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Abstract: Cardiac diseases are one of the greatest global health challenges.
Due to the high annual mortality rates, cardiac diseases have attracted the
attention of numerous researchers in recent years. This article proposes a
hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The
fusion model is utilized to optimally select the highest-ranked features gen-
erated by a variety of well-known feature-selection algorithms. An ensemble
of classifiers is then applied to the fusion’s results. The proposed model
classifies the arrhythmia dataset from the University of California, Irvine into
normal/abnormal classes as well as 16 classes of arrhythmia. Initially, at the
preprocessing steps, for the miss-valued attributes, we used the average value
in the linear attributes group by the same class and the most frequent value
for nominal attributes. However, in order to ensure the model optimality,
we eliminated all attributes which have zero or constant values that might
bias the results of utilized classifiers. The preprocessing step led to 161
out of 279 attributes (features). Thereafter, a fuzzy-based feature-selection
fusion method is applied to fuse high-ranked features obtained from different
heuristic feature-selection algorithms. In short, our study comprises three
main blocks: (1) sensing data and preprocessing; (2) feature queuing, selection,
and extraction; and (3) the predictive model. Our proposed method improves
classification performance in terms of accuracy, F1 measure, recall, and preci-
sion when compared to state-of-the-art techniques. It achieves 98.5% accuracy
for binary class mode and 98.9% accuracy for categorized class mode.
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1 Introduction

Cardiac diseases are one of the major health challenges worldwide. Recently, according to a report
released by the World Health Organization, cardiovascular disease is the number one disease that
affects people’s health seriously and causes death globally. It has high mortality rates, with nearly
17.9 million people dying each year, accounting for about 31% of all global deaths [1]. The early
diagnosis and careful treatment of such diseases can reduce unnecessary deaths. Delays in the detection
of cardiac diseases may aggravate the severity of the disease and delay its treatment. In fact, the lack
of financing in the healthcare infrastructure of developed countries restricts exposure to screening
and thus increases the risk of undiagnosed cardiovascular disease. Therefore, the early diagnosis
and detection of heart disease play a significant role in reducing the rate of death and determining
appropriate treatment. Cardiac arrhythmia is an irregular type of heartbeat, which is either too quick
(tachycardia) or too slow (bradycardia). Arrhythmias may be of various types, which are harmful, and
may, unless detected and monitored in time, cause cardiac arrest or sudden death [2]. Arrhythmias
are important cardiovascular diseases because they foretell anomalies in the electrophysiology of the
heart. These heartbeat variations from the norm are distinguished utilizing electrocardiogram (ECG)
signals. An ECG signal is a bioelectrical signal that records the electrical activity of the heart. ECG
signals are utilized as a parameter to distinguish different heart infections. The traditional method
of ECG analysis requires cardiologists to spend hours monitoring a patient’s status by examining and
interpreting their heart activity on a long-term basis to discover abnormalities in ECG signals. Manual
ECG analysis is time-consuming, requires great effort by cardiologists, and is practically difficult [3].

Delays in detecting irregular heartbeat may increase the seriousness of the disease and reduce the
rate of successful care. To address these obstacles, a timely classification and an accurate diagnosis
based on the automatic detection of various types of arrhythmias is essential and expected to play a
major role in saving patients’ lives, enabling them to obtain effective care and sustain a healthy life.
The automatic detection and classification of arrhythmia are great benefits to physicians also [4,5].

In recent decades, artificial intelligence (AI) and machine learning have been used widely in the
healthcare field. AI can assist in the detection of arrhythmia from the enormous volumes of clinical
information, providing a timely and accurate classification of arrhythmias. It can also assist in the early
diagnosis of arrhythmia, provide an appropriate treatment plan for patients, and help patients avoid
future clinical problems that may be life-threatening. A strong model classifier is needed to reliably
distinguish between the different types of arrhythmia classes and a salient feature extractor is needed
to extract meaningful information from the large volume of raw data [6].

