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Abstract: In this paper, the installation of energy storage systems (EES) and
their role in grid peak load shaving in two echelons, their distribution and
generation are investigated. First, the optimal placement and capacity of the
energy storage is taken into consideration, then, the charge-discharge strategy
for this equipment is determined. Here, Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are used to calculate the minimum and maximum
load in the network with the presence of energy storage systems. The energy
storage systems were utilized in a distribution system with the aid of a peak
load shaving approach. Ultimately, the battery charge-discharge is managed
at any time during the day, considering the load consumption at each hour.
The results depict that the load curve reached a constant state by managing
charge-discharge with no significant changes. This shows the significance of
such matters in terms of economy and technicality.

Keywords: Cost; energy storage; particle swarm optimization (PSO); peak
load; smart grid

1 Introduction

The Use of a smart grid improves the accessibility to electricity, especially during peak load hours.
In other words, using such a grid helps control the amount of load inflicted on the grid and reduces the
possibility of power outage in different parts of the grid by preventing customers’ electricity over-use
during peak hours. In addition, the quality of supplied electricity to the customers improves [1-5].The
electricity price is higher during peak load hours compared to other times of the day. If we present
the electricity prices to the consumers, they will be able to manage their electricity consumption. In

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.


https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.035690
https://www.techscience.com/doi/10.32604/cmc.2023.035690
mailto:mehrdad.ahmadi.k@gmail.com

3318 CMC, 2023, vol.75, no.2

other words, they can shift non-necessary expenditures to off-peak hours and reduce their electricity
consumption during peak load hours where electricity price is high. By providing an infrastructure
connecting the electric companies and consumers, the smart grid enables the electric companies to
present information associated with electricity prices to the consumers. Despite the current highly
equipped and advanced power grid, it is not complete and some of its approaches need fundamental
changes [6,7].

With the help of information and communication infrastructure, the smart grid can help us
achieve our goals. While generating required electricity during peak load hours is one of the most
important concerns of electric companies, peak load management is one of the major problems in
power generation and distribution. Numerous objectives have been presented and investigated for
smart grids; just like any other state-of-the-art technology [8—12]. One of the crucial objectives of
the smart grid is peak load shaving. There are many methods that can be utilized in power grids
for peak load shaving. The energy storage system (ESS) is one of these methods and is one of the
required infrastructures to create and develop electricity smart grids [13,14]. The research investigates
the optimal installation and placement of the storage in the smart grid and will show that installing the
storage will help reduce the level of electricity consumption during peak load hours. By taking into
consideration the increasing electricity generation cost, electricity should be put to use immediately
after being generated. Electricity storage is a costly process, which has to be done with the economic
imposition of electricity trading [15-19].

Numerous studies have been conducted in recent years in the field of energy storage systems by the
introduction of smart grids and unsteady electric prices during different times of the day and the use
of distributed generation resources. In this section, previous literature regarding this field is reviewed.
In [20], suitable storage is determined for a wind farm. In this paper, an economic dispatch has been
utilized for this objective. The objective of these studies is to maximize the profit achieved by installing
distributed generation and storage for the resource owners and using them in power systems to reduce
electricity costs. Results depict that using energy storage systems can help reduce the annual cost of
electricity. Moreover, using energy storage systems alongside renewable energies (such as wind) can
help improve the inclusion of these types of resources inside the power systems. In [21], the economic
analysis method is utilized in order to find suitable storage. This method is inspired by the net present
value (NPV) profit. The genetic algorithm is utilized in order to find the maximum profit achieved by
NPV. A micro-grid is utilized in the study that consists of a number of distributed generation resources,
e.g., solar cells, fuel cells, and micro-turbine. One of the main reasons for using storage is unsteady
electricity prices during the day. In [22], temporal planning is proposed for storage by taking the time
of use (TOU) condition into consideration. In this paper, particle swarm optimization is utilized. In
this method, storage is considered alongside the wind farm and the impact of unpredictable wind speed
is taken into consideration. Simulations are conducted on an industrial load.

