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Abstract: Influence maximization of temporal social networks (IMT) is a
problem that aims to find the most influential set of nodes in the tempo-
ral network so that their information can be the most widely spread. To
solve the IMT problem, we propose an influence maximization algorithm
based on an improved K-shell method, namely improved K-shell in temporal
social networks (KT). The algorithm takes into account the global and local
structures of temporal social networks. First, to obtain the kernel value Ks
of each node, in the global scope, it layers the network according to the
temporal characteristic of nodes by improving the K-shell method. Then,
in the local scope, the calculation method of comprehensive degree is pro-
posed to weigh the influence of nodes. Finally, the node with the highest
comprehensive degree in each core layer is selected as the seed. However, the
seed selection strategy of KT can easily lose some influential nodes. Thus, by
optimizing the seed selection strategy, this paper proposes an efficient heuristic
algorithm called improved K-shell in temporal social networks for influence
maximization (KTIM). According to the hierarchical distribution of cores, the
algorithm adds nodes near the central core to the candidate seed set. It then
searches for seeds in the candidate seed set according to the comprehensive
degree. Experiments show that KTIM is close to the best performing improved
method for influence maximization of temporal graph (IMIT) algorithm
in terms of effectiveness, but runs at least an order of magnitude faster
than it. Therefore, considering the effectiveness and efficiency simultaneously
in temporal social networks, the KTIM algorithm works better than other
baseline algorithms.

Keywords: Temporal social network; influence maximization; improved
K-shell; comprehensive degree

1 Introduction

In the era of mobile Internet, online social networks have become an important channel for
information dissemination and have greatly impacted the lives of people. Among the many studies
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on social networks, influence maximization (IM) is one of the most popular research directions which
is first proposed by Domingos et al. [1]. IM aims to find a set of nodes to spread influence as much as
possible within the network. Nowadays, this kind of research has been widely used in viral marketing.
For example, a company will select the most influential users in the hope of creating a word-of-mouth
effect for a series of products.

To solve the IM problem, most researchers usually focus on the topology of traditional social
networks and abstract the social network into a static graph, ignoring the temporal nature of the
network. However, in real social networks, such as telephone and mail transmission networks, nodes
are not always connected. Instead, they are connected at a specific time, and the connections between
nodes are time-series, which means that the networks are temporal. Therefore, in these temporal social
networks, it is not enough to determine the closeness of users by their connections with each other.
It is also necessary to record more specific interaction times between users to accurately portray their
relationships. In this way, we can identify nodes that play a critical role in the influence propagation
and effectively address the issue of IM.

As shown in Fig. 1, it illustrates the difference between traditional and temporal social networks in
computing the influence of nodes in the IM problem. Fig. 1a shows a traditional social network G, and
the weights on the edges indicate the influence propagation probability of nodes. Fig. 1b represents a
temporal social network GT with the same probability of influence propagation between nodes as in
G, and the weights on the edges indicate the connections between nodes at a particular time. Next, the
influence of node 1 in these two networks is calculated respectively. In G, node 1 attempts to activate
its neighbor nodes 2 and 3. If only node 2 is successfully activated, node 2 becomes active at this time,
so it can try to activate its neighbor nodes 4 and 5. If only node 5 is successfully activated, node 5
attempts to activate its neighbor node 6. If the activation fails, then node 1 can affect two nodes. So
the influence of node 1 is 2 in G. But in GT , assuming that node 1 also activates node 2, and the weights
on the edge between nodes 1 and 2 indicate that these two nodes are only connected at times 10 and
11, which means that node 2 is activated at time 10 at the earliest, i.e., node 2 is inactive before time 10.
However, node 2 and its neighbor nodes 4 and 5 are connected only before time 9, so node 2 cannot
activate its neighbors. Thus, the influence of node 1 is 1 in GT .

Figure 1: Two examples of social networks. (a) Shows a traditional social network. (b) Shows a
temporal social network

As mentioned above, due to the temporal nature of social networks, the topology between nodes
changes dynamically over time, which makes traditional influence propagation models and influence
maximization algorithms unsuitable for temporal social networks. In the past few years, some studies
[2,3] have solved the IMT problem by using greedy algorithms and optimizing the computation of
marginal gain, but these algorithms are time-consuming and unsuitable for temporal social networks.
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Some studies [4,5] have modeled temporal networks by snapshots to solve the IMT problem, but these
methods are too cumbersome when the network size is large. However, Kitsak et al. [6] find that the
number of cores has more stable propagation than node attributes such as degree and betweenness
centrality. They propose the K-shell algorithm, which can determine the significance of different node
positions in a network and quickly identify the most influential nodes. This concept applies to temporal
social networks.

