight of the network changes in a supervised model depends on the variance
among the desired and neural network outputs; hence, for all the inputs, the output is produced using
the NN model. The input and output patterns are normalized first through a normalized factor for
equalizing the training model’s impact in altering the network’s weight. For p − the input patterns, the
squared error in every neuron is evaluated by the subsequent formula:

Ep = 1
2

(dp − yp)
2 = 1

2

∑nj

j=1

(
dp

j − yp
j

)2
(3)

In Eq. (3), dp
j and yp

j are, correspondingly, the value for desired and evaluated outputs in the j − th
neurons for p pattern. Also, overall squared errors for each pattern are evaluated by the following
equation:
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wij(t+1) = wij (t) + ηd � wij (t) + α � wij (t + 1) ,



CMC, 2023, vol.75, no.2 3417

� wij = −
(

δEp

δwij (t)
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Here, wij (t + 1) indicates the current weight, wij (t) denotes the preceding weight, η refers to
learning coefficient, and α characterizes the momentary coefficient. In the study, weights are repeatedly
upgraded for each learning pattern. The training procedure ends while the overall error values for each
pattern achieve a value lower when compared to the defined critical point or once the entire learning
period obtains the last point. It should be noted that the training methodology is a BP error model
with momentary term that reduces the probability of coordination at local minimal in comparison to
the BP error mechanism.

2.3 Level III: Parameter Optimization

Finally, the DHO algorithm is utilized for parameter optimization of the MLP model. DHO
approach is a metaheuristic algorithm stimulated by the hunting nature of humans toward deer. Even
though the action of the hunter might vary, the strategy of assaulting the deer or buck chiefly relies on
the hunting strategy [17]. Thanks to the particular abilities of deer, it could easily escape. The hunting
strategy is depending upon the movement of 2 hunters in the best possible location named leader and
successor. During deer hunting strategy, the hunter encloses it and moves to the prey. Afterward, each
hunter upgrades the location until they find the deer. Likewise, accommodating nature amongst the
hunters is indispensable for proficiently making the hunting strategy. Ultimately, they find the prey
according to the location of the leader and successor. At first, the population of hunters is represented
as follows,

Y = {Y1, Y2, . . . , Yn} ; 1 < j ≤ n (6)

In Eq. (6). n indicates the hunter count that is regarded as a solution in Y population. If the
population is initialized, wind angle and location of deer are the 2 vital features while estimating the
optimum location of the hunter. Mainly, the searching region is regarded as a circle and the wind angle
follows the circumference of a circle.

θi = 2πr (7)

In Eq. (7), r indicates a random integer lies within zero and one, i represents the existing iteration.
At the same time, the angle location of a deer is formulated by,

fi = θ + π (8)

In Eq. (8), θ determines a wind angle. If the location of optimum area is not defined, the solution
candidate is located nearer to the optimum one and described according to the Fitness Function (FF)
denoted as optimal solution. Here, two solutions were taken into account. Fig. 1 illustrates the stages
of DHO approach.

Propagation through a leader’s position:

When the optimum location is enforced, each individual of a population tries to obtain a
consecutive location and iteratively upgrade the location. Then, encircle behavior is labelled by the
following equation,

Yi+1 = Y lead − X · p · ∣∣L × Y lead − Yi

∣∣ (9)
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Figure 1: Stages of DHO technique

In Eq. (9), Yi indicates the location in existing iteration, Yi+1 represent the position at following
iterations, X and L denotes the coefficient vector, and p decides an arbitrary value positioned by the
wind speed whereby the value ranging from [0, 2] and it is assessed by,

X = 1
4

log
(

i + 1
imax

)
b (10)

L = 2 · c (11)

whereby jmax indicates high iteration, b represents a parameter ranging from [−1, 1] and c indicates an
arbitrary integer range within zero and one.