In the last few years, the use of machine-learning techniques to build automatic systems for the
classification and diagnosis of human diseases has received unprecedented attention. These systems
play a vital role in assisting physicians to accomplish biomedical and healthcare tasks that were difficult
to solve by other laboratory methods or human experts. Machine-learning techniques contribute to the
early detection and better diagnosis of diseases and help save expensive medical costs and tests. Many
techniques for the automated classification of arrhythmia have been created in the last decades to
improve the automatic detection and classification of the disease. These techniques may be categorized
into two main categories: (1) binary classification, which classifies patients into healthy or unhealthy;
however, this form of classification can be used only in basic systems without diagnostic and control
purposes; and (2) multi-class categorization, which aims to classify patients based on the different
types of arrhythmias [3,7,8].

Feature extraction and selection are one of the main steps prior to the classification process. A
large number of features in the data to be analyzed is one of the main challenges in any diagnosis
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model. This might affect the accuracy of the process and lead to difficulties in data interpretation [7].
Therefore, feature reduction is inevitable in the search for an optimal subset of features. The removal
of irrelevant features often enhances the performance of the classifier. In general, in the literature,
feature-selection techniques can be divided into two main categories: (1) wrapper techniques and (2)
heuristic techniques [7]. The first technique estimates the features’ relevance using different machine-
learning algorithms wrapped in the search process. Subsequently, these selected features are expected
to improve the classification results. The second technique, on the other hand, estimates the features’
score according to heuristics, based on the statistical analysis of the data [9]. In this study, we utilize
four classic heuristic approaches, namely, (1) information gain, (2) information gain retrieval, (3) Gini
index, and (4) Relief-f, to select the most relevant features of cardiac arrhythmia. Accordingly, we
experimentally conducted a feature-selection algorithm based on a neuro-fuzzy fusion approach to
differentiate valuable features of the arrhythmia dataset.

The proposed work is aiming to integrate various types of Electronic Health Records (EHRs)
data (structured data, unstructured data, and graphic data), sensory data, and user input data all over
time to predict and pre-empt illnesses. It also helps improve patient care and treatment and eases the
burden of clinicians by providing timely and assistive recommendations. Finally, it is serving an aging
population that needs long-term care, and rising expectations from patients. The main contribution
of our proposed model is to improve the efficiency and effectiveness of the healthcare services related
to cardiac diseases through the usage of different Machine Learning techniques. Besides, it intends to
apply modern information and communication technologies in all healthcare fields such as collecting,
storing, restoring, and analyzing cardiac Arrhythmia information. This paper is organized as follows:
Section 2 presents the literature review; Section 3 presents the details of our proposed model. The
experimental results are presented in Section 4. Finally, the conclusion and future works are presented
in Section 5.

2 Related Works

Currently, various automatic system-based machine-learning approaches are proposed for
arrhythmia classification. In general, the automatic systems for arrhythmia classification are
composed of three main steps: preprocessing, feature extraction and selection, and classification.
In this section, we present a systematic review of the current state-of-the-art methods used to detect
cardiac arrhythmia, focusing on feature extraction, feature selection, and classification approaches, as
well as the dataset used for automatic detection and diagnosis processes.

