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Abstract: Wheat is the most important cereal crop, and its low production
incurs import pressure on the economy. It fulfills a significant portion of the
daily energy requirements of the human body. The wheat disease is one of the
major factors that result in low production and negatively affects the national
economy. Thus, timely detection of wheat diseases is necessary for improving
production. The CNN-based architectures showed tremendous achievement
in the image-based classification and prediction of crop diseases. However,
these models are computationally expensive and need a large amount of
training data. In this research, a light weighted modified CNN architecture
is proposed that uses eight layers particularly, three convolutional layers,
three SoftMax layers, and two flattened layers, to detect wheat diseases
effectively. The high-resolution images were collected from the fields in Azad
Kashmir (Pakistan) and manually annotated by three human experts. The
convolutional layers use 16, 32, and 64 filters. Every filter uses a 3 × 3 kernel
size. The strides for all convolutional layers are set to 1. In this research,
three different variants of datasets are used. These variants S1-70%:15%:15%,
S2-75%:15%:10%, and S3-80%:10%:10% (train: validation: test) are used to
evaluate the performance of the proposed model. The extensive experiments
revealed that the S3 performed better than S1 and S2 datasets with 93%
accuracy. The experiment also concludes that a more extensive training set
with high-resolution images can detect wheat diseases more accurately.
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1 Introduction

Wheat is the globally most consumed food crop. It fulfills a significant portion of the daily energy
requirements of the human body [1]. The genetic components of wheat (notably proteins, fiber, and
vitamins) increase its consumption worldwide [2,3]. According to USDA foreign agricultural service
report [4], more than 700 million metric tons of wheat have been produced globally in the last nine
years, which is still less than its demand (shown in Fig. 1). The wheat demand is increasing daily,
whereas its production is severely affected by natural disasters, climate change, war, and crop diseases.
Among these challenges, wheat crop disease is of significant importance. If it is not prevented, it can
be more destructive than its counterparts. The timely diagnosis and detection of wheat diseases are
not only crucial for their prevention, but can also increase their production yield to boost the national
economy. There are various techniques for detecting crop diseases such as microscopic techniques and
manual visualization. However, these techniques are time extensive and error-prone due to human
error factors. Thus, the researchers introduced alternative automatic techniques to identify crop
diseases [5].

Figure 1: Global annual wheat production from 2011/2012 to 2021/2022 (million metric tons) [4]

The advancement in computer vision and machine learning increased the research interest in
image-based automated detection systems for wheat diseases [6–8]. These techniques are adequate
replacements of the time expensive and lab extensive diagnoses [9]. These techniques need standard
equipment such as cameras, mobile phones, and commonly used storage to perform disease detection
and classification. These techniques are subjective and focus on the specific task and require domain
expert knowledge for feature extraction. Additionally, these techniques work ideally in a practical
experimental setup.

The literature showed that most of the time, researchers used the standard dataset to evaluate their
machine learning models. Although the machine learning models have achieved promising results on
standard datasets but in-fields captured images have their own challenges. As mentioned in [10], those
challenges include (a) complex background of the image, (b) challenging lighting effects, (c) fuzzy
boundaries of the disease, (d) multiple diseases in a single image, (e) similar characteristics of different
diseases, (f) distinctive characteristics for the same disease according to its shape and stage. Thus,
in-field wheat disease detection is still a challenging task.
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In this paper, the contribution is three-fold. First, this paper proposes a simple and lightweight
CNN-based model that can also be used for smartphones in the future. Second, it will be fast enough
to predict wheat disease in real-time. Third, it can increase the production yield by timely detecting
in-field wheat crop disease. The rest of the paper is organized as follows. The next section provides
a review of the existing literature in this field. Then Section 3 provides the proposed methods and
materials, followed by results and discussion in Section 4, and finally, the conclusion and future work
dimensions are presented in Section 5.

2 Related Work

Many CNN models have already been proposed for image-based crop disease prediction and
classification. The proposed work in [11] introduced a deep learning model based on weekly supervised
learning. The work includes training the model on onion crops with six categories of symptoms and
using the activation map to localize diseases. The trained model used image-level annotation to detect
and classify crop diseases. This model effectively identified the symptoms of onion crops diseases.
The work in [12] used CNN to detect diseases from wheat images and use visualization methods to
understand the learning behavior of these models. They used the CRAW dataset, containing 1163
images, divided into unhealthy and healthy classes. Another model, CNN-F5 [13], found a more
representative subset of features for the original data set. This model maintains its high accuracy of
90.20% by training the 60-channel features.