Now, (Y , Z) suggests the initialized location of a hunter that is upgraded by using prey location.
Then, agent position is altered until it reaches an effectual location (Y ∗, Z∗) and changes the location
of X and L. Location updating is functioned by the Eq. (10) where p < 1, indicates that an individual
is allowable only to move in random way notwithstanding of angle location. Therefore, Eqs. (9) and
(10) illustrate the location updating of a hunter randomly within a particular region.

Propagation through position angle:

To increase the searching region, the process gets upgraded through location angle. The angle
evaluation is extremely substantial for calculating the location of a hunter whereby the prey is
unconscious of the danger and makes the hunting strategy very effectual. The visualization angle can
be defined by,

aj = π

8
× r (12)

Based on the distinctions amongst the visual and wind angles, novel attributes are defined to
upgrade the angle location.

di = θi − ai (13)

In Eq. (13), θ indicates the wind angle. Then, a location angle is upgraded to following iteration
as follows,

fi+1 = fi + di (14)
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By taking the angle location into account it is updated as follows,

Yi+1 = Y lead − p · ∣∣cos (v) × Y lead − Yi

∣∣ (15)

If A = fi+1, Y ∗
i indicates the best possible location and p indicates the arbitrary integer. The

location of an individual is nearby to the inverse angle location, as a result, the hunter move from
the deer sight.

Propagation through the position of the successor:

Here, the same technique of encircling behavior is exploited through expanding the L vector.
Assume the searching region as random location, then the value of vector L is less than 1. Therefore, the
location updating is depending on the successor position. It allows a global searching in the following,

Yi+1 = Y successor − X · p · |L × Y successor − Yi| (16)

In Eq. (16), Y successor represents the successor location of a searching region from existing popula-
tion.

3 Results and Discussion

The experimental validation of the ASLGC-DHOML method is tested by making use of a sign
language dataset, comprising 500 samples under five distinct classes as shown in Table 1. A few sample
sign language gesture images were illustrated in Fig. 2.

Table 1: Dataset details

Label Class No. of samples

Class-0 Thank you 100
Class-1 Home 100
Class-2 I 100
Class-3 Ate 100
Class-4 Wake up 100
Total no. of instances 500

Fig. 3 highlights the set of confusion matrices created by the ASLGC-DHOML model on the
applied data. The figure demonstrated that the ASLGC-DHOML model has resulted ineffectual
outcomes under distinct classes and runs. On run-1, the ASLGC-DHOML model has identified 68
samples into class 0, 78 samples into class 1, 81 samples under class 2, 88 samples class 3, and 83
samples into class 4. In addition, on run-3, the ASLGC-DHOML method has detected 85 samples
into class 0, 63 samples into class 1, 90 samples under class 2, 88 samples class 3, and 75 samples into
class 4. At last, on run-5, the ASLGC-DHOML technique has identified 71 samples into class 0, 77
samples into class 1, 80 samples under class 2, 85 samples class 3, and 84 samples into class 4.
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Figure 2: Samples sign language gesture images

Figure 3: (Continued)
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Figure 3: Confusion matrices of ASLGC-DHOML approach (a) Run-1, (b) Run-2, (c) Run-3, (d) Run-
4, and (e) Run-5

A brief collection of simulation results provided by the ASLGC-DHOML model on the test data is
given in Table 2 and Fig. 4. The results demonstrated that the ASLGC-DHOML model has effectually
recognized all the classes under distinct runs. For instance, on run-1, the ASLGC-DHOML model has
attained average accuy, sensy, specy, Fscore, and Gmeasure of 91.84%, 79.60%, 94.90%, 79.58%, and 79.70%
respectively. Besides, on run-3, the ASLGC-DHOML technique has achieved average accuy, sensy,
specy, Fscore, and Gmeasure of 92.08%, 80.20%, 95.05%, 80.05%, and 80.44% correspondingly. Also, on
run-5, the ASLGC-DHOML approach has reached average accuy, sensy, specy, Fscore, and Gmeasure of
91.76%, 79.40%, 94.85%, 79.46%, and 79.50% correspondingly.