Ayar et al. [10] presented a model for both binary and multi-class ECG arrhythmia classification.
Their proposed model used genetic algorithms (GA) for optimal feature selection and a decision
tree (DT) with the C4.5 algorithm for data classification. Experiments were conducted using the
University of California at Irvine (UCI) arrhythmia dataset; the average accuracy was 86.96% for
binary classification and 78.76% for multi-class classification. Assodiky et al. [11] utilized deep
learning to classify the arrhythmia. The results demonstrated that deep learning accomplished the
best classification rate, with 76.51% accuracy. Moreover, experiments also showed that particle swarm
optimization execution in feature reduction was superior to the GA. Kadam et al. [12] proposed a
novel ECG arrhythmia classification model that incorporates a GA to select features and the Soft-
Margin support vector machine (SVM) to classify arrhythmia into healthy and unhealthy classes.
The model yielded an 87.83% exactness rate, with ten overlapping cross-approval strategies using the
arrhythmia dataset. Darwaish et al. [13] used discrete wavelet transform for the preprocessing of the
ECG signal and undecimated wavelet transform for extracting nine features. The probabilistic mode
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named the Bayesian network classifier was trained using the extracted features on the UCI arrhythmia
dataset. Dalal et al. [14] utilized the kernel extreme learning machine classifier with the GA for
arrhythmia classification. This experimentation was performed on the UCI repository arrhythmia and
Polypyrimidine Tract-binding Protein (PTB) Diagnostic ECG Database. In this approach, cumulants
are utilized to solve the problem of the missing value in the arrhythmia database; an 86.67%
accuracy rate was achieved. Lang et al. [15] proposed a k-Nearest Neighbor (KNN) classifier method,
which is called the difference-weighted k-nearest neighbor. Their proposed classifier could recognize
unbalanced cardiac arrhythmia data after employing the principal component analysis method to deal
with missing data in the arrhythmia dataset. It achieved an average accuracy of 70.80%. Pandey et al. [7]
proposed a machine-learning-based system to detect and diagnose arrhythmia diseases based on ECG
analysis. Their proposed system contains three phases: the first phase is preprocessing, in which data
are normalized and missing values are removed; the second phase employs principal component
analysis for feature selection; and finally, eight classifiers are applied to the various data splits for
arrhythmia classification. Their experiments, which were conducted on the UCI cardiac arrhythmia
dataset, showed that SVMs and Naive Bayes yielded a maximum accuracy of 89.74%. Singh et al. [9]
proposed a model to diagnose and classify cardiac arrhythmia diseases. The authors treated the missing
value problem in the arrhythmia dataset by replacing numerical attributes by their means and replacing
nominal attributes by their modes. Their proposed model utilized the chi-square test, symmetrical
uncertainty, and gain ratio for the feature-selection process, while the proposed model employed three
classifiers for normal and abnormal classification. They achieved a high accuracy of 85.58%, by using a
random forest (RF) classifier with gain ratio feature selection. Shandri et al. [16] presented a multi-class
arrhythmia clustering model using fuzzy robust kernel c-means. The highest accuracy obtained was
90.48% on the UCI repository arrhythmia database. Jadhav et al. [17] presented a feature elimination–
based approach to diagnosing arrhythmia by classifying it into normal and abnormal classes. The
random subspace (RS) ensemble classifier is used for arrhythmia classification, yielding an accuracy
of 91.11% with ensemble sizes of 15 and 20. Khan et al. [18] presented a two-stage cascade structure
method to classify cardiac arrhythmia. The first stage employed logistic regression (LR), DT, and RF
for cardiac arrhythmia classification, while the second stage employed Multi-Layer Perceptron (MLP)
and then long short-term memory (LSTM) deep architectures for multi-class and binary classification
arrhythmia. The experiments of the first stage yielded accuracies of 83.0%, 85.4%, and 87.5% for LR,
DT, and RF, respectively, while the second phase yielded accuracies of 89.0% and 94.8% for MLP and
LSTM, respectively. Yadav et al. [19] propose a framework for the classification of cardiac arrhythmia
patients by focusing on the factors that are more related to their diagnosis. The authors use a database
that was processed on the Health Sciences and Technology (HEST) which is categorized into a multi-
class and a single-class. Itzhak et al. [20] propose a study to detect and classify three arrhythmia types,
namely atrial fibrillation, bradycardia, and tachycardia. The authors relied on logistic regression,
SVM, and random forest classifiers. Their best finding was a performance with a sensitivity of 0.92
and a specificity of 0.86 for a multiclass random forest classifier.