Therefore, this paper uses the temporal graph to model the temporal social network from a global
perspective and proposes an improved K-shell method for effectively solving the IMT problem, namely
the KT algorithm. Using the static and dynamic attributes of nodes, the algorithm distinguishes the
influence of nodes from the global and local structure of the temporal social network. First, in the
global scope of the network, an improved K-shell method is proposed, which stratifies the network
based on the temporal characteristic of nodes and obtains the kernel value Ks of each node. The
Ks value represents the static properties of nodes. Further, in the local scope of each core layer,
a calculation method of comprehensive degree is proposed, which weighs the direct and indirect
influence of nodes. The comprehensive degree represents the dynamic properties of nodes. On this
basis, the KT algorithm is proposed, which selects the node with the highest comprehensive degree
as the seed node at each core layer from the central core to the edge core. However, the seed selection
strategy of KT tends to lose some influential nodes, resulting in a decrease in the influence of the seeds.
Therefore, we optimize the seed selection strategy and propose the KTIM algorithm, which adds the
nodes near the central core to the candidate seed set, and then selects the top k nodes with the highest
comprehensive degree in the set as the seed nodes. It has low time complexity and is similar to the
effectiveness of the baseline algorithm, which can effectively solve the IMT problem. In summary, our
main contributions to this paper are as follows:

1) We define the problem of IMT and provide an idea to solve it by considering the global and
local structure of the network.

2) Based on the above idea, we propose the KT algorithm to solve the IMT problem. The
algorithm stratifies the network based on an improved K-shell method and then selects the
optimal seed according to the comprehensive degree of nodes.

3) We further propose a more effective KTIM algorithm by optimizing the seed selection strategy
to solve the IMT problem.

4) Through experiments on four real-world temporal datasets, we demonstrate the efficiency and
effectiveness of our proposed algorithms.

In the rest of this paper, Section 2 introduces related works. We formulate the IMT problem and
propose a greedy based algorithm to solve it in Section 3. The fourth section describes the KT and
KTIM algorithms. Section 5 provides experimental results on real-world datasets, and we conclude
this paper in Section 6.

2 Related Work

In this section, we briefly review the related work on solutions to the IM problem, including
influence maximization algorithms in traditional and temporal social networks.

2.1 Influence Maximization Algorithms in Traditional Social Networks

In traditional social networks, influence maximization algorithms mainly include greedy and
heuristic algorithms. Kempe et al. [7] first formulate the IM problem as a discrete optimization
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problem of finding the k nodes with maximum influence on a particular influence propagation
model and prove that the IM problem is NP-hard. On this basis, they propose a greedy algorithm by
utilizing Monte Carlo simulations and prove that the optimal result can reach 63% of the approximate
optimum, but the time complexity of the greedy algorithm is high and unsuitable for large-scale
social networks. Further, Leskovec et al. [8] propose the cost-effective lazy forward (CELF) algorithm,
which optimizes the traditional greedy algorithm by using the submodel and monotonic properties.
Goyal et al. [9] devise the CELF++ algorithm, which further optimizes the CELF algorithm and
improves its effectiveness. Experiments show that the CELF++ algorithm is 35%–55% faster than
the CELF algorithm. In addition, Chen et al. [10] propose two improved greedy algorithms called
NewGreedy and MixedGreedy to further optimize the greedy algorithm by constructing subgraphs
of the network. However, the complexity of the above improved greedy algorithms is still high, thus
making these algorithms unsuitable for large-scale social networks.

To overcome the inefficiency of the greedy algorithm, researchers have proposed a large number
of heuristic algorithms. The issues [11–13] utilize the reverse influence sampling (RIS) method to solve
the IM problem, avoiding the limitations of greedy algorithms. The RIS algorithm generates a certain
number of random reverse reachable sets (RRsets) through a static graph, and then sequentially selects
the node that covers the most RRsets as the seed node until k seed nodes are selected. In addition,
Chen et al. [14] propose the prefix excluding maximum influence arborescence (PMIA) algorithm,
which speeds up the calculation of influence propagation probabilities of nodes by constructing the
local tree structure of each node. This algorithm has a stable influence range and runs three orders of
magnitude faster than the greedy algorithm. However, the PMIA algorithm requires a large amount
of memory. Jung et al. [15] propose the influence ranking influence estimation (IRIE) algorithm,
which first calculates the influence ranking (IR) of each node through the global influence ranking
algorithm and selects the influential nodes according to the ranking order. To avoid the overlapping
problem of node influence, after selecting a seed node, the influence estimation (IE) algorithm is used
to estimate the influence change of the remaining nodes in the network. Then the influence ranking
of the node is updated according to the influence changes of its related nodes. This cycle repeats until
k influential nodes are found. Chen et al. [10] propose the DegreeDiscount algorithm to solve the
influence overlap problem of traditional degree estimation algorithms. The algorithm is based on the
idea that when a node v’s neighbor node is selected as a seed node, its degree is discounted when
calculating its degree. This algorithm is superior to the simple degree algorithm [16]. Cao et al. [17]
propose a core covering algorithm (CCA) based on the hierarchical features of social networks and
introduce a coverage distance parameter to avoid the overlap of the influence of nodes.