The extensive use of energy storage systems is one of the objectives of electricity smart grids.
In [23], the optimal performance of these systems is investigated in smart grids. In [23], the study
network consists of a system with 17 buses, a solar power plant and the wind farm. The genetic
algorithm is utilized to find the optimal location and capacity of capacitor and storage. Next, economic
dispatch is utilized for determining the optimal performance of the storage, grid, and distributed
generation resources. In [24], an optimal strategy is proposed to manage the storage for improving the
performance of the wind farm. In this paper, a dynamic programming model is utilized. According
to this model, the generated power by the wind farm should be able to follow the load curve. The
optimization objective is to maximize the profit by the energy sale. Reference [25] determines an
optimal capacity and strategy of energy storage performance for peak load shaving. Firstly, storage
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capacity is determined in order to reduce energy purchases from the grid. Next, storage performance
strategy is determined aiming at reducing payable expenses. In this paper, simulations are conducted
on an industrial load. In [26], the optimal capacity and location of the storage and the capacitor are
determined with the aid of an analytical method. In this method, the objective of placement is to reduce
the loss. Firstly, the optimal size of the storage is determined for each busbar in the proposed methods
and then, a busbar with the lowest loss level is selected as the optimal busbar. Next, the storage is
placed in that location with the optimal value, and the optimal location and capacity of the capacitor
are determined in order to achieve a minimum loss.

Reference [27] introduced two PI-PSO controllers to stimulate a DVR for enhancing the on-grid
hybrid system under misfire and fire-through faults. The PI-PSO controllers’ goal is to force the system
voltage at the POT to control the voltage between the DVR and the load and consequently enhance
the performance of the system during misfire and fire-through faults. The proposed PI-PSO controller
showed a better performance concerning the system voltage, RESs’ powers, and the WECS speed,
electromechanical torque, and power. The objective of [2€8] is to design an economic microgrid system
for the Yanbu region of Saudi Arabia. This design aims to select the best microgrid configuration
while minimizing both NPC and LCOE considering some technical conditions, including loss of
power supply probability and availability index. The optimization algorithm used is Giza Pyramids
Construction (GPC). To prove the GPC algorithm’s effectiveness in solving the studied optimization
problem, artificial electric field and grey wolf optimizer algorithms are used for comparison purposes.

Determining the strategy to optimize the performance of energy storage systems is one of the
problems associated with the exploitation of these systems. In [29], linear programming is utilized
in order to determine the optimal performance of an energy storage system. In this paper, real-time
pricing is utilized and the studies system consists of one local manufacturer, the storage, load, and
grid. Since the prices are not steady (changing), the profit as a result of energy sale, energy acquired
by storage from the grid and manufacturer aiming at charging, and energy supplied to the load by the
storage are determined at each hour. In [30], the storage optimal location and capacity are determined
aiming at improving the voltage profile. In this paper, sensitivity analysis (SA) is utilized. Simulation
is conducted for an IEEE 13-bus system and it is assumed that the grid consists of solar cells. Using
the energy storage improves the voltage profile considering the load variation and solar radiation at
different times of the day and different seasons.

Flattening the load curve is one of the objectives of use management/control. In this paper, the
use of storage is investigated aiming at reducing peak load and flattening the load curve. Considering
that gas power plants are utilized in peak load conditions, this paper suggests a substitute solution,
namely the energy storage, for these types of power plants. Next, a dynamic programming model is
utilized in order to determine the optimal capacity and programming of storage, aiming at reducing
the fuel costs of power plants. The unsteady nature of renewable energy resources causes troubles in
power grids. Therefore, these types of resources are utilized alongside the energy storage. An economic
method for determining the optimal storage capacity is proposed inside the micro-grid. The studies
are conducted in two modes, including islanded mode and grid-connected mode. The solver is inspired
by integer linear optimization (programming). The results depict that the profit achieved by the micro-
grid has increased after installing the storage.