3 The Proposed Model
3.1 Data Preprocessing

Most machine-learning algorithms are influenced highly by the miss-valued attributes and those
containing several redundant values [9]. There are several schemes for imputing such missing values.
Addressing these issues along with many others can be crucial, especially when one wants to improve
model performance and generalize the ability of the model. As the dataset utilized in this study had
such difficulties, we had to preprocess the data in an intelligent way that could help learners (classifiers)
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later. For the miss-valued attributes, we used the average value in the linear attributes group by the same
class and the most frequent value for nominal attributes. While the imputation can be done randomly
by assigning values to the data based on the domain knowledge, there were the right steps to ensure
that the transformed data guarantee the model optimality attaining the maximum efficiency. However,
some classes did not have any certain value for an attribute. Hence, the overall average of all averages
was calculated per class. On the other hand, regarding data redundancy, we faced attributes with zero
or a constant value and some attributes with correlated behaviors. As a result, we eliminated all such
attributes that might bias the results of utilized classifiers. The preprocessing step led to 161 out of 279
attributes (features).

3.2 Fuzzy Fusion Approach

Fusing conflict evidence is one of the fundamental challenges in the decision-making field because
of the fusion of ever-increasing uncertain data [21,22]. In this study, a novel fuzzy-based feature-
selection fusion method is proposed to fuse high-ranked features obtained from different heuristic
feature-selection algorithms. Fig. 1 shows the process flow of our proposed framework. In brief, it
contains three main blocks: (1) sensing data and preprocessing; (2) feature queuing, selection, and
extraction; and (3) the predictive model.

Figure 1: Working steps of the proposed model

Data normalization, which generalizes the effect of the different data acquired from sensors, could
be defined in many different forms. Given the data from the sensors noted as DS and of size n, the
normalized data DS∗ is obtained by applying the normalization approach. The normalization used in
the experiment is done by the maximum and minimum values, which are illustrated in Eq. (1):

D∗
S = (DSi − Minold)

Maxnew − Minnew

Maxold − Minold

+ Minnew, i ∈ [0, n] (1)
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Many metrics approaches are utilized for such purposes of feature selection (information gain,
information gain ratio, Gini index, and Relief-F). The Gini index, for instance, measures the inequality
among values of a frequency distribution that range from 0 (complete equality) to 1 (complete
inequality). The Gini coefficient is often calculated according to the Brown formula in Eq. (2), which G
denotes the Gini coefficient, Xi which is the cumulated proportion of one feature and Yi the cumulated
proportion of the target feature. Information gain is another method of feature selection, based on the
pioneering work of information theory. It studies the value or “information content” of messages by
measuring the number of bits obtained for class prediction. The information gain G(f) of a feature f
is given by Eq. (3), where {Ci}n

i=1 denotes the set of classes and v ∈ V is the set of possible values of a
feature f that could be generalized to any number of classes. The maximum and minimum values for
each feature-selection algorithm are shown in Table 1. For the Relief-F algorithm, Shift is done for
the data by adding all numbers with the minimum value (−0.012869565) such that the most negative
value will become zero and all other numbers become positive.

G =
∣∣∣∣∣1 −

n∑
i=1

(Xi − Xi−1) (Yi + Yi−1)

∣∣∣∣∣ (2)

G (f ) = −
n∑

i=1

P (ci) log P (ci) +
∑
v∈V

n∑
i=1

P (f = v) P (ci| f = v) log P (ci| f = v) (3)

Table 1: Maximum and minimum values obtained by information gain, information gain ratio, Gini
index, and Relief-F algorithm

Information gain Information gain ratio Gini index Relief-F

Max. 0.088754476 0.109477868 0.059260864 0.025103448
Min. 6.79386E-05 8.20173E-05 0.000349982 −0.012869565

Fuzzy set theory is an inference scheme that targets defective data. It relies on partial set
membership, which provides fuzzy inference rather than crisp inference [23]. A fuzzy set A ⊆ U is
defined by the function μA(u) in the interval [0, 1], as shown in Eq. (4):

μA (u) ∈ [0, 1] ∀u ∈ U . (4)

Each element u in U is mapped into a membership degree μA(u) on [0, 1]. Fuzzy set theory
is based mainly on the membership function, which is usually determined through experience and
statistics. Occasionally, three types of membership functions are used widely: Gaussian, triangular,
and trapezoidal membership functions [23]. In our model, the trapezoidal membership function was
utilized, which is illustrated in Eq. (5):

μ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a
x − a
b − a

a < x < b

1 b < x < c
d − x
d − c

c < x ≤ d

0 x > d

(5)



CMC, 2023, vol.75, no.2 4491

where b and c are the abscissas of the two upper vertices, and a and d are the abscissas of the two lower
vertices of the trapezoidal.