In the work of [14], the researchers used hyperspectral imaging technology and the random
forest method to analyze the reflectance spectrum of healthy and unhealthy wheat crop data. The
characteristic wavelengths selected by random forest are 600 nm for late-stage seed germination,
800 nm for early-stage germination and 1400 nm for joint-stage germination that combines flowering
and grouting. The work of [15] also provides a comprehensive overview of wheat rust disease research
in India. Efforts are being made worldwide to monitor rust, identify the types of rust pathways
and evaluate the rust resistance of wheat germ pulp. The responsible determination of early growth
and rust-free varieties proved to be an effective strategy for managing its eradication [15]. However,
efforts are still continued to eradicate wheat rust diseases. The rust and genomic methods are used to
break down barriers that undermine performance and prevent wheat diseases. The critical factors for
effective wheat disease prevention management require the effective classification of rusty stems from
wheat, classification of sources of resistance and usage of preventive measures against them.

The works of [16,17] developed a CNN model to classify the diseases in maize. In other studies
conducted in [18,19], the researchers identified diseases in apple trees. In [20], the authors presented
a CNN model to detect the ‘black sigatoka’ and ‘black speckled’ diseases in banana plants. The work
of [21] presented CNN models, trained on a dataset of 5632 images, to predict tea diseases. This work
used GoogleNet, MCT and AlexNet models. Similarly, the work of [22] developed a CNN model
for the detection of diseases in cucumber plants. The research works of [23,24] have classified the
‘fusarium wilt’ disease for radish plants. Furthermore, the authors of [25] had given a dataset of
multiple plants and used CNN model that provided good accuracy of 95% for pepper plant disease
detection. In Reference [26], the researchers used CNN architecture for disease classification in grapes.
The authors of [27] have developed their dataset and introduced a CNN model for predicting soybean
plant diseases.
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Table 1 highlights the strengths and weaknesses of commonly used neural network models for
crop disease prediction. These strengths and weaknesses are helpful in selecting the appropriate model
according to the classification dataset.

Table 1: Neural network models variants used for crop disease prediction (author’s compilation)

Classification model Advantages Disadvantages

Artificial neural network Works with numerical/discrete
values, suitable for regression
as well as classification

The number of parameters
directly influences model
performance

Deep neural network Robust classification,
effectively utilizes parallelism.

Requires large training data

Convolutional neural network Good results, high accuracy,
adequate for diseases
classification tasks

Computation cost, required more
training time

Deep convolutional neural
network

Automated feature extraction,
good accuracy

Requires large training data

Fuzzy convolutional neural
network

Improved performance due to
reduction in the size of the
convolutional layers

High computational cost

Recurrent neural network Compatible with arbitrary
input size

High computational cost due to
more internal complexity

As evident from Table 1, the proposed model for this research is a variant of CNN and it achieves
the goal of good classification with a small number of internal layers.

3 Proposed Methodology

This section explains the proposed methodology, of this work, in detail by describing the
captured dataset, proposed model architecture, experimental environment, and employed performance
evaluation metrics.

3.1 Dataset

The dataset was collected from the wheat fields in the district Kotli of Azad Kashmir (Pakistan).
All the dataset images were captured using different models of mobile phones, including Infinix Hot8,
Samsung J7 Prime, Samsung J7 Pro, and iPhone 8. All images were taken at the random angles and
locations from the overall field. The total captured images were 3750. All the images were reevaluated,
and the faulty images were removed. The remaining 1567 images were annotated manually by the field
experts. Finally, 450 images were selected for the experiments based on the consensus in the opinion
of experts. In the final dataset, 225 images belong to the healthy class and 225 to the unhealthy class.
Some sample images are shown in Fig. 2a whereas, Fig. 2b shows specifically unhealthy images of the
dataset.



CMC, 2023, vol.75, no.2 3871

Figure 2: Sample healthy and unhealthy images from the captured dataset

3.2 Model Architecture

CNN is a deep neural network model trained through a supervised learning mechanism. It
processes data effectively in the form of vectors and matrices. The basic structure of the CNN consists
of an input layer, an output layer, and a sequence of hidden layers that map the input to the output.
These layers work on the interconnection of the network and shared weight associated with internal
neurons.