Table 2: Result analysis of ASLGC-DHOML approach with various measures and runs

Labels Accuracy Sensitivity Specificity F-score G-measure

Run-1
Class-0 90.40 68.00 96.00 73.91 74.19
Class-1 89.20 78.00 92.00 74.29 74.37
Class-2 92.80 81.00 95.75 81.82 81.82
Class-3 92.20 88.00 93.25 81.86 82.06
Class-4 94.60 83.00 97.50 86.01 86.07
Average 91.84 79.60 94.90 79.58 79.70
Run-2
Class-0 91.80 71.00 97.00 77.60 77.93
Class-1 91.60 81.00 94.25 79.41 79.43
Class-2 94.20 88.00 95.75 85.85 85.88
Class-3 92.60 88.00 93.75 82.63 82.78
Class-4 94.20 83.00 97.00 85.13 85.16
Average 92.88 82.20 95.55 82.12 82.24

(Continued)
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Table 2: Continued
Labels Accuracy Sensitivity Specificity F-score G-measure

Run-3
Class-0 89.40 85.00 90.50 76.23 76.64
Class-1 90.60 63.00 97.50 72.83 73.74
Class-2 94.40 90.00 95.50 86.54 86.60
Class-3 92.40 88.00 93.50 82.24 82.42
Class-4 93.60 75.00 98.25 82.42 82.82
Average 92.08 80.20 95.05 80.05 80.44
Run-4
Class-0 91.40 82.00 93.75 79.23 79.27
Class-1 91.60 65.00 98.25 75.58 76.60
Class-2 88.40 82.00 90.00 73.87 74.24
Class-3 93.80 94.00 93.75 85.84 86.17
Class-4 91.20 68.00 97.00 75.56 76.03
Average 91.28 78.20 94.55 78.02 78.46
Run-5
Class-0 89.20 71.00 93.75 72.45 72.46
Class-1 89.00 77.00 92.00 73.68 73.75
Class-2 92.60 80.00 95.75 81.22 81.23
Class-3 93.00 85.00 95.00 82.93 82.95
Class-4 95.00 84.00 97.75 87.05 87.10
Average 91.76 79.40 94.85 79.46 79.50

Figure 4: (Continued)
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Figure 4: Average analysis of ASLGC-DHOML approach (a) Run-1, (b) Run-2, (c) Run-3, (d) Run-4,
and (e) Run-5

The training accuracy (TA) and validation accuracy (VA) obtained by the ASLGC-DHOML
method on the test dataset is portrayed in Fig. 5. The experimental outcome denoted the ASLGC-
DHOML approach has reached maximal values of TA and VA. Specifically, the VA is greater than TA.

The training loss (TL) and validation loss (VL) gained by the ASLGC-DHOML approach on
the test dataset were shown in Fig. 6. The experimental outcome represented the ASLGC-DHOML
algorithm has presented least values of TL and VL. In specific, the VL is lesser than TL.
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Figure 5: TA and VA analysis of ASLGC-DHOML approach

Figure 6: TL and VL analysis of ASLGC-DHOML approach

A clear precision-recall analysis of the ASLGC-DHOML algorithm on the test dataset is
portrayed in Fig. 7. The figure denoted the ASLGC-DHOML technique has resulted in enhanced
values of precision-recall values under all classes.
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Figure 7: Precision-recall curve analysis of ASLGC-DHOML approach

A brief receiver operating characteristic (ROC) analysis of the ASLGC-DHOML approach on
the test dataset is shown in Fig. 8. The results signify the ASLGC-DHOML approach has displayed
its ability in categorizing distinct classes on the test dataset.