Fuzzy rules are implemented manually, based on criteria of different expertise and knowledge
of the four feature-selection algorithms utilized. The criteria used to devise the fuzzy rules are
summarized as follows: first, if the four algorithms have the same value with respect to classifying
a specific sample, then we keep the same fuzzy value; second, if two classifiers yield the same linguistic
value with respect to classifying a specific sample and the linguistic value of the different opinion
classifier represents a major value, then, consequently, the linguistic value of the different opinion
classifier is obtained; third, if two classifiers yield the same linguistic value with respect to classifying a
specific sample and the linguistic value of the different opinion classifier represents a lower linguistic
value, then, consequently, the linguistic value of the two classifiers with the same opinion is obtained;
and fourth, if the three classifiers differ in opinion, then, consequently, the higher linguistic value is
obtained. We apply these three criteria to form all the fuzzy rules for the fuzzy system to combine all
the output results of the classifiers in the basic module unit for the hybrid model.

4 Experimental Results
4.1 Dataset Description

To validate our approach, we used the UCI cardiac arrhythmia dataset [17]. It contains the ECG
signal data, which are composed of 279 attributes and 452 instances. Most of these attributes are
linear (206) and the rest (73) are nominal. The dataset is categorized into 16 different classes. Class 01
belongs to normal people, classes 02–15 belong to different types of arrhythmia, and class 16 belongs to
unclassified or unknown arrhythmia types. In general, for the purpose of binary classification, class 01
is called the normal class, and classes 02–16 are seen as the abnormal class. The normal class contains
245 instances, while the abnormal class contains 207 instances. Table 2 details the class types and their
instances in the dataset. Classes 11, 12, and 13 contain no instances.

Table 2: Class types and their instances in the UCI cardiac arrhythmia dataset

Class no. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Cases no. 245 44 15 15 13 25 3 2 9 50 0 0 0 4 5 2

4.2 Performance Metrics

To evaluate the proposed model, Eqs. (6)–(9) were employed, namely, the accuracy, recall,
precision, and F1 score. All the following metrics are expressed as percentages. For all, TP refers to
a true positive, FP is a false positive, TN is a true negative, and FN is a false negative. We also used
the receiver operating characteristics and the area under the curve.

Accuracy = TP + TN
TP + TN + FP + FN

(6)

Recall = TP
TP + FN

(7)

Precision = TP
TP + FP

(8)
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F1 = 2
Preceision ∗ Recall
Preceision + Recall

(9)

4.3 Evaluation Results

Initially, we performed a pilot experiment on the raw data, without any preprocessing actions and
without feature extraction (i.e., using all 279 features). Table 3 summarizes the basic configuration of
the four main classifiers used in the experiment, namely, RF, SVM, kNN, and NN. Every classifier
gets the same set of heartbeat vectors and provides an output that represents the specific classification
of the heartbeat. Table 4 shows these results, and it is noticeable that the accuracy is so weak because
both the preprocessing of data and feature selection were ignored.

Table 3: Basic properties of RF, SVM, kNN, and NN classifiers

Classifier type Parameters Value

Random forest No. of trees 10
No. of attributes considered at each split 5
Do not split subsets smaller than 5
Replicable training off

SVM Cost (C)
Regression loss epsilon (ε)
Kernel
Iteration limit

1.00
0.10
RBF
100

kNN No. of neighbors
Metric
Weight

10
Chebyshev
Distance

Neural network Neurons in hidden layers (binary)
Neurons in hidden layers (categorized)
Activation mode
Learning rate (α)
Maximum no. of iterations
Replicable training

128, 64, 32, 16, 8, 4
128, 64, 32
Sigmoid (tanh)
0.0009
300
On

Table 4: Initial results obtained on raw data, without preprocessing or feature extraction