The convolutional layer uses the concept of the chain rule of derivatives. This rule shows how the
slight change in x affects the change in y and z. It uses the principle of partial derivatives that compose
that minor change in x (�x) first make a slight change in y (�y) by ∂x/∂y. Similarly, �y brings changes
in �z. Combining both equations produces �y/�x and �z/�x. Extending the chain rule of derivatives
for an input unit xl

i, j give the general equation as shown in Eq. (1).

xl
i,j =

∑m−1

p=0

∑m−1

q−1
ωpqyl−1

(i−p)(j−q)
(1)

Once the convolutional layer computes error rate E, the partial derivative of E is calculated at the
current layer, as shown in Eq. (2).
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It helps in the calculation of the backward propagation at the previous layer. After the convolu-
tional layer transformation in the feature maps, the max-pooling layer tries to retrieve the high-order
features from the features for robustness. It reduces the input of the specific location to a single value
that achieves the goal of high order features extractions. The max-pool equation is presented in Eq. (3).

yl
i,j,k = max

p,q xl−1
i.j−p,k+q (3)

where xl−1
i.j−p,k+q represent l−1 layer ith feature map at j and k location and p, q are vertical and horizontal

indices. The max-pooling layer uses a sliding window for the extraction of non-overlapping blocks.
These blocks are then converted to single values to get the high-order features. The final layers, before
the output layer, are fully connected layers. These layers calculate the weighted sum of the preceding
layers to convert all values for classification and prediction which is the task of the final output layer.



3872 CMC, 2023, vol.75, no.2

The equation of the fully connected layer is presented in Eq. (4).

xl = wlxl−1 + bl (4)

where the xl is the output of the fully connected layer, xl−1 represents the previous fully connected
layers, wl is the weighted coefficient, and bl is the bias of the layer. The convolutional and hidden
layers use the ReLU (Rectifier Linear Unit) activation functions as , calculated through the formula
given in Eq. (5). The output layer uses SoftMax whose formula is given in Eq. (6).

R (x) =
{

0, if x ≤ 0
x, otherwise

}
(5)

Soft (xi) = exi∑n

j=1e
xj

(6)

The proposed CNN model comprises three convolutional layers, three pooling layers, three fully
connected layers, and an input and output layer. The detailed model architecture is shown in Fig. 3.

Figure 3: Proposed CNN model architecture

The three convolutional layers use 16, 32, and 64 filters. Every filter has a 3 × 3 kernel size and
the strides are set to 1 for all convolutional layers. However, the kernel size for the pooling layers is set
to 2 × 2 with stride 2. The learning rate was initially set to 0.001, while the input image resolution
was set to 200 × 200 pixels. As described before, the ReLU activation function is utilized in the
convolutional layers, and the SoftMax function is utilized in the pooling layers. In all layers of the
model, the padding was set to default. The experimentation through this trained proposed model is
explained in detail in the next section. It has proved that the combination of the hyper-parameters of
the proposed CNN model, its filers, max-pooling layers, and fully connected layers performed better
in disease classification of the wheat crop in in-field images.

3.3 Experimental Environment

The experimentation was conducted using Google Colab with the default setting for python with
GPU The JPEG files of dataset images contained raw color photos of both classes of healthy and
unhealthy wheat crops. These images are divided into two directories. Due to the relatively small dataset
size, the experiments were carried out multiple times to check for model overfitting issues. In addition,
the three variants of the dataset, created according to the dataset spilt, are used to evaluate the model.
All the variants contained non-overlapping images.
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3.4 Performance Evaluation Measures

The performance evaluation is made through the measures of accuracy, recall, precision, and f1
which are the standard metrics used for classification. The equations for these performance measures
are shown in Eqs. (7)–(10). In addition, the class-wise performance evaluation is also used to measure
the class_level performance of the classifiers.

Accuracy = TP + TN
TP + TN + FP + FN

(7)

Recall = TP
TP + FN

(8)

Precision = TP
TP + FP

(9)

f 1 = 2
(

Recall ∗ Precision
Recall + Precision

)
(10)

4 Results and Discussion
4.1 Model Training on Different Dataset Variants

The proposed convolutional neural network is trained on multiple versions of datasets. Figs. 4–6
highlight the model loss for training and validation on the split dataset versions represented by
mnemonics s1, s2 and s3 where s1 represents (70, 15, 15), s2 represents (75, 15, 10) and s3 represents
(80, 10, 10) for the split ratio of training, validating, and testing data respectively.