In recent years, many researchers have extended their research on the IM problem of social
networks. Wang et al. [18] discuss the robustness of the influence maximization problem against link
attacks and try to find a robust set of seed nodes from the network to deal with the challenge of
structural damage to influence propagation. Wu et al. [19] study the IM problem with time constraints,
i.e., how to maximize influence spread within a given time range. They propose a time-constrained
method based on the topological attributes of nodes and the time attributes of social activities.
Wang et al. [20] focus on the trust relationship between nodes in competitive social networks and study
the influence problem by simulating the positive and negative propagation of trust nodes. Li et al. [21]
focus on the geographical location of individuals and propose a location-oriented IM problem.
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2.2 Influence Maximization Algorithms in Temporal Social Networks

In temporal social networks, the aim of maximizing influence is to find the most influential seed set
under the temporal relationship so that the information propagation of this set is the most. Therefore,
it is important to focus not only on topological features but also on temporal features [22,23].

Recently, Wu et al. [2] abstract temporal social networks into temporal graphs, improve the
traditional independent cascade model, and propose an independent cascade model on temporal graph
(ICT) model. On this basis, they propose the IMIT algorithm to solve the IM problem in temporal
social networks by using Monte Carlo simulations. However, the algorithm is unsuitable for temporal
social networks because it uses a greedy algorithm that takes a long time. Chen et al. [3] propose the
two-stage impact maximization (TIM) algorithm, which uses node characteristics to select candidate
seeds in the temporal heuristic stage, and optimizes the marginal gains of nodes for seed selection in
the temporal greedy stage. Compared with the IMIT algorithm, the running time of TIM is reduced.
However, the temporal greedy stage still takes a long time, which is unsuitable for temporal social
networks.

In addition, Zhang et al. [4] propose a prediction and replacement based influence maximization
framework using machine learning techniques, which first predicts upcoming network snapshots using
historical network snapshot information, and then mines seed nodes suitable for dynamic networks
based on the prediction results. Chandran et al. [5] study temporal influence maximization on dynamic
social networks and proposes a dynamic influence based seed selection method which estimates the
influence of each node by introducing a two-hop triangular influence.

In conclusion, although the influence of the heuristic algorithm is unstable under different
social networks and propagation models, its performance can be improved by several orders of
magnitude compared to that of the greedy algorithm. This is due to the fact that the greedy algorithm
obtains the largest influence nodes using time-consuming Monte Carlo simulations under a particular
influence propagation model. In contrast, the heuristic algorithm is not constrained by the influence
propagation model and selects the most influential nodes based on the characteristics of nodes and
edges. Although the influence propagation effect of the greedy algorithm is excellent and stable, its
time complexity is high and unsuitable for temporal social networks.

3 Preliminaries
3.1 Basic Definition

Definition 1: (Temporal social network). Given a network GT(V , E, TE) represents a social
network graph with temporal relationships between nodes, V represents the set of nodes, E represents
the set of edges, where |V | = n, |E| = m and TE represents the set of connection times between nodes.
T(u,v) represents the set of times when there is a connection between nodes u and v, and T(u,v) ∈ TE.

In a temporal social network, nodes are connected only at a specific time. As shown in Fig. 2, the
weights on the edges indicate the time when a connection exists between two nodes. E.g., T(1,2)={10,
20} indicates that there is a connection between node 1 and node 2 at times 10 and 20, and there is no
connection at other times.
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Figure 2: Temporal social network GT

3.2 Influence Propagation Probability

Definition 2: (Influence propagation probability). The probability that an inactive node v is
successfully influenced by its active parent node u through a directed edge (u, v) is the influence
propagation probability, denoted as Pu,v ∈ [0, 1].

In traditional social networks, degree estimation is usually used to calculate the influence
propagation probability between nodes. However, it is not appropriate in temporal social networks, as
mentioned in Fig. 1. Due to the addition of temporal relationships, the weight of each edge is related
to the number of connections between two nodes, implying that the larger the value of |T(u,v)|, the larger
the value of weight. Therefore, the calculation of the influence propagation probability is based on the
method proposed by Chen et al. [3], which is calculated as follows:

Pu,v = |T(u,v)|∑
v′∈In(v) |T(u,v′)| (1)

where |T(u,v)| is the number of connections between nodes u and v, and In(v) represents all in-degree
nodes of v.

3.3 Influence Propagation Model

Definition 3: (Node active start time). The moment when node v is successfully activated by its
active parent node u is its active start time, denoted as Actv = min{t|t ∈ T(u,v) and t ≥ Actu}.

In traditional social networks, it is not necessary to consider the start time of a node being activated
for the IM problem. In contrast, the start time of the node being successfully activated in the temporal
social network needs to be considered. Therefore, in this paper, we adopt the ICT model [2] to simulate
the influence propagation of nodes. In the initial network, the active start time of all nodes v can be
recorded as Actv = −1, indicating that all nodes are inactive. When a seed node u is selected, we
formulate the information diffusion process as follows:
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1) Let the initial active start time of the seed node be Actu = 0, that is, the seed node is active
at time 0. At this time, the seed node u activates its inactive neighbor node v with a certain
probability, and node u has one and only one chance to try to activate node v.