In this paper, the objective is the reduction of peak load by the installation and optimal placement
of the energy storage inside the grid and managing the charge-recharge of storage resources. Hence,
particle swarm optimization is utilized in order to find the location and capacity of storage resources.
Next, a practical and well-rounded program is proposed in order to optimally exploit the storage at
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different times during the day. In Section 2, an explanation is given concerning objective function
and constraints. In Section 3, swarm optimization is explained briefly. In Section 4, the results
of simulations are presented and compared with simulation results achieved by previous literature.
Ultimately, a summary of results and conclusion are presented in Section 5.

2 Objective Function and Constraints

Energy storage systems are among the existing technologies considered in creating and developing
electricity smart grids. Hence, energy resources can be utilized as one of the impressive strategies for
peak load shaving in the grid. The energy storage is one of leading load management methods in
power grids. In this method, power plants always generate energy in an optimal condition of their
performance and they are not required to follow the load curve. In the case of surplus energy in the
grid, this energy is stored in the storage elements and then, supplied back to the grid during peak
hours. In other words, storage is the realization of how the load is transferred in the power grid.

Power consumption varies at different times of the day. Considering the unsteady price of
electricity at different times of the day, the storage is supplied energy during off-peak hours (low
electricity price). Considering the difference between electricity prices for peak hours and off-peak
hours, this matter will increase in the grid profit. Taking the above process into consideration, the ratio
of loss reduction during peak hours is more than loss increment during low-peak hours. Moreover,
installing storage will bear a number of costs. In this paper, the objective is to maximize profit achieved
by storage installation. Cost and profit functions are given as follows for one day:

2.1 Investment Cost

The investment costs of the storage include two types of costs, namely (1) power electronic
equipment costs and (2) storage unit costs.

The annual cost includes annual investment cost, annual replacement cost, and annual mainte-
nance cost. Annual maintenance cost sis calculated as follows [22]:

OMC = OMF x P, (1)

where OMF is maintenance cost per kW. Investment costs include three parts, including power
electronic equipment cost, storage unit cost, and the balancing cost (grid-connected mode) of the
power plant. The power electronic equipment cost is calculated as follows:

PCS = PCSU x Py 2)

where PCSU is the power electronic equipment cost per/kW. Storage unit cost can be calculated using
the following equation [23]:

SUCU x P H
SUC = X T X 3)
eff
where SUCU is the storage unit cost per kW (§/kWH) and eff is system output/efficiency, which is
calculated as follows:

energy — (kwh) — out — during — discharge

= 4
ol energy — (kwh) — in — during — charge @

Balancing cost is as follows:
BOP = BOPU x H x Py, (5)
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where BOPU is the balancing cost per kilowatt-hour (kWh). The total investment cost can be
calculated through summation of power electronic equipment cost, storage unit cost, and power plant
balancing cost:

TCC = PCS + SUC + BOP (6)
The annual investment cost can be written as follows:
CRF x AC =TCC (7
CRF is the rate of return (ROR):
(i)
CRF = M 8)
((A+i)y—-1

where i is the annual interest rate and y is the collection life span. In the case of using a battery in the
storage unit, we may need to replace the battery during the life span of the collection. The total annual
replacement cost per kWh is calculated as follows:

A=Fx[A+in"+[A+i)"+..]x CR 9)

The number of terms in the above equation equals the number of times the battery is replaced
during the life span of the collection. R is period of replacement:

c
= 10
nxD (10)

where ¢ is the number of charge-discharge cycles during battery life span. D denotes the number of
days in which storage is utilized and n is the number of charge-discharge per day. Annual replacement
cost equals to:

ARC = A Pux H (11)
eff

As a result, investment cost per day is as follows [23]:
(AC+ OMC + ARC)

r

COD = 12
= (12)
2.2 Storage Charging Cost

Storage acquires energy from the grid during off-peak hours. This cost equals:
Cnhargc = PM X H X )"l (13)

where A, is the electricity price during off-peak hours.