Figs. 7–9 represent the accuracy curve for the different experimental setups. The accuracies for
the s1 (70, 15, 15) and s2 (75, 15, 10) dataset splits have higher fluctuation bands than the s3 (80, 10,
10) dataset split. The training accuracy band for Fig. 7 is between 30% and 100%, while for Fig. 8, it is
between 20% and 100%. The larger band in accuracy for different epochs negatively affects the overall
average score of the model. However, when the training size was increased to 80% of the dataset, the
accuracy improved for both training and test datasets. The accuracy for validation, on the other hand,
is relatively better than the training for s1, s2, and s3.

Figure 4: Training validation loss for the s1 (70, 15, 15) dataset split
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Figure 5: Training validation loss for the s2 (75, 15, 10) dataset split

Figure 6: Training validation loss for s3 (80, 10, 10) dataset split

Figure 7: Training and validation accuracy for s1 dataset split
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Figure 8: Training and validation accuracy for s2 dataset split

Figure 9: Training and validation accuracy for s3 dataset split

4.2 Model Testing on Different Dataset Variants

The model performed relatively better on the test datasets. The obtained confusion matrices of
all three variants of dataset splits (s1, s2 and s3) are presented in Figs. 10–12. Fig. 10 shows the
performance for the s1 dataset split, where it has shown better performance for healthy images where
the prediction accuracy was 97%. Still, it was not good in predicting unhealthy images as it had shown
merely 71% accuracy for them. Thus, negatively impacting the overall performance. On the other hand,
Fig. 11 is giving a relatively better performance with 87% and 83% accurate results for healthy and
unhealthy classes for the s2. In the s3 with 80% training data, the performance is best among all three
data splitting schemes.
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Figure 10: Confusion matrix for s1 dataset split

Figure 11: Confusion matrix for s2 dataset split

Besides the accuracy of the models, the classifier’s performance is also evaluated through precision,
recall and f1 measures. It ensures not only the overall performance but also the prediction accuracy
on both class levels. Table 2 presents these measures for all three dataset variants at each class level.

The above results have shown that larger training dataset results are better in all measures for both
classes, where the smaller training set’s performance is relatively lower. Table 3 presents the weighted
average results for both classes. In the combined results, all the numbers are in the acceptable range as
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all results are higher than 84%. However, the results of the third data split, s3 of (80, 10, 10) ratio, are
highest with 0.94 precision, 0.93 recall, 0.93 f1 scores and 93% accuracy.

Figure 12: Confusion matrix for s3 dataset split

Table 2: Class-wise performance evaluation of the proposed model

Dataset split Image class Precision Recall F1-score

s1 Healthy 0.77 0.97 0.86
s2 0.87 0.85 0.83
s3 0.95 0.91 0.93

s1 Unhealthy 0.96 0.71 0.81
s2 0.86 0.83 0.84
s3 0.94 0.93 0.93

Table 3: Weighted performance evaluation measure for proposed CNN

Dataset split Precision Recall F1-score Accuracy

s1 0.86 0.84 0.84 84%
s2 0.85 0.85 0.85 85%
s3 0.94 0.93 0.93 93%

Table 4 provides a comparative analysis of state-of-the-art works for crop disease detection and
classification. The table shows that the proposed model performed better than the majority of the
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models of state-of-the-art. However, the performance of the proposed model is best and almost similar
to [28] in terms of accuracy.

Table 4: Comparative analysis of the proposed model with state-of-the-art for crop disease detection
and classification
S. no Proposed work Model (s) Crop (s) Dataset Size and dataset

splits
High
resolution

In-field
dataset

Accuracy

1 Identification of cash
crop diseases using
automatic image
segmentation algorithm
and deep learning with
expanded dataset [29]

MobileNet Apple
Corn
Grape
Potato
Tomato
Tobacco

Plantvillage 38,072 (80%, 10%
10%

Yes No Apple, 83.30%
Corn, 87.20%
Grape, 86.80%
Potato, 81.90%
Tomato, 87.30%
Tobacco, 82.50%