2) When node u tries to activate node v, it judges whether the condition Actu ≤ max(T(u, v)) is
satisfied. If not, it skips node v and starts trying to activate the next neighbor node. Otherwise,
node u activates node v with a probability Pu,v.

3) Regardless of whether node u can activate node v, node u does not try to activate node v again
in the subsequent propagation process.

4) If node v is successfully activated, its initial active time Actv is recorded, where Actv ∈ T(u,v),
Actu ≤ Actv ≤ max(T(u,v)).

5) The influence diffusion process is from new active nodes to their inactive neighbors until no
new nodes are activated in the network.

3.4 The Definition of the IMT Problem

According to the above description, this section introduces the concepts of node influence and
marginal gain, and then defines the IMT problem.

Definition 4: (Node influence). Node influence is the number of nodes in the network that can be
successfully activated by node u, denoted as σ(u). Similarly, σ(S) indicates how many nodes can be
activated by the seed set S .

Definition 5: (Marginal gain). The marginal gain of a node u refers to the increment revenue σu(S)

from adding node u to the seed set S.

σu (S) = σ (S ∪ {u}) − σ(S) (2)

Definition 6: (The influence maximization of temporal social networks problem). Given a tempo-
ral social network GT(V , E, TE) and a specific influence propagation model such as ICT, the influence
maximization of temporal social networks (IMT) problem selects k nodes as the seed set S so that the
influence range σ(S) generated by S is the largest. That is, compute S∗ such that:

S∗ = argmaxS⊆V ,|S|=kσ(S) (3)

where V are nodes set in the network, k is the size of the seed set, σ(S) represents the influence range
of the seed set S.

3.5 Traditional Solution to the IMT Problem

For the IMT problem, the traditional solution follows the idea of the greedy based algorithm,
which mainly divides the problem into two sub-processes. One process is calculating the marginal gain
of a single node joining the seed set by Monte Carlo simulation approximation. The other process is
selecting the k most influential nodes using the greedy approximation algorithm.

Let GT(V , E, TE) represent the temporal social network, k is the required number of seed nodes,
and S is the set of seed nodes. We give the pseudocode of the Greedy algorithm as Algorithm 1.

Algorithm 1: Greedy
Input: GT(V , E, TE), k
Output: S
1: Initialize S ← ∅

2: while (|S| < k)
(Continued)
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Algorithm 1: Continued
3: for each node u (u ∈ GT , u /∈ S)
4: σu (S) = σ (S ∪ {u}) − σ(S)

5: end for
6: u ← argmaxu∈V\Sσu (S)

7: S ← S ∪ {u}
8: end while
9: return S

Let n = |V |, m =|E|, and R be simulation times. Since the algorithm runs k iterations, in each
iteration, it needs to go through all nodes u∈V\S to find the one with the maximum marginal influence.
For each node, the algorithm needs to run R simulations to calculate the marginal gain of the node
after joining it into the seed set. Each simulation may need to traverse all edges, so the time complexity
of Algorithm 1 is O (knRm). As the size of the network increases, the Greedy algorithm becomes very
complex in terms of time complexity, making it unsuitable for temporal social networks. So, in the
next section, we’ll talk about two better algorithms to solve the IMT problem based on an improved
k-shell method.

4 Influence Maximization Algorithms of Temporal Social Networks

Although the Greedy algorithm can solve the IMT problem, it is time-consuming. In this section,
we propose KT and KTIM algorithms to solve it. Fig. 3 shows the architecture diagram of our work.

As shown in Fig. 3, given a temporal social network GT , we first calculate the temporal char-
acteristic of nodes, denoted as T (v). Then we propose an improved K-shell method by exploiting
the temporal characteristic of nodes to stratify the network and obtain the Ks value V (Ks) of each
node. Then, we propose the KT algorithm by designing the seed selection strategy. More precisely,
the KT algorithm calculates the comprehensive degree of nodes at each core layer, then selects the
node with the highest comprehensive degree as the seed node from the central core to the edge core.
Subsequently, we propose the KTIM algorithm by optimizing the seed selection strategy. KTIM adds
the nodes near the central core to the candidate seed set, and then selects the top k nodes with the
highest comprehensive degree in the candidate seed set as the seed nodes. Finally, we estimate the
influence spread of the seed nodes using the influence propagation model.

4.1 Improved K-shell Method

The traditional K-shell algorithm is used to stratify the network based on the degree of nodes in
the global scope. Firstly, it continuously removes nodes of degree 1 and their connected edges from
the network G until such nodes no longer appear in G. Then, all the removed nodes are classified as
1-shell layer, and a Ks value of 1 is assigned to these nodes. Next, it continuously deletes nodes with
degree 2 and their connected edges, sets the Ks value of these nodes to 2, and classifies them as a 2-shell
layer. Finally, the algorithm repeats the above process until all nodes in the network are layered and
assigned Ks values.

