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Abstract: Clustering high dimensional data is challenging as data dimension-
ality increases the distance between data points, resulting in sparse regions that
degrade clustering performance. Subspace clustering is a common approach
for processing high-dimensional data by finding relevant features for each
cluster in the data space. Subspace clustering methods extend traditional
clustering to account for the constraints imposed by data streams. Data
streams are not only high-dimensional, but also unbounded and evolving.
This necessitates the development of subspace clustering algorithms that can
handle high dimensionality and adapt to the unique characteristics of data
streams. Although many articles have contributed to the literature review
on data stream clustering, there is currently no specific review on subspace
clustering algorithms in high-dimensional data streams. Therefore, this article
aims to systematically review the existing literature on subspace clustering
of data streams in high-dimensional streaming environments. The review
follows a systematic methodological approach and includes 18 articles for
the final analysis. The analysis focused on two research questions related to
the general clustering process and dealing with the unbounded and evolving
characteristics of data streams. The main findings relate to six elements:
clustering process, cluster search, subspace search, synopsis structure, cluster
maintenance, and evaluation measures. Most algorithms use a two-phase
clustering approach consisting of an initialization stage, a refinement stage,
a cluster maintenance stage, and a final clustering stage. The density-based
top-down subspace clustering approach is more widely used than the others
because it is able to distinguish true clusters and outliers using projected micro-
clusters. Most algorithms implicitly adapt to the evolving nature of the data
stream by using a time fading function that is sensitive to outliers. Future
work can focus on the clustering framework, parameter optimization, sub-
space search techniques, memory-efficient synopsis structures, explicit cluster
change detection, and intrinsic performance metrics. This article can serve
as a guide for researchers interested in high-dimensional subspace clustering
methods for data streams.
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1 Introduction

The digital revolution has resulted in a continuous stream of data arriving sequentially from
sensors and devices at time-varying intervals. In practice, many data stream mining applications deal
with unlabeled streaming data because there are few true class labels and the number of classes is often
unknown [1]. Moreover, obtaining the labels requires expert knowledge, making it time-consuming and
expensive, and in certain cases is not possible at all. Clustering can be considered as a concise model
when specific labeled information is not available. Clustering groups related objects in such a way
that members of the same cluster are more similar to each other than members of different clusters.
Clustering is particularly difficult in the high-dimensional scenario because the behavior of features
varies greatly across different parts of the data. A data object is considered high-dimensional if it
contains ten or more features [2,3]. When clustering high-dimensional data, the distance between two
objects becomes more and more similar across all dimensions until all objects are equidistant and no
proper clusters can be formed. This problem, known as the “curse of dimensionality”, causes distance
or density-based conventional clustering algorithms to fail to accurately compute the similarity
between objects. The “curse of dimensionality” can be viewed from two aspects. First, not all features
contribute to the definition of a cluster. Traditional clustering algorithms perform clustering in a full-
dimensional space; therefore, the presence of irrelevant features complicates the similarity calculation
during the clustering process. Second, the subsets of features that define one cluster may be different
from those that define another. For this reason, a global feature reduction approach may not be able to
find a subspace that includes all clusters in the dataset. These problems can be solved by using subspace
clustering, which can identify meaningful clusters in subspaces formed by different combinations of
features. Conventional subspace clustering algorithms are suitable for static environments where the
size of data is known, and the discovered patterns do not change. However, the constant arrival of data
streams from different dynamic systems further complicate subspace clustering in high-dimensional
data. Data streams have several special properties that exceed the capabilities of a typical subspace
clustering algorithm designed for static data sets. They are continuous and potentially unbounded.
Therefore, it is impossible to keep the entire data stream in main memory. A common approach
to overcome this limitation is to store information about the data streams in compact form using
synopsis structures. Unlike static data, data streams evolve, leading to changes in the corresponding
data model over time. This phenomenon is known in the literature as concept drift, where a clustering
model created at time t may be obsolete at time t + δ, leading to poor performance on the new data
[4]. A data stream clustering algorithm typically includes a cluster maintenance mechanism to manage
these changes. The characteristics of data streams require a subspace clustering algorithm capable of
handling high-dimensional data and adapting to the unbounded and evolving nature of data streams.

Several authors have contributed to the literature reviews on data stream clustering. Recent
reviews include Zubaroğlu et al. [1], who compared the basic clustering techniques, computational
complexity, and accuracy of several recent algorithms for data stream clustering. Fahy et al. [5]
studied techniques for handling changes in data streams with limited labels, including clustering.
Bahri et al. [6] thoroughly investigated the basic algorithms for various data stream mining tasks,
including clustering. Tareq et al. [7] conducted a systematic literature review on density and grid-based
algorithms for clustering data streams by identifying their strengths and weaknesses and investigating
how these algorithms address the problems of evolving data streams. Al-Khamees et al. [8] classified
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data stream clustering algorithms into five categories: Partition-based, Hierarchical-based, Grid-
based, Density-based, and Model-based. Batool et al. [9] focused on clustering algorithms that can
handle evolving data streams, while Mahdi et al. [10] compared clustering algorithms for large data
sets. Mansalis et al. [11] studied state-of-the-art algorithms for clustering data streams and evaluated
their performance for different datasets and parameter settings. Carnein et al. [12] provided a very
detailed survey of algorithms for clustering data streams, while several other articles [13–15] studied
algorithms for clustering data streams specifically for grid and density-based approaches. A few
articles [11–12,14,16] discussed algorithms for dealing with high-dimensional data streams. However,
the explanations are brief, and no article explicitly focused on how to perform clustering in high-
dimensional data streams. Although [17–20] have published surveys on clustering high-dimensional
data, these articles do not focus on data streams. Due to the lack of systematic reviews on clustering
of high-dimensional data streams, this article conducts a literature review that focuses on clustering in
high-dimensional data streams and fills the gaps of previous reviews. This article contributes to finding,
evaluating, and interpreting existing research on subspace clustering algorithms for high-dimensional
data streams. The work provides a detailed description of clustering methods, subspace clustering
approaches, synopsis structures, cluster maintenance mechanisms, and a discussion of the essential
elements in this research area that form the basis for future research. This article uses a systematic
methodology to review the literature. Section 2 defines the research questions and describes the review
processes. Section 3 provides a detailed description of the findings, which are divided into general and
main findings that address the research questions. Section 4 interprets the findings, while Section 5
concludes the article with recommendations for future research.