Figure 8: ROC curve analysis of ASLGC-DHOML approach
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To emphasize the improvised performance of the ASLGC-DHOML method, a comparative
analysis is provided in Table 3 [18]. Fig. 9 exhibits a comparative accuy inspection of the ASLGC-
DHOML model with recent models. The figure demonstrated that the 3D-CNN and DeepLAv3
models have shown lower accuy values of 85.53% and 85.58% respectively. Followed by, discrete cosine
transform with k-nearest neighbour (DCT-KNN) model has offered reasonable accuy of 87.90%. In
the meantime, the BoF-BoP, Gaussian Naïve Bayes (GNB), and CSOM-BiLSTMNet models have
reported considerable accuy of 88.74%, 88.21%, and 88.02% respectively. But the ASLGC-DHOML
model has exhibited superior accuy of 92.88%.

Table 3: Comparative analysis of ASLGC-DHOML approach with existing methodologies [18]

Methods Accuracy Sensitivity Specificity F-score

ASLGC-DHOML 92.88 82.2 95.55 82.12
DCT-KNN 87.90 78.42 86.11 78.67
BoF-BoP 88.74 75.06 86.81 76.87
3D-CNN 85.53 75.72 88.52 76.65
GNB model 88.21 75.45 85.07 75.07
DeepLAv3 85.58 75.90 86.30 75.62
CSOM-BiLSTMNet 88.02 77.37 86.87 76.10

Figure 9: Accuracy analysis of ASLGC-DHOML approach with existing methodologies

Fig. 10 depicts a comparative sensy analysis of the ASLGC-DHOML method with recent models.
The figure demonstrated that the 3D-CNN and DeepLAv3 algorithms have shown lower sensy values
of 75.72% and 75.90% correspondingly. Followed by, DCT-KNN model has rendered reasonable
sensy of 78.42%. Meanwhile, the BoF-BoP, GNB, and CSOM-BiLSTMNet models have reported
considerable sensy of 75.06%, 75.45%, and 77.37% correspondingly. But the ASLGC-DHOML method
has displayed superior sensy of 77.37%.

Fig. 11 exhibits a comparative specy inspection of the ASLGC-DHOML model with recent mod-
els. The figure demonstrated that the 3D-CNN and DeepLAv3 models have shown lower specy values
of 88.52% and 86.30% correspondingly. Followed by, DCT-KNN model has provided reasonable specy

of 86.11%. In the meantime, the BoF-BoP, GNB, and CSOM-BiLSTMNet models have reported
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considerable specy of 86.81%, 85.07%, and 86.87% respectively. But the ASLGC-DHOML model has
shown superior specy of 95.55%.

Figure 10: Sensy analysis of ASLGC-DHOML approach with existing methodologies

Figure 11: Specy analysis of ASLGC-DHOML approach with existing methodologies

Fig. 12 exhibits a comparative Fscore inspection of the ASLGC-DHOML model with recent models.
The figure established that the 3D-CNN and DeepLAv3 models have shown lower Fscore values
of 76.65% and 75.62% correspondingly. Then, DCT-KNN model has provided reasonable Fscore of
78.67%. In the meantime, the BoF-BoP, GNB, and CSOM-BiLSTMNet methodologies have reported
considerable Fscore of 76.87%, 75.07%, and 76.10% correspondingly. But the ASLGC-DHOML model
has exhibited superior Fscore of 82.12%.

Thus, the ASLGC-DHOML model has accomplishes maximum Arabic sign language gesture
recognition performance.
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Figure 12: Fscore analysis of ASLGC-DHOML approach with existing methodologies

4 Conclusion

In this study, a new ASLGC-DHOML technique was developed for the recognition and classi-
fication of sign language gestures. The presented ASLGC-DHOML model primarily pre-processes
the input gesture images and generates feature vectors using the DenseNet169 model. For gesture
recognition and classification, MLP classifier is exploited to recognize and classify the existence of
sign language gestures. Lastly, the DHO algorithm is utilized for parameter optimization of the MLP
model. The experimental results of the ASLGC-DHOML model are tested and the outcomes are
inspected under distinct aspects. The comparison analysis highlighted that the ASLGC-DHOML
method has resulted in enhanced gesture classification results than other techniques with higher
accuracy of 92.88%. As a part of future scope, the performance of the ASLGC-DHOML model is
improved by the utilization of advanced DL classification models.
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