2.3 The Cost Imposed by Increased Loss

As mentioned above, storage acquires energy from the grid during off-peak hours. As a result, the
loss increased during these hours. As a result, the cost of such event equals:

Cc/zarge == (PLCharge - Al) H)\'l (14)

where P, ... 1S the loss in storage charging mode and 4, is the amount of loss in the grid during
off-peak hours and prior to storage installation.
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2.4 The Profit Gained by Energy Sale

During peak hours, storage supplies energy to the grid. Hence, the profit gained by energy sales
equals [29]:

Cdez‘harge = PMH)\'I (15)

A, 1s the amount of loss in the grid during peak hours and prior to storage installation and C,,,,
is the amount of loss during peak hours and after the installation of storage. C is the number of times
the storage is charged/discharged during its life span.

3 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO), better known as bird swarm algorithm (BSA), is a state-of-
the-art heuristic technique that is inspired by the behavior of birds’ flock in nature. PSO is a powerful
stochastic optimization algorithm that is inspired by flock movement and intelligence. In Fig. 1, the
behavior of a group of birds or fishes is illustrated.

Figure 1: Foraging behavior of birds and fishes adapted from [1§]

This algorithm utilized social interaction for problem solving and was developed by James
Kennedy (social physiologist) and Russell Eberhart (electronic engineer). They used a number of
particles forming a group and these particles are moving inside the search space to find the best
solution.

A particle is considered a point inside the N-dimensional space that regulates its levitation
according to its own and other particles’ levitation experience. Each particle follows its coordinates
inside the solution space that is associated with the best solutions achieved by that particle so far. This
value is named best person (P, ). There is another value for the neighbor particle that is followed by
the algorithm. This value is named best global (G..). In other words, it is considered the best global
experience.

The main concept of PSO is the acceleration of each particle toward their P, and G, locations
that is executed randomly each time with an accelerator, as shown in Fig. 2. In this Figure, S* is the
current search point, V* is the current velocity, V. is the velocity based on Pbest, S*'' is the search
or modified point, V**' is the modified velocity, and V. is the velocity based on Gi..

As mentioned earlier, PSO mimics the movement of birds’ flocks. Think about the following
scenario:
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Figure 2: Concept of modification of a searching point by PSO adapted from [1§]

A group (flock) of birds are searching for food in an area in a random manner and there is only one
portion of food inside the searched area. None of the birds knows the location of food but they know
the distance from the food at each stage. Therefore, this problem is about finding the best strategy to
find food. An effective method is to follow the birds that are closer to the food. By following such
a scenario, PSO is utilized to solve the optimization problems. In PSO, each unit is considered to
be similar to the one bird in the search space, which is called a particle as mentioned earlier. Two
parameters are defined for all particles as follows.

e The best response (fitness) is assessed and optimized with the aid of a fitness function.
e Velocities in the same direction as particles levitation inside the problem space by following
currently optimized particles.

PSO starts with a group of random particles and then, is updated with two optimal quantities. The
first one is the best solution (fitness) that is found so far. This quantity is stored and named P,.,. The
other quantity is the best global and is named G,.,. When a particle considers a part of the population
as the location vicinities, the best quantity is transformed to the best location and named P,.,. After
finding the best two quantities, the velocity and location of the particle are updated.

Each particle tries to modify its location with the following data: current position, current
velocities, the distance between the current position and P..,, and the distance between the current
position and G,.;. They can be modeled with the aid of the following equation mathematically:

Vi =w- VE4 ¢orand,(...) - X (pbest, — ) + ¢;-randy(...) - X (16)
Sl/_c+1 — Szk + VikH (17)

V¥ is the velocity of agent i in k iteration, w is the weight function that varies between 0.4 and
0.9. As the parameter becomes smaller, the algorithm tends to converge quickly. Moreover, as the
parameter becomes larger, it tends to search the space better for the new solutions.

rand: generates a random and uniform number that is distributed between 0 and 1. S is the current
position of agent i in k iteration.