2 Methodology

In this article, we adopted the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) method [21], an established standard for reporting systematic reviews and meta-
analyses. The PRISMA method consists of four phases: identification, screening, eligibility, and
inclusion. The identification phase identifies the keywords used in the extraction of records from
academic research databases. The selected keywords are usually synonyms related to the topic of
interest and are combined with Boolean operators. Once the keywords are identified, the next step is
to search and merge records from multiple databases. Since records may appear in multiple databases,
duplicates can be removed using an appropriate software. In the screening phase, records are narrowed
down by establishing inclusion and exclusion criteria. Criteria may include year, country, study area,
publication type, and language, which can be filtered during the database search. In the eligibility
phase, the number of datasets is further reduced by performing a quality assessment for each dataset.
This process is illustrated in Fig. 1 and aims to answer the following research questions: 1) How is
subspace clustering performed in the high-dimensional data streams? and 2) How are the unbounded
and evolving characteristics handled in the high-dimensional data streams?

2.1 Identification

The initial review was conducted in July 2021 and revisited in July 2022 to incorporate the
most recent and relevant research. Five major databases were selected for this review: Scopus, Web
of Science, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, and Association
for Computing Machinery (ACM). After all relevant keywords were considered, search terms were
developed based on two keywords: “data stream” and “clustering”. These keywords were selected for
two reasons: 1) the article is limited to data streams and clustering as a primary data type and data
mining approach.; 2) since high-dimensional clustering of data streams is a subset of data stream
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clustering, a broader search was conducted to increase the likelihood of finding relevant articles.
Therefore, the Boolean operators ‘AND’ and a wildcard containing the keywords were used in the
search for relevant articles based on the title, abstract, or keyword. As a result, 5381 articles were
retrieved from all databases: Scopus (2494), Web of Science (1297), IEEE (891), ScienceDirect (255),
and ACM (444). The article list was downloaded from the respective databases in ‘.bib’, ‘.enw’ and
‘.ris’ formats.

Figure 1: Systematic review process of subspace clustering algorithms for high-dimensional data
streams

2.2 Screening

The deduplication process was performed automatically using Rayyan, a web-based platform for
systematic reviews, and manually using Microsoft Excel. Of the 5381 articles, 2419 were found to be
identical and subsequently removed. A total of 2962 articles were screened using several inclusion and
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exclusion criteria. The first criterion was the type of literature. We focused on peer-reviewed journal
and conference articles and excluded articles in the form of systematic reviews, surveys, workshop
reports, technical reports, books, and dissertations. We also focused only on articles published in
English. In addition, a time period of 18 years (2005–2022) was chosen for the timeline. According
to Kraus et al. [22], researchers can rely on the concept of maturity of a study to determine the best
range of publication for their review. They explained that for a mature study, where a good number
of articles can be tracked, the timeframe for publication could be shorter than that for a less mature
study. They further explained that for a less mature study, a longer publication timeframe is needed
because there are a limited number of articles and many research questions are still unanswered. In
our review, a shorter publication timeframe resulted in very few articles that were relevant to our
scope of study, making them insufficient for analysis. In our selected timeline, important articles are
the predecessors of many subsequent algorithms and therefore have an important methodological
concept for our analysis. A total of 453 articles were excluded based on these criteria. Then, the
remaining articles were screened based on their title and abstract. This removed 2046 articles that
were not related to data stream clustering and 428 articles that were not related to subspace clustering
algorithms for high-dimensional data streams. Thus, the screening left us with 35 articles eligible for
quality evaluation.

2.3 Eligibility

The quality of the 35 articles was evaluated based on three criteria: 1) Is there a clear description
of the subspace clustering process?; 2) Is there a clear synopsis structure to handle the unbounded
constraint of data streams?; and 3) Is there a clear description of the cluster maintenance mechanism
to handle evolving data streams? Next, the full texts were analyzed to identify articles with detailed
descriptions of the clustering process, synopsis structure, and cluster maintenance mechanism. As a
result, 17 articles were excluded, leaving 18 articles for analysis.

3 Results
3.1 General Findings

The inclusion phase yielded a total of 18 articles for synthesis. About 33% of these were journal
articles, while the rest were published in conference proceedings. The general findings of these articles
are presented in Table 1 in terms of experimental datasets, parameters, and evaluation metrics.
Aggarwal et al. [23] introduced a partition-based algorithm that establishes subspace clustering for
high-dimensional data streams. The algorithm stores the cluster synopsis in a fading cluster structure
and the significant dimensions in a dimensional bit vector. It outperforms previous clustering algo-
rithms by its clustering quality and efficiency. However, the dimensional bit vector assigns equal non-
zero weights to cluster dimensions and zero weights to non-cluster dimensions, which is insufficient
for tracking the evolution of data streams. Therefore, Ren et al. [24] proposed a dimensional weight
matrix that assigns a different non-zero weight to each dimension associated with a cluster. Meanwhile,
Liu et al. [25] and Ren et al. [26] adapted the synopsis structure of Aggarwal et al. [23] by using an
exponential histogram of the cluster feature to store the distribution of data points and capture the
evolution of each cluster. Similarly, Chairukwattana et al. [27] adopted the dimensional bit vector of
Aggarwal et al. [23] to support high-dimensional clustering in evolution-based algorithms for cluster-
ing data streams. Subsequently, Waiyamai et al. [28] proposed discriminative dimension selection to
identify the most significant and distinguishable dimensions for each cluster, while Waiyamai et al. [29]
improved their cluster splitting process by using background or domain knowledge. Most of these
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algorithms are sensitive to the predefined average number of dimensions and clusters and prefer
spherical clusters that can be confounded with noise and outliers.