It should be noted that the layer of nodes with a larger Ks value is closer to the core layer of the
network, and the nodes in the core layer of the network usually have greater influence. The K-shell
algorithm reveals the hierarchy of the network structure and can better estimate the influence of nodes
in traditional social networks. However, in temporal social networks, the influence of a node is not only
affected by its degree but also related to its temporal characteristic.
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Figure 3: Architecture diagram of our work

As shown in Figs. 4, 4a represents a traditional social network G. Fig. 4b represents a temporal
social network GT . In G, the out-degree of node a is 2. In GT , the out-degree of node d is also 2, while
the number of connections between node d and its neighbor nodes is 6, which is much larger than the
number of connections between node a and its neighbors. That is, the probability that node d activates
its neighbor nodes is greater than that of node a. Although the degrees of node a and node d are the
same, the influence of node d is greater than that of node a. However, the traditional K-shell method
considers that both nodes have the same influence, so it is unsuitable for temporal social networks.

Figure 4: The comparison of node influence. (a) Is a traditional social network G. (b) Is a temporal
social network GT
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As mentioned above, to make the K-shell method applicable to temporal social networks, it is
necessary to improve the K-shell method to consider the temporal characteristic of nodes to stratify
the network. The temporal characteristic of a node is defined as follows:

T(u) =
∑

v∈Out(u)
|T(u,v)| (4)

where T(u) represents the temporal characteristic of node u, Out(u) represents the outgoing neighbors
set of node u, and T(u,v) represents the connection times between nodes u and v.

Furthermore, we propose an improved K-shell method by exploiting the temporal characteristic
of nodes in temporal social networks. The main idea is as follows: First, it continuously removes nodes
and their edges whose temporal characteristic value is 1 until such nodes no longer appear. At this time,
all deleted nodes are classified as a 1-shell layer and valued to 1. Then, it continuously deletes nodes
and their edges with a temporal characteristic value of 2, classifies the deleted nodes as a 2-shell layer,
and values these nodes to 2. The above process is repeated until all nodes in the network are classified,
and Ks values are assigned. Among them, nodes in the layer with a larger Ks value are closer to the core
layer of the network, and nodes in the core layer usually have greater influence. We show an example
in Fig. 5.

Figure 5: Applying improved K-shell methods for layering a temporal social network
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As shown in Fig. 5, it is the result of layering the temporal social network in Fig. 2. The network is
stratified into three layers, and the Ks value gradually increases from the border layer to the core layer,
which means that the importance of nodes gradually increases. More precisely, Node 1 belongs to the
3-shell layer and usually has the greatest influence. Nodes 2, 3, 6 and 9 belong to the 2-shell layer and
have the same Ks value. Node 10 and other nodes belong to the 1-shell layer with the same Ks value
and usually have the least influence. It can be seen that the improved K-shell method can provide a
more reasonable layering of the temporal social network.

4.2 Seed Selection Strategy

In a temporal social network, after layering the network through the improved K-shell method
in Section 4.1, each node is assigned a Ks value to quantify the importance of the node, representing
the static property of the node. But this method is a coarse-grained decomposition method based on
the global structure of the network, which makes nodes with high Ks values easy to cluster together.
Therefore, if the seeds are only selected according to the improved K-shell method, it will cause two
problems. On the one hand, it is difficult to distinguish the importance of nodes with the same Ks
value in the same kernel layer. As shown in Fig. 5, in the 2-shell layer of the temporal social network,
nodes 9, 2, 6, and 3 are in the same layer and have the same Ks, so it is not easy to distinguish the
importance of these nodes. On the other hand, determining the importance of a node according to the
value of the static attribute Ks alone is very likely to cause the selected seed node to be inaccurate.

Therefore, to address the above issues, we further focus on the other characteristics of nodes within
the local scope of each kernel layer, so the comprehensive degree is proposed to represent the dynamic
properties of nodes and to weigh the direct and indirect effects of nodes in the propagation process.
The comprehensive degree is derived from common sense that if a node has more neighbors, and its
neighbors also have more neighbors, then that node may have more influence. So, the comprehensive
degree of a node is defined as follows:

CD(u) = out_degree(u) +
∑

v∈Out(u)
|out_degree(v)|

|out_degree(u)| (5)

where CD(u) represents the comprehensive degree of node u, out_degree(u) represents the out-degree
of node u, and Out(u) represents the set of out neighbors of node u.

As shown in Fig. 5, the comprehensive degree of each node in the second layer of the temporal

social network is calculated as CD (2) = 3 + 3
3

= 4.0, CD (9) = 2 + 3
2

= 3.5, CD (6) = 2 + 3
2

= 3.5,

CD (3) = 2+ 2
2

= 3.0. It can be seen that node 2 has the greatest influence in the 2-shell layer network.

Therefore, with the above solution, the nodes have the same static attribute Ks value in the same kernel
layer. However, the dynamic attribute comprehensive degree of the nodes is different, and it can be seen
that node 2 with the largest comprehensive degree has the largest influence.