Py 1s the best location for agent i, and G, is the best location experienced by the swarm.

¢, and ¢, are personal and collective (swarm) cognitive coefficients and their values vary between
0 and 2. However, these values are usually considered two. An increase in ¢, and ¢, values causes the
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particle to move toward personal best and converge toward the swarm’s best experience. The algorithm

process is given as follows:

Creating the initial population (swarm) and assessing it
Determining the best personal memories and collective memories
Updating to new velocities and positions, and evaluating the new responses
Starting from stage 2 if the termination condition is not achieved.

Particles’ velocity in each dimension achieves a maximum velocity V... If the total acceleration
causes the velocity to exceed V., the velocity of that dimension will be limited to V,,,, and the user
determines this parameter. In Fig. 3, a flowchart is presented for the PSO algorithm.

(Start)

Y
Deline the number of particles, constant
coefficients value, maximum number of
iterations, variables, the limitation over their
variation, and objective functions

Assign initial values for the
location and velocity of particles.

'

Use design formulas in order to
¥ calculate fitness value for each

particle.
Iy
/’/ T
P - Updating the
\g:ﬁmy_. fitness
///\\\\
- ) S Updating the
<_ Gbest < Fitness ftness

Update the velocity and position,
and determine the limitation of
velocity and particle position
variation.

| End. f

Figure 3: A general flowchart of PSO adapted from [24]
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4 Simulation and Result Analysis

In this section, the proposed model to determine the capacity and location of storage and the
charge-discharge program of these resources within the system are studied. Using particle swarm
optimization, the location, capacity, and storage exploitation are investigated. Such an algorithm
enjoys high accuracy. PSO parameters are presented in Table 1. Stusdies conducted in this field are
aiming at decreasing the loss and peak load, increasing and the profit achieved by charging and
discharging storage resources.

Table 1: PSO parameters

Population Iteration C,=C, w Vioin Vi
100 50 2 07 04 09

The grid under investigation includes a standard 33-bus distribution system. In Fig. 4, the single-
linear arrangement of the system under investigation is illustrated. This is a radial grid and all the
loads are fed through one pass. Active loss of the intended grid is reported to be 210.998 kW.

o =
- ~

Substation
132/12.66 kV

Figure 4: A single line diagram of the test system adapted from [23]

In Fig. 5, the amount of loss in all the lines without the distributed generation resources are
presented. The maximum amount of loss is associated with line number 2, which is reported to be
approximately 59 kW.

In the grid under investigation, three distributed generation resources are taken into consideration.
These three resources are considered in bus #6, bus #16, and bus #25 respectively, with the following
capacities: 2.4878,0.3556, and 0.7291 MW [22]. In this paper, it is assumed that the generation resource
in bus #6 is a wind turbine and the other two are solar panels.

The amount of power generated from solar panels and wind turbines depends on the radiation
and wind speed. As a result, radiation intensity and wind speed in the location under investigation
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should be determined. Radiation intensity and wind speed during 24 h of investigation are shown in
Figs. 6 and 7.
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Figure 5: Line losses
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Figure 7: Wind speed
In Fig. 8, the amount of load in the grid during 24 h of investigation is shown using bar graphs

in per unit. The amount of power required by the load is less than 0.4 per unit at late night and peak
load occurs in around 10. The nominal power of the grid is 4.5 MW.
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Figure 8: The power needed by load (in per unit)

Two different scenarios are utilized in this paper. In the first stage, the location and capacity of
the storage are investigated aiming at reducing loss in the grid. In the second stage, this algorithm is

utilized for charging and discharging these resources at the selected points, aiming at flattening the
load profile.