Table 1: General findings

PID Algorithm Parameters Experimental datasets Evaluation metrics

[23] High-dimensional
projected stream
algorithm (HPStream)

k, l, λ, τ , initPoints KDD-Cup’99 network
intrusion detection

Accuracy: 0.85 Cross
entropy: 0.05

Forest CoverType Accuracy: 0.67 Cross
entropy: 0.05

[24] Weighted subspace
clustering algorithm
for high-dimensional
data stream
(WSCStream)

k, l, λ, τ , initPoints KDD-Cup’99 network
intrusion detection

Purity: 0.88

[25] High-dimensional data
stream clustering
algorithm over sliding
window (HSWStream)

k, l, λ, τ , initPoints,
H, N

KDD-Cup’99 network
intrusion detection

Purity: 0.87

KDD-Cup’98
charitable donation

Purity: 0.85

[26] Density-based data
streams subspace
clustering algorithm
over weighted sliding
windows (SDSStream)

H, λ, NC, μ, βμ KDD-Cup’99 network
intrusion detection

Purity: 0.92

[27] Evolution-based
clustering algorithm of
high-dimensional data
streams (SE-Stream)

k, λ, l, d, merge,
delete

KDD-Cup’99 network
intrusion detection

f-measure: 0.87
Purity: 0.97

Forest CoverType f-measure: 0.56
Purity: 0.74

[28] Evolution-based
clustering algorithm of
high-dimensional data
streams using
discriminative
dimension
(SED-Stream)

k, λ, l, d, merge,
delete

KDD-Cup’99 network
intrusion detection

f-measure: 0.94
Purity: 0.98

Forest CoverType f-measure: 0.59
Purity: 0.73

(Continued)
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Table 1: Continued
PID Algorithm Parameters Experimental datasets Evaluation metrics

[29] Evolution-based
clustering algorithm of
high-dimensional data
streams using
constraint-based
discriminative
dimension
(SEDC-Stream)

k, λ, l, d, merge,
delete

KDD-Cup’99 network
Intrusion detection

f-measure: 0.92
Purity: 0.92

Forest CoverType f-measure: 0.55
Purity: 0.62

[30] Density-based
projected clustering
algorithm over
high-dimensional data
streams (HDDStream)

λ, l, initPoints, ε,
μ, βμ, δ

KDD-Cup’99 network
intrusion detection

Purity: 0.82

Forest CoverType Purity: 0.89
[31] High-dimensional and

high-speed data
streams algorithm
(HSDStream)

λ, l, initPoints, ε,
μ, βμ, δ

KDD-Cup’99 network
intrusion detection

Purity: 0.9

[32] Density-based
projected clustering
algorithm of data
streams
(PreDeConStream)

λ, l, initPoints, ε,
μ, βμ, δ

KDD-Cup’99 network
intrusion detection

Purity: 0.94

Physiological sensor Purity: 0.85
[33] High-dimensional

stream clustering
algorithm using euler
kernel (HEStream)

λ, ε, μ, βμ, δ, THP KDD-Cup’99 network
intrusion detection

Purity: 0.99
Normalized mutual
information: 0.967
f-measure: 0.973

[34] Grid-based clustering
algorithm for
high-dimensional data
streams (GCHDS)

λ, gs, cell_count, m,
n

KDD-Cup’99 network
intrusion detection

Purity: 0.96

[35] Grid-based subspace
clustering algorithm
for high-dimensional
data streams (GSCDS)

λ, gs, cell_count,
iter, nl

KDD-Cup’99 network
intrusion detection

Purity: 0.975

Forest CoverType Purity: 0.91

(Continued)
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Table 1: Continued
PID Algorithm Parameters Experimental datasets Evaluation metrics

[36] Subspace clustering
algorithm of
high-dimensional
online data streams
(SOStream)

λ, gs, cell_count,
D-unit, S-unit,
I-unit

KDD-Cup’99 network
intrusion detection

Purity: 0.81

[37] Subspace partition
clustering algorithm
for high-dimensional
data streams
(SPDStream)

λ, gs, cell_count,
D-unit, PD-unit

KDD-Cup’99 network
intrusion detection

Purity: 0.95

[38] High-dimensional
dense grid tree for
clustering
high-dimensional data
streams algorithm
(HGStream)

λ, N, gs, τ KDD-Cup’99 network
intrusion detection

Purity: 0.89

[39] PCA-based correlation
clustering algorithm
for data streams
(CorrStream)

λ, gs, κ Synthetic dataset Precision: 0.80
Recall: 0.79

[40] Clustering algorithm
in arbitrary subspaces
based on the hough
transform for data
streams (CashStream)

λ, θ , τSVdist, τshift Synthetic dataset Adjusted Rand
index: 0.875
Adjusted mutual
information: 0.829

Notes: k: Number of clusters, l: Projected dimensionality, λ: Decay rate, τ : Spread radius factor, initPoints: Initial number of points,
H: Histogram threshold, N: Window size, NC: Maximum number of exponential histogram cluster features, μ: Core micro-cluster threshold,
βμ: Potential core micro-cluster threshold, d: Total number of dimensions, merge: Threshold to merge clusters, delete: Threshold to delete
clusters, ε: Radius threshold, δ: Variance threshold, THP: local density threshold, gs: Grid interval, cell_count: Minimum number of cell
points threshold, m: Subspace upper dimensions, n: Subspace lower dimensions, iter: Maximum number of iterations for region partitions,
nl: Noise level, D-unit: Dense unit threshold, S-unit: Significant unit threshold, I-unit: Insignificant unit threshold, PD-unit: Potential dense
unit threshold, τ : Grid density threshold, κ: Correlation subspace deviation threshold, θ : Temporal threshold, τSVdist: Singular value distance
threshold, τshift: Equation shift distance threshold.