4.3 The KT Algorithm

Based on the above analysis, the KT algorithm is proposed in this paper. The basic idea is that
in a temporal social network, the network is first layered according to the temporal characteristic of
nodes. Then starting from the core layer of the network, each layer selects the node with the largest
comprehensive degree to join the seed set. Let GT(V , E, TE) represent the temporal social network, k
is the required number of seed nodes, and S is the set of seed nodes. The description of KT is given in
Algorithm 2.
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Algorithm 2: KT
Input: GT(V , E, TE), k
Output: S
1: Initialize S ← ∅

2: for u in GT do
3: calculation T(u)

4: end for
5: G′

T

T(u)← GT

6: for i = 1 to k
7: for shell layer in reversed(G′

T)

8: for u in shell
9: calculation CD(u)

10: end for
11: v = argmaxu{CD(u)|u ∈ G′

T/S}
12: S = S ∪ {v}
13: end for
14: end for

The algorithm first initializes the candidate seed set S (line 1), calculates the temporal character-
istic for each node in the graph (lines 2–4), and applies the improved K-shell method to stratify the
temporal social network GT to generate the layered network G′

T (line 5). Lines 6–14 iteratively search
for the seeds with the highest comprehensive degree in each layer. In each iteration, line 7 indicates the
seeds are selected from the core layer to the border layer, and line 12 adds the node with the highest
comprehensive degree in the current layer to the seed set S.

Let the number of nodes be n, the number of edges be m, the seed set size be k, and the number of
connections between nodes be T . For the time complexity, line 1 is a constant time, lines 2–3 take O(T),
layering the network takes O(n) in line 5, and lines 6–14 select the node with the largest comprehensive
degree that takes O(kn). Therefore, the overall time complexity of the KT algorithm is O(T + kn).

4.4 The KTIM Algorithm

The KT algorithm distinguishes the importance of nodes with the same Ks value and selects
a node with the maximum comprehensive degree as a seed node in each core layer. However, this
selection strategy tends to lose some more important nodes, resulting in inefficient solutions to the
IMT problem. Therefore, we propose the KTIM algorithm by optimizing the seed selection strategy.

4.4.1 Optimizing Seeds Selection Strategy

In a temporal social network, the KT algorithm selects the node with the highest comprehensive
degree as the seed node for each network layer. However, typically each kernel layer may aggregate
multiple nodes. When the KT algorithm selects only one node as a seed node at each kernel layer,
other potentially more influential nodes will be lost, which may lead to a reduction in the influence
range of the seed set.

As shown in Fig. 5, the comprehensive degree of multiple nodes in the 2-shell layer is greater than

that of the nodes in the 1-shell layer. E.g., in the 2-shell layer, CD (2) = 3 + 3
3

= 4.0, CD (9) =
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2 + 3
2

= 3.5, but in the 1-shell layer CD (5) = 1 + 0
1

= 1.0. It can be seen that the seed selection

strategy of the KT algorithm only selects one node with the highest comprehensive degree as the seed
node in each core layer, resulting in ignoring other nodes that may be more influential. Therefore, the
seed nodes selected by the seed selection strategy of the KT algorithm may not be the more influential
nodes in the whole network and cause a decrease in the influence of the seed set.

Therefore, to address the shortcomings of the seed selection strategy of the KT algorithm, we
further optimize the seeds selection strategy by combining the static attribute Ks value and the dynamic
attribute comprehensive degree of nodes to select the seed nodes. The optimized seed selection strategy
is mainly divided into two steps, which are described as follows:

1) For the layered network G′
T(V , E, TE) obtained by the improved K-shell method mentioned

in section 4.1, the top N nodes with higher Ks values are selected to join the candidate seed set S′,
representing the set of nodes that may become seed nodes. i.e.,

S′ = {u| u = [ui| ui ∈ G′
T , Ks (ui) > Ks′, i ∈ {1, . . . , n}]} (6)

where ui is a node in G′
T , Ks(u) denotes the static attribute Ks value of a node u, and Ks′ is the N + 1th

higher Ks value.

2) The top k nodes with a greater comprehensive degree are selected from the candidate seed set
S′ and added to the seed set S, which represents the set of seed nodes. i.e.,

S = {v|v = [vi|vi ∈ S′, CD (vi) > cd ′, i ∈ {1, . . . , N}]} (7)

where vi is a node in S′, CD(v) denotes the dynamic attribute comprehensive degree of a node v, and
cd ′ is the k + 1th higher comprehensive degree.

4.4.2 Execution Process of KTIM

Let GT(V , E, TE) represent the temporal social network, k is the required number of seed nodes,

S

‘

is the set of candidate seed nodes, and S is the set of seed nodes. Algorithm 3 shows the pseudocode
of the KTIM algorithm.