CA F1 Precision Recall

kNN 59.07 49.16 51.97 59.07
SVM learner 65.71 64.47 64.6 65.71
Random forest learner 72.12 67.84 66 72.12
Neural network 65.71 61.66 60.6 65.71
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In this study, the results of classifying cardiac arrhythmia data into normal or abnormal classes
(binary classification) are explored. The results of different classifiers with different feature extraction
algorithms are used. Besides, the results of our fused approach were compared with those of a study
using state-of-the-art methods. Table 5 summarizes the average accuracy measured for KNN, SVM,
NN, and RF binary classifiers for 10, 25, 50, and 100 features selected using information gain,
information gain ratio, Gini index, and Relief-F algorithms. All the results obtained were measured
using tenfold cross-validation.

Table 5: Summary of the average accuracy measured for KNN, SVM, NN, and RF binary classifiers
using the four main feature-selection algorithms

Selected attributes Algorithm used kNN SVM RF NN

10 Gini index 68.81 76.55 79.65 75.22
Information gain 68.81 76.55 78.32 75.22
Information gain ratio 62.83 66.37 66.37 68.36
Relief-f 62.83 66.37 65.93 68.36

25 Gini index 68.58 78.76 79.2 77.88
Information gain 69.25 78.98 79.65 76.99
Information gain ratio 64.16 70.35 74.78 69.69
Relief-f 64.16 70.35 74.12 69.69

50 Gini index 71.24 77.88 78.98 76.99
Information gain 71.24 77.88 76.99 76.99
Information gain ratio 63.5 71.46 74.56 70.13
Relief-f 63.5 71.46 75.44 70.13

100 Gini index 67.7 77.21 79.42 74.78
Information gain 67.48 78.76 78.32 73.67
Information gain ratio 65.71 77.65 72.57 74.56
Relief-f 65.27 75.44 74.56 74.12

As noticed from Table 5, the information gain algorithm achieved the maximum average accuracy,
using the 25 features selected, measured for KNN, SVM, NN, and RF, which were 69.25%, 78.98%,
79.65%, and 76.99%, respectively. The Gini index achieved the maximum average accuracy for the
Relief-F algorithm using ten features, and both the Gini index and information gain achieved the
maximum accuracy for neural networks using 50 features. In summary, the most suitable feature-
selection algorithm was noticed to be information gain and the most suitable number of features
was 25.

Besides, the results of the categorized classification mode are reported. As mentioned above, there
were 16 classes (one normal class, 14 arrhythmia classes, and one unknown class) of data in the UCI
cardiac arrhythmia dataset. Table 6 summarizes the average accuracies measured for KNN, SVM, NN,
and RF classifiers to classify all 16 classes.
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Table 6: Summary of the average accuracies measured to classify all 16 classes for KNN, SVM, NN,
and RF classifiers using the four main feature-selection algorithms

Selected attributes Algorithm used kNN (%) SVM (%) RF (%) NN (%)

10 Gini index 68.81 76.55 79.65 75.22
Information gain 68.81 76.55 78.32 75.22
Information gain ratio 62.83 66.37 66.37 68.36
Relief-f 62.83 66.37 65.93 68.36

25 Gini index 68.58 78.76 79.2 77.88
Information gain 69.25 78.98 79.65 76.99
Information gain ratio 64.16 70.35 74.78 69.69
Relief-f 64.16 70.35 74.12 69.69

50 Gini index 71.24 77.88 78.98 76.99
Information gain 71.24 77.88 76.99 76.99
Information gain ratio 63.5 71.46 74.56 70.13
Relief-f 63.5 71.46 75.44 70.13

100 Gini index 67.7 77.21 79.42 74.78
Information gain 67.48 78.76 78.32 73.67
Information gain ratio 65.71 77.65 72.57 74.56
Relief-f 65.27 75.44 74.56 74.12

To test our proposed fused approach results, we used n-fold cross-validation, fixing the number
of features at 20 for the binary mode. Table 7 shows the accuracy, F1-measure, precision, and recall
using 3-, 5-, 10-, and 20-fold cross-validation and the four main classifiers. Besides, the binary mode
was also tested using the training–testing sets 90–10, 80–20, 75–25, and 70–30 while fixing the number
of features at 20. Table 8 summarizes these results. The maximum achievable accuracy was 97.6% for
the kNN classifier at 20-fold.