In a prior work, Ntoutsi et al. [30] pioneered a density-based subspace clustering algorithm
for high-dimensional data streams that can find arbitrarily shaped clusters and does not require
a predefined number of clusters. The algorithm stores the cluster synopsis in a projected micro-
cluster and the significant dimensions in a dimension preference vector. The synopsis structure of
the algorithm is improved in Ahmed et al. [31] by using exponential moving averages to reduce the
memory size and speed up the clustering process. Meanwhile, the work of Hassani et al. [32] focused
on the optimization of the algorithm, while Huang et al. [33] proposed an Euler kernel function as
a new similarity metric to reduce the sensitivity to outliers. Lu et al. [34] established a grid-based
subspace clustering algorithm that can also find clusters of arbitrary shapes. The algorithm uses a
grid structure to cluster incoming data streams and analyze the data distribution of each dimension
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for subspace construction. The algorithm produces clusters that lie in the same subspace. Therefore, a
recursive region partition technique is proposed in Sun et al. [35] to find clusters in different subspaces.
The synopsis structure of Lu et al. [34] is also improved by Wang et al. [36], Zhang et al. [37], and
Ren et al. [38] to provide quick access to cluster information. In contrast to other works that cluster
in the axis-parallel subspace, Borutta et al. [39] and Borutta et al. [40] performed high-dimensional
clustering in an arbitrarily oriented subspace.

The algorithms in Table 1 were tested on several real-world datasets, selecting only numerical
attributes. The Knowledge Discovery and Data Mining Competition 1999 (KDDCUP’99) network
intrusion dataset addresses the cyberattack detection problem and includes 494,020 connection records
with 42 attributes. Each record is labeled as either a normal connection or an intrusion. The Forest
Cover Type dataset corresponds to the forest cover type prediction problem with 591,012 records and
54 attributes. Each record is labeled as a class of forest cover. Knowledge Discovery and Data Mining
Competition 1998 (KDDCUP’98) Charitable Donation refers to a direct marketing campaign with
191,779 records and 481 attributes. Each record is labeled either as a donor or otherwise, as a result
of the marketing campaign. The clustering quality is evaluated using several metrics: accuracy, cross-
entropy, purity, f-measure, normalized mutual information, precision, recall, adjusted Rand index,
and adjusted mutual information. Clustering efficiency is evaluated based on algorithm runtime and
memory usage.

3.2 Main Findings
3.2.1 Subspace Clustering Process in High-Dimensional Data Streams

When performing subspace clustering, an infinite number of subspaces may exist, so testing
all possible subspaces is computationally infeasible. Therefore, the usual assumption in subspace
clustering over static data is to restrict the search space to either an axis-parallel subspace or an
arbitrarily oriented subspace. In the axis-parallel subspace, the cluster points form an axis-parallel
hyperplane in which they are widely scattered along the irrelevant axes but densely clustered along
the relevant features. The method for finding axis-parallel clusters can be divided into top-down and
bottom-up approaches. In the top-down approach, the subspace of the cluster is defined starting from
the full-dimensional space. The bottom-up approach identifies the subspaces that contain clusters by
starting with all one-dimensional subspaces that contain at least one cluster. In an arbitrarily oriented
subspace, the points with correlated features are distributed along an orthogonal hyperplane on which
they are closely aligned regardless of the variance of the correlated features. Algorithms capable of
discovering arbitrarily oriented correlated clusters can be classified as Principal Component Analysis
(PCA) or Hough transform algorithms. PCA-based clustering algorithms use PCA to detect low-
dimensional subspaces defined by correlations between attributes. Hough transform-based clustering
algorithms do not rely on the locality assumption, and thus can be used for global subspace clustering
[3,18,40].

Subspace clustering algorithms for high-dimensional data streams can be similarly categorized
according to the above concept. High-Dimensional Projected Stream Algorithm (HPStream) [23]
finds clusters in an axis-parallel subspace by adopting a top-down approach. At the beginning of
the clustering process, the data points are normalized to equalize the standard deviation of each
dimension. From an initial sample, a set of initial clusters is created based on k-means clustering
and assigned to the dimensions in which they have the smallest radius. The cluster assignment is
then updated by considering only the dimensions associated with each cluster. This is repeated until
both the clusters and the dimensions converge. Each cluster statistic is stored in the form of a fading
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cluster structure and its projected dimensions are stored in a d-dimensional bit vector. At each new
data point, the projected dimensions for each cluster are updated and the distance between each
cluster centroid and the new data point is calculated using only the appropriate set of projected
dimensions. If the new data point is within the boundary radius of the cluster, it is assigned to the
corresponding cluster, otherwise it is assigned to a new cluster. Periodically, when the number of
clusters reaches a maximum value or their timestamp exceeds the last N observed timestamps, the
oldest cluster with the least recent update is removed. The standard deviation of each dimension is also
recalculated, and the corresponding cluster statistics are modified. Similar procedures are adopted by
Weighted Subspace Clustering Algorithm for High-Dimensional Data Stream (WSCStream) [24] and
High-Dimensional Data Stream Clustering Algorithm over Sliding Window (HSWStream) [25] with
corresponding improvements to the dimension selection method and synopsis structure.

Likewise, Evolution-based Clustering Algorithm of High-Dimensional Data Streams (SE-Stream)
[27] uses the dimension selection method of HPStream [23] and a hierarchical approach to form
clusters. The algorithm initially treats the data points as isolated clusters and forms an active cluster
once a sufficiently dense region is present. A cluster is considered active if the weight is greater than or
equal to a predefined threshold. Then, a dimensional projection is performed on the active cluster and
the cluster synopsis is stored in a fading cluster structure with a histogram. When a data point arrives,
it is assigned to the nearest cluster if the radius of the new data point is smaller than a predefined
threshold; otherwise, it is an isolated data point. All existing clusters whose weight is lower than a
predefined threshold are deleted. Additionally, a cluster is split if the data distribution is different. A
dimensional projection is performed again when a cluster is divided, or a new cluster is created. If
the number of clusters exceeds the threshold, the closest pair of clusters is merged. Evolution-based
Clustering of High-Dimensional Data Streams using Discriminative Dimension Algorithm (SED-
Stream) [28] and Evolution-based Clustering of High-Dimensional Data Streams using Constraint-
based Discriminative Dimension Algorithm (SEDC-Stream) [29] use similar hierarchical approaches
with corresponding improvements to the dimension selection method and cluster splitting mechanism.