Algorithm 3: KTIM
Input: GT(V , E, TE), k
Output: S
1: Initialize S ← ∅, S′ ← ∅

2: for u in GT do
3: calculation T(u)

4: end for
5: G′

T

T(u)← GT

6: for shell layer in reversed (G′
T)

7: for i = 1 to N do
8: v = argmaxu{Ks(u)|u ∈ G′

T/S′}
9: S′ = S′ ∪ {v}
10: end for
11: end for
12: for i = 1 to k

(Continued)
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Algorithm 3: Continued
13: for u in S′

14: calculation CD(u)

15: end for
16: v = argmaxu{CD(u)|u ∈ S′/S}
17: S = S ∪ {v}
18: end for

In Algorithm 3, line 1 initializes the candidate seed set S′ and seed set S. Lines 2–4 calculate
the temporal characteristic of each node. Line 5 applies the improved K-shell method to stratify the
temporal network. Lines 6–11 iteratively find the top N (N is the size of the candidate seed set, and
k < N < n) nodes with larger Ks value and add them to the candidate seed set S′. Line 6 means the
candidate seeds are selected from the core layer to the border layer. Lines 12–18 execute k rounds to
find k seeds with the highest comprehensive degree in the candidate seed set S′ and add them to the
seed set S.

Let the number of nodes in the network GT(V , E, TE) be n, the number of edges be m, the size
of the seed set be k, and the number of connections between nodes be T . The time complexity of the
KTIM algorithm is calculated as follows: It takes O(T) to calculate the temporal characteristic of
nodes in lines 2–3, and the time complexity of layering the network in line 5 is O(n); Lines 6–11 take
O(N) to find the top N candidate seeds; Executing k rounds in line 12 takes O(k), and O(N) to select
the current seed in lines 13–17 in each round. Therefore, the time complexity of the KTIM algorithm
is O(T + n + kN).

5 Experiment and Evaluation

We conduct experiments on our proposed algorithms and a series of other compared algorithms
on four real-world temporal social network datasets. These experiments aim to evaluate the effective-
ness and efficiency of our proposed KT and KTIM algorithms for the IMT problem.

5.1 Experimental Setup

Datasets. The experiments in this paper are conducted on four real-world temporal network
datasets. Each row of data in these databases consists of three items: denoted as (u, v, t), which means
that u contacts v at time t. the details of the datasets are shown in Table 1.

Table 1: Parameters of experimental datasets

Name Nodes Temporal
edges

Static edges Time span/day

Email-Eu-core 986 332334 24929 803
CollegeMsg 1899 59835 20296 193
Math overflow 21688 107581 90489 2350
Ask ubuntu 75555 356822 178210 2418

Among them, dataset 1 [24] is generated from the email data of large European research
institutions. Dataset 2 [25] consists of private messages sent on the online social network of the
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University of California, Irvine. Dataset 3 [26] was generated from a famous website Math Overflow.
Dataset 4 [24] originates from a question-and-answer website Ask Ubuntu.

Evaluated algorithms. We conduct experimental comparisons between our algorithms and the
following baseline algorithms to evaluate the effectiveness and efficiency of our proposed KT and
KTIM algorithms.

� Greedy: Greedy is based on Algorithm 1 in this issue and utilizes the CELF algorithm in [8]
to speed up the process.
� IMIT: IMIT [2] is based on the greedy algorithm, which optimizes the marginal gain
calculation of nodes for seed selection.
� TIM: TIM [3] is a semi-heuristic and semi-greedy algorithm, which mainly contains a
temporal heuristic stage and a temporal greedy stage.
� CCA: CCA [17] is a heuristic algorithm based on core level features of networks.
� DegreeDiscount: DegreeDiscount [10] is based on the degree of nodes. The basic idea is
that when a node v’s neighbor node is selected as a seed node, its degree is discounted when
calculating its degree for seed selection.

Experimental environment. The experimental platform is 64-bit Windows 10, the CPU is Intel Core
i5-8250U @ 1.60 GHz quad-core, the memory is 8 GB, the hard disk is 128 GB, and the programming
environment is Pycharm. All of the compared algorithms are implemented in python.

Parameter settings. We use the ICT model mentioned in section 3.3 to simulate the influence
propagation. The seed set size is 10, 20, 30, 40, and 50, respectively. In the KT algorithm and KTIM
algorithm, the size of the candidate seed set is set to 200. To pursue the accuracy of seed selection,
the number of Monte Carlo simulations of the Greedy algorithm is set to 1000. The number of Monte
Carlo simulations of the IMIT and TIM algorithms is set to 100. The radius of the influence parameter
of the CCA algorithm is set to 1.

For the KTIM algorithm and the KT algorithm, because the network is layered by the improved
K-shell method, the layered result at this stage is fixed. Therefore, this stage can be processed offline,
and the running time of these two algorithms does not include the layered time in the experiments. For
the IMIT and TIM algorithms, since 100 times Monte Carlo simulations in calculating the marginal
gain are time-consuming, the data offline processing is also done. We do not consider the running time
of Monte Carlo simulations when counting the running time for these two algorithms. Otherwise, the
running time of IMIT and TIM would be much larger than the time without offline pre-processing.