4.1 First Scenario

In this section, the location and capacity of storage resources are investigated. In the simulation,
it is assumed that only two areas in the grid can be utilized for storage installation and each of these
areas can provide a maximum of 70 collections of installable batteries [24]. As a result, each collection

of batteries can provide power equal to 7.7 kW. In addition, a maximum of 540 kW can be installed at
each storage bus.

Hence, particle swarm optimization has been utilized aiming at reducing loss in the distribution
system. Investigation is conducted at 10 am at the time of peak load occurrence. In the case of non-
installing the storage, the amount of loss is reported to be 98.2 kW only in the presence of distributed

generation resources in the system. In Fig. 9, the amount of loss for each line is presented with the aid
of bar graphs.

0.025

0.02

0.01

Ploss (MW)
o
o
O

0.005

]
0 5 10 15 20 25 30 35
Branch no.

Figure 9: Line loss prior to storage installation
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The amount of loss is calculated using the following equations for power systems. If the total

power injected into the busbar i is known, the total system loss will be equal to the complex power of
all machines [31-37].

PL+jo = Z; S; = Z; Vil; (18)

where N is the number of buses, P; is the active losses, O, is the reactive losses of power system, V; is
the voltage of busbar I, S; is the power injected to bus i, and /; is the buss 1 current.

The proposed objective function is defined as Eq. (18). After the optimization process, the results
depict that two storages should be installed in busbar #8 and busbar #23, with the following capacities

respectively: 540 and 300 kW/h. In Fig. 10, the variation curve of the objective function (loss) is
presented in 50 iterations of the algorithm.

0.085 o Y
0.084 | g0:0°%
0.083 Yo6g
0.082 |
0.081 i
0.08 i

0.079
0.078
0.077 o ooy

0.075 i i i i i i
0

Objective function

i
5 10 15 20 25 30 35 40 45 50
Iteration

Figure 10: The best objective function value at each algorithm iteration

According to the figure, the amount of system loss has decreased to 75.5 kW after installing the

storage is in the selected areas. In Fig. 11, the amount of line loss after storage installation is shown
using a bar graph.

0.015

0.01

Ploss (MW)

0.005

0 5 10 15 20
Branch no.

35

Figure 11: Line loss after storage placement and determine the capacity
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A comparison between Fig. 11 with Figs. 5 and 9 illustrates the impact of storage in reducing
the loss in all lines. As can be seen in Fig. 11, the loss of most lines has been decreased after storage
installation and line #2 accounts for the most loss. Moreover, the amount of loss is reduced to reach
one-quarter of the base conditions (non-presence of distributed generation resources and storage).
In the next stage, simulations are conducted with the aid of particle swarm optimization in order to
improve the load profile and flatten it. Moreover, charging and discharging of storage should be done
in a way that the load profile will have the least number of difficulties and we will have an almost linear
diagram.

4.2 Second Scenario

The aim of demand response is to reduce peak load in the grid for increasing the capacity of grid
spinning reserve and as a result, reduce the need to construct new power plants. Demand response can
be utilized in order to reduce the level of electrical power consumption to reach maximum electricity
demand efficiency and in this way, many costs can be saved. In a long term, the profit caused by reduced
costs can be used to invest in new power plant [38-61]. Due to the establishment of the electricity
market, electricity generation costs and electricity sale prices are different at different times of the
day. For reducing grid peak load in off-load and medium-load hours (during which a high level of
installed capacity is not connected to the circuit), the electricity is stored during off-peak hours (low
price electricity) to be used later in peak load hours (high price electricity).

Electricity price varies at different times of the day. This paper provides simulations based on time
of use (TOU). This is the most common pricing method and most countries use this method. In this
method, hours in a day are divided into several periods, in each of which different prices are considered
for energy. The most simple TOU method considers two periods, peak load and low-load (off-peak)
hours. In some cases, medium-load hours are also taken into consideration. It is natural that the prices
associated with low-load and medium-load hours will be less than peak-load hours. A sample TOU
pricing is given in Table 2. The generated power by solar and wind resources are illustrated in Figs. 12
and 13 according to the resources capacity, radiation intensity, and wind speed during the 24 h of
investigation.