Density-based Projected Clustering Algorithm over High-Dimensional Data Streams
(HDDStream) [30] also uses a top-down approach to find clusters in an axis-parallel subspace.
It initializes clusters from a collection of points based on the previous conventional algorithm by
computing the subspace preference vector of each density-connected set of points to generate potential
projected micro-clusters. The new data point is temporarily added to each micro-cluster, and its new
projected subspaces are calculated. The new data point is assigned to the nearest micro-cluster with
a radius below the maximum radius threshold; otherwise, a new outlier micro-cluster is created,
and vice versa. A projected micro-cluster is demoted to an outlier micro-cluster if it exceeds the
dimensionality threshold, or its weight is below the weight threshold. When a clustering request
arrives, an offline procedure is applied to the micro-clusters. High-Dimensional and High-Speed
Data Streams Algorithm (HSDStream) [31], Density-Based Projected Clustering Algorithm of Data
Streams (PreDeConStream) [32] and High-Dimensional Stream Clustering Algorithm using Euler
Kernel (HEStream) [33] adapt similar clustering processes with corresponding improvements to the
synopsis structure, optimization method, and similarity metric.

In contrast, Grid-based Clustering Algorithm for High-dimensional Data Streams (GCHDS) [34]
performs subspace clustering based on a bottom-up approach in an axis-parallel subspace. It starts by
constructing a uniformly partitioned initial grid structure from a set of data points, where each grid
cell contains a list of statistical parameters. A new data point is assigned to the nearest cell; otherwise,
the grid cell is expanded to accommodate the new data point. After some time, all data in the grid
structure are faded by a fading factor. When a clustering request arrives, the distribution of each
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dimension is analyzed and only the significant dimensions are selected for clustering. Each cell in the
grid structure is projected onto the selected subspace, and connected cells are called clusters. A fading
function is used to eliminate the influence of old data. Grid-based Subspace Clustering Algorithm
for High-dimensional Data Streams (GSCDS) [35] applies a similar procedure to improve subspace
identification. Subspace Clustering Algorithm of High-Dimensional Online Data Streams (SOStream)
[36] divides each dimension of the data space into grid intervals, with each unit classified as potentially
dense or insignificant. A monitoring lattice structure is used to hold all possible dense units in a prefix-
tree lattice structure. When a new data point is received, the associated node is updated and a new unit
with a high probability of becoming a dense unit is determined. When the size of the monitoring
lattice reaches a predefined threshold, pruning operations are performed at regular intervals. When
a new clustering request is received, the Apriori principle determines the subspaces that contain
clusters. Subspace Partition Clustering Algorithm for High-Dimensional Data Streams (SPDStream)
[37] extends SOStream [36] by classifying each unit as dense, potentially dense, or adjacent and keeping
all non-empty units in a CD-Tree lattice. High-dimensional Dense Grid Tree for Clustering High-
Dimensional Data Streams Algorithm (HGStream) [38] is also an extension of SOStream [36] that
finds dense units based on a grid density threshold and maintains all non-empty units in an HDG-
Tree lattice. Moreover, Density-based Data Streams Subspace Clustering Algorithm over Weighted
Sliding Windows (SDSStream) [26] uses a preceding conventional algorithm in its initialization stage
to generate potential and outlier micro-clusters in the form of an exponential histogram of cluster
features. Incoming data points are assigned to the nearest or new micro-clusters. When a clustering
request arrives, the conventional algorithm is applied to the potential micro-clusters to obtain the final
clustering result.

PCA-based Correlation Clustering Algorithm for Data Streams (CorrStream) [39] and Clustering
Algorithm in Arbitrary Subspaces based on the Hough Transform for Data Streams (CashStream)
[40] perform clustering in an arbitrarily oriented subspace based on the Hough transform and PCA.
CorrStream [39] is a hybrid of partition and density-based clustering algorithms that forms micro-
clusters from a set of initial data points using two distance measures, Euclidean and correlation
distance. The eigenvector of each micro-cluster is initialized based on PCA, resulting in the dimen-
sionality of the subspace for each micro-cluster. When a new data point arrives, it is assigned to its
nearest micro-cluster. Otherwise, a new micro-cluster is created, and updated or new eigenvectors are
generated. A cluster model describing the correlation subspaces is created when there is a request for
final clustering based on a density-based correlation cluster model. CashStream [40] is a grid-based
clustering algorithm that converts a batch of objects from the data space into a Hough space to identify
intersections of a given set of object functions. The Hough space is divided into grid cells and searched
for dense regions. Clusters are represented as dense regions in the subspace, and the object functions
that form the clusters are transformed back into the data space to identify subspace clusters in lower
dimensions. Information about the clusters is stored in a synopsis structure called Concept. Once a
new Concept is created, the importance score of all existing Concepts is recalculated using a weighting
factor. The existing Concepts are then merged if they are identical in terms of similarity to the newly
created Concept.

3.2.2 Synopsis Structure and Cluster Maintenance Mechanism in High-Dimensional Data Streams

The development of appropriate synopsis structures for storing statistical summaries of data
streams is a crucial step in developing algorithms for clustering data streams, especially considering
that data stream applications involve unbounded constraints. Since it is impractical to store the entire
data stream in memory, special synopsis structures must be used to summarize the data stream.
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Synopsis structures for subspace clustering algorithms in high-dimensional data streams include
the fading cluster structure (FCS) [22,23,31], the fading temporal cluster feature (FTCF) [24,25],
the fading cluster structure with histogram (FCH) [26–28], the projected micro-cluster (PMC) [30],
exponential moving average micro-cluster (EAMC) [31], shared nearest-neighbour projection micro-
cluster (SNN-PMC) [33], grid structure (GS) [33,34], monitoring lattice (ML) [36], CD-Tree lattice
(CDTL) [37], HDG-Tree lattice (HDGTL) [38], micro-cluster (CCMicro) [39] and Concept [40]. These
synopsis structures can be divided into two main categories: micro-cluster and grid structure. The FCS
is a micro-cluster that consists of a condensed representation of the cluster’s statistics. It integrates
historical and current data with a user-defined fading factor that can perform updates and temporarily
remove outdated data. Given a set of d-dimensional points C = {