Table 7: Accuracy, F1-measure, precision, and recall using 3-, 5-, 10-, and 20-fold cross-validation in
the binary mode

No. of folds Classifier Accuracy (%) F1 (%) Precision (%) Recall (%)

3 kNN 88.3 88.2 88.3 88.3
SVM 73.8 73 75.1 73.8
RF 87.4 87.3 87.5 87.4
NN 70 70.1 70.2 70

5 kNN 92.7 92.7 92.8 92.7
SVM 73.3 72.7 74.2 73.3
RF 90.3 90.3 90.3 90.3

(Continued)
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Table 7: Continued
No. of folds Classifier Accuracy (%) F1 (%) Precision (%) Recall (%)

NN 71.1 71 71.1 71.1

10 kNN 96.9 96.9 96.9 96.9
SVM 74.1 73.1 76.1 74.1
RF 94.6 94.6 94.6 94.6
NN 73.2 73.1 73.2 73.2

20 kNN 98.5 98.5 98.5 98.5
SVM 72.1 74.7 73.1 73.1
RF 93.7 93.8 93.7 93.7
NN 73.4 73.4 73.5 73.5

Table 8: Accuracy, F1-measure, precision, and recall for the 90–10, 80–20, 75–25, and 70–30 training–
testing sets

Training–testing set Classifier Accuracy (%) F1 (%) Precision (%) Recall (%)

90–10 kNN 97.6 97.6 97.6 97.6
SVM 74.3 73.2 76.4 74.3
RF 92.4 92.4 92.4 92.4
NN 78.1 77.9 78.5 78.1

80–20 kNN 94.6 94.6 94.6 94.6
SVM 69.8 74 71.4 69.8
RF 91.5 91.6 91.5 91.5
NN 79.3 80.1 79.6 79.3

75–25 kNN 92.8 92.8 92.9 92.8
SVM 72 70.1 75.5 72
RF 90.8 90.7 90.8 90.8
NN 79.6 79.3 80 79.6

70–30 kNN 89.3 89.3 89.5 89.3
SVM 74.3 73 78.3 74.3
RF 88.1 88 88.1 88.1
NN 76.5 76.1 77.4 76.5

The influence of changing the number of features was also studied in the categorized version using
tenfold cross-validation, as shown in Table 9. In the categorized mode, the proposed method achieved
98.9% for the accuracy parameter for the kNN classifier with 50 selected features, which is higher than
the highest accuracy value obtained using the binary mode.
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Table 9: Accuracy, F1-measure, precision, and recall using the top 5, 10, 20, and 50 features in the
categorized mode

No. of features selected Classifier Accuracy (%) F1 (%) Precision (%) Recall (%)