Table 2: Electricity price during peak load, medium-load, and off-load hours adapted from [25]

Price (§) Hours

0.10074 Off-load [22 to 6]
0.28719 Peak load [6 to 14]
0.184 Medium-load [14 to 22]

As aresult, the power needed by the upstream grid can be achieved as Fig. 14 by taking the amount
of power generated by distributed generation resources and load in the grid under investigation into
account.

As can be seen in Fig. 14, significant changes can be seen for power demanded by the upstream
grid despite the presence of distributed generation resources. Hence, the storage resources can be
utilized in order to reduce difficulties generated in grid power. After the optimization process with
the aid of particle swarm optimization with the aim of minimizing objective function (cost), the state
of charge (SOC) of two storages can be achieved as Fig. 15.
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Figure 15: Charge and discharge status of each storage resource

As expected, storages stored energy at the earlier hours of the day due to low prices of electricity
and then were discharged during peak load hours (6 to 24) due to increased electricity price. In
the second event, the revenue achieved by electricity sales to the grid can help reduce objective
function. The charge and discharge status of these two storages are illustrated in Fig. 16 during 24 h
of investigation.
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Figure 16: The amount of power exchange between storage and grid

Next, the genetic algorithm was utilized in order to manage storage resources, charge and
discharge in the system under investigation. As a result, the charge and discharge status of the storages
are achieved as Fig. 17.

The charge and discharge status of all storages are illustrated in Fig. 18.
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Figure 18: The amount of power exchange between storages and grid

As a result, the power profile needed for the upstream grid was changed as Fig. 19 by considering
the charge and discharge status of batteries with the aid of PSO and GA.

According to Fig. 19, the power demanded by the grid has a more suitable status in the presence of
the storage resources. During low load hours, the battery is charged as a load in the system. However,
the battery is discharged as a power generation resource and this way, it will supply part of the required
load. As a result, the amount of power demanded by the upstream grid will be flattened. In Table 3,
the results of simulation with the aid of particle swarm optimization are presented. Moreover, the
maximum and minimum amount of load and the standard deviation of the grid load are also presented.
In addition, in this table, the results are compared with results of the grey wolf optimization algorithm
(GWO) and Lightning Search Algorithm (LSA).

The maximum amount of load in the grid is calculated to be 810 by using the storage and managing
energy with the help of PSO. However, this value is reported to be 133.33 for the system without
storage. In addition, the maximum load for the system with the storage is calculated to be 2568.3
with particle swarm optimization algorithms. However, this value was calculated to be a maximum
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of 3052.5. The large difference between the minimum and maximum power demanded by the grid
can be seen for the system without storage, compared to the low difference between the minimum and
maximum power in the system with the storage. The standard deviation of variation for load demanded
by the upstream grid illustrates the minimum changes in the demanded power.
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Figure 19: The amount of power exchanged with the upstream grid

Table 3: Electricity price during peak load, medium-load, and off-load hours

Minimum load Peak load Standard deviation
Without storage 133.33 3052.5 925.14
GA 606.66 2868 451.53
PSO 810 2568.3 478.01
GWO 725 2678.2 461.21
LSA 802.33 2486.4 471.21

5 Conclusion

In this paper, placement management, the capacity of storage resources, and energy management
of resources are investigated for reducing loss and improving the load profile of the grid under
investigation. Optimal installation and placement of the energy storage in the grid and charge-
discharge management of storage resources have caused a decrease in peak load. Hence, particle swarm
optimization is utilized to find the location and capacity of the storage resources. Simulation results
were compared to the genetic algorithm. Ultimately, a well-rounded program is proposed to optimally
exploit the storage at different times during the day.
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