Xi1
. . . Xin

}
at time t with timestamps

Ti1
. . . Tin , the FCS is a (2.d + 1) tuple defined as follows:

FC (C, t) =
(

FC2x (C, t), FC1x (C, t), W (t)
)

(1)

where the FC2x (C, t) and FC1x (C, t) are vectors with d entries. For each dimension j, FC2x (C, t)
is the weighted sum of squares of the corresponding data values in that dimension. The j-th entry
of FC2x (C, t) is equal to

∑n

k=1f
(
t − Tik

)
.
(
xj

ik

)2
. For each dimension j, FC1x (C, t) is the weighted

sum of the corresponding data values in that dimension. The j-th entry of FC1x (C, t) is equal to∑n

k=1f
(
t − Tik

)
.
(
xj

ik

)
. W (t) is a single entry of the sum of all weights of the data points at time t,

where W (t) is equal to
∑n

k=1f
(
t − Tik

)
. The FCS has additivity and temporal multiplicity properties

where the additive property specifies the union of two cluster structures, C1 ∪ C2 by FC(C1 ∪ C2, t) =
FC(C1, t)+ FC(C2, t). The temporal multiplicity specifies the cluster structure at time FC (C, t). If no
points are added to C in the time interval (t, t + δt), then FC (C, t + δt) = e−λδt.FC (C, t).

The FTCF extends FCS with an exponential histogram of cluster feature (EHCF) to store data
at different levels of granularity. Each bucket in the EHCF represents an FCTF associated with a
collection of data points. The FTCF is a (2.d + 3) tuple defined as follows:

FTCF (C, t) =
(

FC2x (C, t), FC1x (C, t), W (t) , t, n
)

(2)

where FC2x (C, t), FC1x(C, t), and W (t) are defined similarly as in Eq. (1), t is the timestamp of the
latest point and n is the total number of data points. Based on the timestamp, the EHCF can store the
most recent observation individually, while older observations are merged and summarized.

The FCH extends FCS to detect the change of cluster structure through a histogram and store the
information of relevant dimensions for each cluster. The FCH is defined as follows:

FCH =
(

FC2x (C, t), FC1x (C, t), W (t) , H (t) , BS (t)
)

(3)

where FC2x (C, t), FC1x(C, t), and W (t) are defined similarly as in Eq. (1). H(t) is an α-bin histogram
of data values with α equal width intervals. For the l-th bin histogram of the j-th dimension at time t,
the elements of Hj are given as Hj

i (t) = ∑N

i=1f (t − Ti) .
(
xj

i

)
.
(
yj

il

)
, where yil is the weight of xi in the

lth bin and BS (t) is a bit vector of projected dimensions at time t.

The PMC extends FCS to distinguish between core micro-cluster, potential core micro-cluster,
and outlier micro-cluster. A micro-cluster that is assigned a dimension preference vector is referred to
as a PMC. The term ‘projected’ means that the micro-cluster is defined over a projected subspace of
the feature space. The PMC is defined as follows:

PMC =
(

FC2x (C, t), FC1x (C, t), W (t) , VAR, 
(mc)
)

(4)
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where FC2x (C, t), FC1x(C, t), and W (t) are defined similarly as in Eq. (1). VAR is a variance vector
of the projected micro-cluster, defined by a variance threshold parameter δ that indicates whether
a dimension should be considered preferred or not. 
(mc) is a dimension preference vector of the
projected micro-cluster.

The EAMC redefines PMC to reduce memory usage and speed up the processing of projected
subspace data streams using exponential moving average. The EAMC is defined as follows:

EAMC (t) = (EA1 (t), EA2 (t), W (t)) (5)

where EA1 (t) is the d-dimensional vector of exponential weighted moving average of points along

each dimension, such that for dimension j: EA1j (t) = αpj (t)+ (1 − α) EA1j (t − 1), where α = 2
1 + N

is a smoothing factor controlled by the size of time window; and pj (t) is the latest point in time window.
EA2 (t) is the d-dimensional vector of exponential weighted average of points along each dimension,
such that for dimension j: EA2j (t) = αp2

j (t) + (1 − α) EA2j (t − 1). W (t) is the sum of the of data
points at time t.

The SNN-PMC redefines PMC to select subspaces of different micro-clusters based on shared
nearest-neighbour density information. The SNN-PMC is defined as follows:

SNN − PMC =
(

CF1, CF2, N, VAR, B, P, W
)

(6)

where CF1 is the linear sum of the projection micro-cluster, i.e., CF1 =
〈
CF11, CF12, . . . , CF1d

〉
,

CF1j = ∑n

i=1x
j
i, xj

i represents the value of data point xi on dimension j. CF2 is the linear sum of squares

vector of the projection micro-cluster, i.e., CF2 =
〈
CF21, CF22, . . . , CF2d

〉
, CF2j = ∑n

i=1

(
xj

i

)2
. N is

the total number of data points contained in the projection micro-cluster, i.e., N = ∑n

i=1 |xi|. VAR is
a variance vector of the projection micro-cluster, B is a preference dimension vector of the projection
micro-cluster, P is the shared nearest-neighbor density of the projection micro-cluster, and W is the
weight of the projection micro-cluster.

The CCMicro is a micro-cluster generated as result of a PCA-based subspace clustering on an
arbitrarily oriented subspace. The micro-cluster at time t for a set of d-dimensional points C =
{p1, p2, . . . , pn} arriving at different time points is defined as follows:

CCMicro (C, t) = (V (t), E (t), μ (t), ts) (7)

where V (t) is the eigenvector matrix of the covariance matrix of C at time t, E (t) is the corresponding
eigenvalues of the eigenvectors in V (t), μ (t) is the mean of the data points contained in C at time t,
and ts is the timestamp of the update of this micro-cluster.