5 kNN 81.9 81.7 82 81.9
SVM 74.7 73.8 76.2 74.7
RF 86.4 86.4 86.4 86.4
NN 71.8 71.5 71.9 71.8

10 kNN 97.3 97.3 97.4 97.3
SVM 70.4 68.9 72.3 70.4
RF 94.7 94.7 94.7 94.7
NN 79.3 79.1 79.7 79.3

20 kNN 97.14 97.15 97.23 97.14
SVM 71.76 70.44 73.84 71.76
RF 91.76 91.75 91.76 91.76
NN 74.73 74.41 74.97 74.73

50 kNN 98.9 98.9 98.9 98.9
SVM 75.3 74.6 76.6 75.3
RF 95.8 95.8 95.9 95.8
NN 86.7 86.6 86.8 86.7

4.4 Comparison Study

Table 10 presents a comparison of the diagnosis of cardiac arrhythmia results. It compares the
proposed study with other leading studies using the same dataset. It concludes the maximum classifi-
cation accuracy for ECG arrhythmia of the proposed method compared to the classification accuracies
obtained by other methods in the literature. Table 10 shows that our proposed fuzzy fusion approach
achieved superior accuracy compared to other methods. As shown in the table, Fazel et al. [24]
achieved an accuracy of 72.7% using several machine-learning techniques. Persada et al. [25] achieved
81% maximum accuracy with the Best-First search using numerous search methods. Niazi et al. [26]
achieved an accuracy of 73.8% using SVM and kNN. Mustaqeem et al. [27] achieved 78.26% accuracy
by selecting the best features using a wrapper algorithm and various machine-learning classifiers.
Shensheng et al. [28] achieved an accuracy of 80.6% using the Fisher discriminant ratio and deep
neural networks using tenfold cross-validation. Özçift [29] proposed a resampling strategy based on
RFs using an ensemble of classifiers and achieved 90% accuracy for 16 classes. Kadam et al. [12] used
SVM with the aid of an improved GA to achieve 88.72% accuracy for only two classes. Ayar et al. [10],
using a hybrid heuristic algorithm, achieved accuracies of 78.76% and 86.81% for 2 and 16 classes,
respectively. Jadhav et al. [17] proposed an RS-based ensemble learning using a 50% train–50% set
test and achieved an accuracy of 91.11%. Khan et al. [18] achieved 94.80% accuracy using the LSTM
network using the binary mode. However, most of these state-of-the-art studies employed either a
binary classifier (normal/abnormal) or 16 classes (categorized mode) for the classification problem,
whereas our proposed model works for both modes. Our proposed study using the fuzzy fusion
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approach achieved accuracies of 98.5% and 98.9% for 2 and 16 classes, respectively. The results prove
the superiority of our proposed model compared to other studies with cardiac arrhythmia datasets in
terms of classification accuracy.

Table 10: Comparison of results of diagnoses of cardiac arrhythmia

References Methodology/approach Dataset selection Classes Maximum
accuracy (%)

Fazel et al. [24] Different
machine-learning
approaches

Not explained 2 72.70

Persada et al. [25] Various search
algorithms

Not explained 2 81.0

Niazi et al. [26] Improved F-score and
sequentialforward
search using k-NN

80% train–20% test
set

16 73.80

Mustaqeem et al. [27] Wrapper algorithm
using MLP

16 78.26

Shensheng et al. [28] Fisher discriminant
ratio + deep neural
network

10-fold
cross-validation

2 80.64

Özçift [29] A resampling strategy
based on random
forests (RF) ensemble
classifier

80% train–20% test
set

16 90.00

Kadam et al. [12] Ensemble of SVMs with
an improved genetic
algorithm

10-fold
cross-validation

2 88.72

Ayar et al. [10] Hybrid heuristic
algorithm

80% train–20% test
set

16 78.76

2 86.81
Jadhav et al. [17] Random

subspace-based
ensemble learning

50% train–50% test
set

2 91.11

Khan et al. [18] LSTM Not explained 2 94.80
Proposed Fuzzy fusion approach

using 50 features
10-fold
cross-validation

16 98.9

Fuzzy fusion approach
using 20 features

20-fold
cross-validation

2 98.5

5 Conclusion

In this paper, an efficient fuzzy fusion approach is proposed to classify cardiac arrhythmia diseases.
As the UCI arrhythmia dataset has 279 features, it was essential to fuse the top-ranked features
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generated from an ensemble of feature extraction algorithms. Therefore, in the proposed model, the
fuzzy fusion approach was used to improve the feature-selection process. As a result, an ensemble of
classifiers was used to classify arrhythmia diseases. The highest accuracies of 98.50% and 98.90% were
obtained for the binary and categorized modes, respectively. These results were superior compared
to those of state-of-the-art methods. The proposed model could help diagnose heart rhythm disease
for students in an early stage with accuracy similar to professional doctors in this field. In the future,
the model will be evaluated on some other standard datasets. Besides, we can also use deep learning
models to improve our results.
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