2 Northern maize leaf
blight detection under
complex field
environment based on
deep learning [30]

CNN Maize Own dataset of
1019 image

1019 images are
converted into 8152
patches (50%, 40%,
10%)

Yes Yes 91%

3 Deep learning for
image-based cassava
disease detection [28]

CNN
Inception v3

Cassava Own dataset of
images collected
from Tanzania

2756 (different
combinations of 90%
dataset into train-test
split, 10% validation)

No No 93%

4 Vine disease detection in
UAV multispectral
images using optimized
image registration and
deep learning
segmentation approach
[31]

CNN Vine Own dataset of
visible and
infrared UAV
images

70; 560 (32 × 32)
images
85% train-test, 15%
validation

No Yes Grape, 92%
Leaf, 87%

5 A system for weeds and
crops
identification—reaching
over 10 fps on raspberry
pi [32]

CNN, U-Net,
MobileNet,
DenseNet,
ResNet

Weed and crop
identification

Own dataset of
beet, cauliflower,
cabbage, and
strawberry
images collected at
different stages

94 videos with no
further details
except 10 fps

No Yes 47%–67%

6 Factors influencing the
use of deep learning for
plant disease
recognition [33]

GoogLeNet Multiple crops DigiPathos 175 (10-fold cross
validation)

No No 80.75%

7 CAMFFNet: A novel
convolutional neural
network model for
tobacco disease image
recognition [34]

CNN Tobacco Own dataset of
1375 images

1375 images
70% train, 20% test,
10% validation

Yes No 89.71%

8 Classification and
identification of crops
using deep learning with
UAV data [35]

U-Net Multiple Own dataset Not available Yes No 37%–83%

(Continued)
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Table 4: Continued
S. no Proposed work Model (s) Crop (s) Dataset Size and dataset

splits
High
resolution

In-field
dataset

Accuracy

9 An artificial intelligence
based weed classification
using Vgg16 classifier
and rmsprop optimizer
[36]

VGG16 Common
wheat, sugar
wheat, weeds,
cleavers

Own dataset of
942 images

Not available No No 92%

10 Super Resolution
Generative Adversarial
Networks (SRGANs) for
wheat stripe rust
classification [37]

CNN Wheat Own dataset of
1922 images

1922
85 & train-test and
15% validation

Yes No 83%

11 Proposed modified CNN
model (Lightweighted,
capable of dealing with
low and high-resolution
images of in-field data)

CNN Wheat In-field dataset
of 450 images,
manually
annotated by
field experts

Different variation
of
train-test-validation
splits 70%, 15%, 15%
80%, 10%, 10%, and
75%, 15%, 10%

Yes Yes 93%

Table 4 highlights that only the researchers in [30] used both the in-field and high-resolution
images. However, despite high computation, the reported accuracy is 91%. The authors in [28] reported
a 93% accuracy, but they were using low-resolution data. There is a debate that training set size is
positively correlated with accuracy. Some recent researchers [38,39] support this claim. On the other
side, the researcher in [40] claimed 90% accuracy with 40% training dataset, by experimenting with 468
models. Therefore, the proposed modified CNN model is extensively evaluated on different variants
of the dataset, and it was concluded that a higher number of images produces higher accuracy in the
plant disease dataset.

5 Conclusion and Future Work

This research includes collecting images dataset from wheat fields of district Kotli of Azad
Kashmir in Pakistan. These images are captured through mobile phones including Infinix Hot8,
Samsung J7 Prime, Samsung J7 Pro and iPhone 8. The collected dataset is annotated by experts in two
classes (healthy and unhealthy). A modified CNN model is proposed that is trained on the captured
real dataset. The proposed model has shown the best results with 93% accuracy.

The fundamental challenge faced during the proposed research was the annotation, and validation
from human expert; hence the dataset was limited to 450 images. However, in the future, it is planned
to collect larger dataset of in-field images and annotate them for refined experimentation. However,
data augmentation may also be utilized to enhance the existing datasets. In the future, it is planned to
capture images through drones to capture a larger area of wheat fields to collect a larger dataset. The
authors also planned to develop web services to provide online results to the farmers. Furthermore,
in the future, the wheat crop images dataset is planned to cover multiple diseases, and it is planned to
extend current work for multiple classifications and to predict different types of wheat crop diseases
from their images.
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