A Concept is a micro-cluster, which represents a cluster resulting from a Hough transform-based
subspace clustering on an arbitrarily oriented subspace. In a data space D ∈ R

d, a Concept of
dimensionality l < d captures an l-dimensional hyperplane in parameter space P with aggregated
information of data objects. A Concept consists of the following attributes:

Concept = (E, μ, N, t, P) (8)

where E is a set containing d − l equations in Hessian normal form (HNF), μ is the mean of all data
objects associated with the cluster, N is the number of data objects associated with the cluster, t is the
timestamp of the last update, and P is the reference to the parent Concept of dimensionality l + 1, if
l < d − 1.
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The GS is a grid structure that stores the statistical information for each cell with a total number
of points greater than zero. The GS is defined as follows:

GS = (ci1, ci2, . . . , cid, countu) (9)

where cij is an open right interval in the partitioning of a dimension and counti is the total number of
points. ML is a prefix-tree lattice structure that extends GS by using a delayed insertion and pruning
technique to minimize memory consumption. All potential dense units are stored in ML where a node
in ML corresponds to a cell unit. Each node maintains:

ML = (UI , Cnt, maxMissed, UTt) (10)

where UI is the cell unit associated with the node, Cnt is the number of data points contained in
the unit, maxMissed is the maximum number of data points contained in the unit, and UTt is the
most recent data point contained in the unit. The CDTL structure was introduced to maintain the
connection between dense units and adjacent units. All non-empty units are inserted into the CDTL,
where each leaf node is denoted as follows:

CDTL = (CNO, id, selectivity, tlast) (11)

where CNO is the serial number of the micro-cluster, id is the unit identifier, selectivity is the total
number of objects contained in the unit, and tlast is the time of the last update of the unit. The HDGTL
structure improves the ML structure by allowing the reuse of inner nodes, thereby reducing the number
of middle nodes and memory consumption. It is a network structure tree consisting of root, inner, and
leaf nodes.

In most data stream scenarios, more recent data may reveal new trends or changes (i.e., concept
drift) in the data distribution. These data can be used to explain how the observed process evolved.
Systems that evaluate both old and new data equally do not capture the evolving characteristics of data
streams and therefore cannot deal with concept drift. Moving window methods have been proposed
to account for concept drift in data streams. Most selected algorithms use the time fading window
to assign a weight to each object depending on its arrival time. A new object is assigned the highest
possible weight, which decreases exponentially over time and is generally defined by a fading function:

ω (t) = β−λ(t−t0) (12)

where λ is the decay rate that determines how much new objects are preferred over old ones, t is the
current time, and t0 is the timestamp of the data object. The fading function has a value in the range
(0, 1). The constant β is usually set to 2, while the decay rate λ is user-defined depending on the
application. Another type of moving window called a sliding window can also be used. This window
considers only the most recent data. The window keeps its size w and slides over time, starting at the
current time t. Thus, each window contains only objects in the interval [tw+1, t], discarding older objects.
The window can be specified in terms of time points (i.e., the last 100 time points) or objects (i.e., the
last 1000 objects).

4 Discussion

The clustering process, cluster search, subspace search, synopsis structure, cluster maintenance,
and evaluation measures are among the important elements for subspace clustering in high-
dimensional data streams. Based on the findings, the clustering process can be divided into two
main categories: 1) single-phase approach, and 2) two-phase approach. The single-phase approach
runs completely online and consists of three stages—initialization, refinement, and maintenance.
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Initialization starts with clustering the initial data streams and searching for significant subspaces
of the clusters. Then, the cluster information is stored in the form of a specific synopsis structure.
The refinement stage is performed iteratively as new data streams become available. In this process,
new data points are assigned to the cluster synopsis and subspaces closest to them. Periodically,
cluster maintenance is performed when a predefined threshold is reached to ensure that only accurate
information is considered for clustering. The two-phase approach, on the other hand, has an additional
offline phase to perform the final clustering. As with the single-phase approach, an initial cluster
synopsis is created, and a new data point is assigned to the closest cluster. Then, cluster maintenance
is performed when a predefined threshold condition is met. In addition, the final clustering phase is
activated at the user’s request. The two-phase approach can be further divided depending on the stage
in which the subspace search is performed. The first approach performs the subspace search during
both the online and offline phases, while the second approach performs the subspace search only
during the offline phase. The two-phase approach is more widely used than the single-phase approach
because it allows the generation of macro-clusters by merging overlapping micro-clusters based on
user-defined parameters [12,13,15,41,42].

The cluster search approach can be divided into four categories based on the taxonomy of
conventional clustering algorithms: partition-based, hierarchical-based, grid-based, and density-based
approaches. In general, the partition-based subspace clustering algorithms produce higher quality
clusters, support high stream speeds, and consume less memory than their predecessors. Nevertheless,
their clustering quality depends on the given maximum number of clusters and average projected
dimensions. Moreover, they can only identify spherical clusters, which may contain noise and outliers.
The hierarchical-based subspace clustering algorithms allow the monitoring and detection of changes
in the cluster structure, including cluster appearance, disappearance, self-evolution, merging, and
splitting. The agglomerative hierarchical strategy makes the algorithms less sensitive to outliers, but the
susceptibility decreases as the dimension increases. In addition to the maximum number of clusters and
the average projected dimensions, other thresholds are required to detect cluster evolution, and these
thresholds vary by application domain. The grid-based subspace clustering algorithm is robust against
noise and outliers and can locate clusters of any shape due to the use of the grid structure. Moreover, it
does not require a predefined number of clusters and projected dimensions. Nevertheless, the quality
of clustering depends on the size and position of the grid cell in the feature space. Density-based
subspace clustering algorithms can filter out noise or outliers by forming clusters of dense regions
and finding clusters with variable shapes, and do not require a predefined number of clusters and
projected dimensions. Nevertheless, several parameters are required to form the micro-clusters. The
density-based approach is superior to other clustering approaches in the literature because it is able to
generate multiple micro-clusters that distinguish true clusters from outliers [43–46].

The approach to subspace search is chosen based on the goal of examining an axis-parallel
subspace or an arbitrarily oriented subspace. The approach for an axis-parallel subspace search
depends on the application domain and whether the clusters are allowed to be in overlapping or non-
overlapping subspaces. If it is the former, the top-down approach is chosen; if the latter, the bottom-up
approach is chosen. Most algorithms for clustering subspaces in high-dimensional data streams weigh
each dimension equally to determine how much it contributes to the subspace. Within a given cluster,
feature dimensions do not necessarily contribute equally to the formation of the subspace. Assigning
different weights to each dimension is beneficial to show the relative importance of each dimension
to the cluster [47,48]. In addition, most algorithms depend on conventional subspace clustering algo-
rithms when searching for subspaces. Conventional algorithms use traditional distance metrics (i.e.,
Euclidean distance, weighted Euclidean distance, Manhattan distance, k-nearest neighbor distance)
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that may lose their qualitative meaning in a high-dimensional space. Investigating the distance metrics
for subspace clustering in high-dimensional data streams will further the understanding of their impact
on clustering and subspace search results.

The unbounded constraint imposed by data streams is overcome by storing a synopsis of that
data in the form of micro-clusters or a grid structure. A micro-cluster is a common synopsis structure
for partition-based, hierarchical-based, and density-based clustering algorithms, while a grid structure
is for grid-based clustering algorithms. Among all types of micro-clusters found in the literature on
subspace clustering for high-dimensional data streams, the projected micro-cluster (PMC) is the most
efficient choice due to its ability to handle outliers [11]. The PMC defines three types of micro-clusters:
projected core micro-clusters, potential projected core micro-clusters and outlier micro-clusters. The
PMC has properties of additivity and temporal multiplicity, which can be used to add new data points
to an existing PMC and downgrade an existing PMC if no points are added to it within a certain time
interval.

The time fading window which gives more weight to the most recent data is often applied to
ensure that the clustering model is always updated. The moving window methods partially address the
challenges posed by the evolving nature of data streams. However, there is a need to develop a more
robust algorithm for clustering data streams to detect concept drift [14]. Concept drift can generally
be handled in two ways: implicit approach and explicit approach [49,50]. The implicit approach is
a proactive mechanism that internally adapts to changes in data streams without any mechanism to
detect the changes. The learning algorithm is periodically retrained with the latest data to represent
the current model while discarding the older data. This method is often referred to in the literature as
a forgetting mechanism, where the old data elements can be discarded using the time fading window
or a sliding window. However, the implicit approach is limited by its slow response to changes, and
the high cost of regular updates, even when no changes occur. The explicit approach, on the other
hand, is a reactive mechanism with an external change detection mechanism that sends a trigger to
the learning algorithm, which then revises its model to reflect the current change. The explicit method
helps the learning model deal with the change immediately and recover quickly from the performance
degradation. It is time saving and cost effective because the learning model is updated only when a
drift is signaled.

Evaluation is another essential element of subspace clustering algorithms in high-dimensional
data streams. Clustering algorithms are usually evaluated using external evaluation metrics for class-
labeled data. Most algorithms have used clustering purity to evaluate clustering quality. However,
clustering is different from classification, and mapping between classes and clusters is not always
possible [11]. Unlike external metrics, internal metrics aim to evaluate clustering quality without having
access to ground truth labels. Clustering quality is evaluated in terms of the structure of clusters and
their relationship to each other. The internal evaluation metrics for data stream clustering algorithms
have been well studied in [51].

5 Conclusion

Clusters in high-dimensional space can be formed from a small number of significant and distinct
dimensions called subspaces. Subspace clustering helps mitigate problems with clustering in high-
dimensional space because it can identify meaningful clusters in subspaces formed by different feature
combinations. It is a complicated process even when considering static data. The problem becomes
much more complex when considering data streams that are unbounded and evolving. This article
reviewed a total of 18 algorithms for subspace clustering in high-dimensional data streams. The
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algorithms are interpreted based on their subspace clustering approach, how the cluster information
is stored as synopsis structures, and how the clusters are updated.

Currently, most algorithms use a two-phase clustering framework, where data are summarized
into micro-clusters or grid cells in the online phase and the final clusters are generated in the offline
phase. The algorithms first create subspace clusters from a collection of raw data streams. The
subspace clustering process deals with two separate problems: Cluster Search and Subspace Search.
Cluster search relies on a basic cluster model, with the density-based cluster model providing better
performance. Subspace search starts from a specific search space and applies specific search techniques
to find relevant dimensions for the clusters. Some algorithms assign a data point to exactly one cluster,
removing possible important information about the data from other dimensions. In some cases, an
object may belong to multiple clusters, especially if the clusters are formed from completely different
dimensions. Several algorithms find clusters with overlapping subspaces but interpreting the clustering
result can be difficult. Due to the unbounded nature of data streams, clustering of incoming data
streams is performed on the cluster synopsis rather than on the raw data. Many forms of synopsis
structures have been used, with projected micro-clusters being the most suitable due to their ability
to handle noise and outliers. As the data streams evolve, the concept drift of the clustering result is
implicitly managed through window models that assign different weights depending on the timeliness
of the data.

Future work can focus on multiple research topics. The clustering framework can be modified
to run fully online to more accurately detect changes in data streams. Although the density-based
approach is superior to the other approaches, it includes several user-defined parameters that can be
optimized for a more efficient cluster search. The traditional similarity metrics can be improved for
a more efficient subspace search. Since most current algorithms weigh the subspace dimensions of
the clusters equally, techniques for weighting the dimensions differently can also be explored. These
techniques are known in the literature as soft subspace clustering. The synopsis structure and the
explicit aspects of detecting concept drift in data streams can be further investigated to achieve a more
efficient online clustering performance. Finally, future work can experiment with intrinsic evaluations
of subspace clustering algorithm performance, especially in an environment where ground truth labels
are not available.
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