5.2 The Efficiency of Different Algorithms

In this section, the running time of each algorithm is calculated for selecting 50 seed nodes in
datasets of different sizes. Since the Greedy algorithm is time-consuming (The experiments on datasets
3 and 4 are unfinished for more than sixty hours) and its running time is much longer than that of the
other algorithms, Greedy is not performed on datasets 3 and 4. The final results are shown in Table 2.

From Table 2, we have the following observations: First, KT, KTIM, and DegreeDiscount are
more efficient than the other algorithms. Among them, KT performs best because it selects the node
with the highest comprehensive degree as the seed node from each shell layer from core to edge. KTIM
runs a little longer than KT since it first adds nodes close to the network core to the candidate seed
set, and then sequentially selects the nodes with the highest comprehensive degree from the candidate
seed set as seed nodes. Second, as the network scale increases, the running time of KT, KTIM, and
DegreeDiscount increases very little because none of these algorithms are concerned with network
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size in terms of seed selection. KT has the shortest running time followed by DegreeDiscount and
KTIM, CCA and TIM are next, IMIT has a longer running time, and Greedy has the longest running
time. Third, with the increase of the network size, the running time of the Greedy algorithm increases
exponentially, which is actually unsuitable in temporal networks.

Table 2: Running time of the algorithms

Algorithm Email-Eu-core/s CollegeMsg/s Math overflow/s Ask ubuntu/s

Greedy 72720 382222 / /
IMIT 1.23 1.59 9.82 31.64
TIM 0.49 0.50 1.96 1.69
DegreeDiscount 0.03 0.24 0.26 0.14
CCA 0.64 2.19 3.17 1.28
KT 0.01 0.01 0.09 0.04
KTIM 0.11 0.071 0.36 0.24

5.3 The Effectiveness of Different Algorithms

In this section, we test the effectiveness of the related algorithms. In each algorithm, when the
seeds are selected, we run 1000 Monte Carlo simulations and take their average as a result. The final
results are shown in Figs. 6 to 9. We should note that the larger the influence spread of the seed set,
the better the algorithm’s effectiveness. Since datasets 3 and 4 are too large and the running time of
the Greedy algorithm is too high (unfinished more than sixty hours), the Greedy algorithm is not
performed on these datasets. Fig. 6 shows the influence spread of seeds on the Email-Eu-core dataset.
We can see that the influence spread of Greedy is larger than that of the other algorithms, followed by
IMIT, TIM, and KTIM. TIM is slightly inferior to IMIT. Additionally, the gap between KTIM and
TIM decreases as seed set size increases, and the performance of KT, DegreeDiscount, and CCA is
lower than the other algorithms.

Figure 6: The results on the Email-Eu-core dataset
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Figure 7: The results on the CollegeMsg dataset

Figure 8: The results on the math overflow dataset

Fig. 7 shows the results on the CollegeMsg dataset. Greedy also has the best performance because
it has performance guarantees. However, as seen in Table 2, the running time of Greedy is more than
100 h, which is useless in reality. The proposed KTIM algorithm is slightly inferior to IMIT and TIM
in terms of effectiveness. While the running time of KTIM is much smaller than that of IMIT and
TIM, e.g., the running time of KTIM is one and two orders of magnitude faster than that of TIM
and IMIT, respectively. We also see that the performance of the KT algorithm improves rapidly as the
seed set size increases, surpassing the DegreeDiscount algorithm and the CCA algorithm when k > 40.
This is because the KT algorithm considers the temporal characteristic of nodes, starts with the global
structure and local structure of the network, and combines the static and dynamic attributes of nodes
so as to select the key nodes accurately.

From Figs. 8 and 9, we see that the influence range of IMIT, TIM, and KTIM is almost the same
on the two datasets. However, as can be seen from Table 2, the running time of our proposed KTIM
algorithm is much shorter than that of TIM and IMIT. Among the other algorithms, the KT algorithm
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has a higher influence range in comparison to DegreeDiscount and CCA algorithms, which have a
lower influence range as the seed set size increases. We can also see that the influence range of the KT
algorithm in Fig. 9 is quickly expended for the same reason mentioned above.

Figure 9: The results on the ask ubuntu dataset

In short, according to Figs. 6 to 9, the Greedy algorithm performs best in terms of effectiveness.
The performance of the KTIM, TIM, and IMIT algorithms is similar and close to that of the Greedy,
followed by KT, and the DegreeDiscount and CCA algorithms are the worst.

5.4 Analysis of Results

Throughout the analysis of the experimental results, Greedy has the largest influence but the
longest running time, so this algorithm is not practical. Although DegreeDiscount and CCA have
better performance in traditional influence maximization algorithms, they are not applicable to the
IMT problem because they ignore the temporal characteristic of the network. In contrast, the KT and
KTIM algorithms proposed in this paper, as well as the rest of the baseline algorithms, consider the
network timing and are more suitable for the IMT problem. However, considering the efficiency and
effectiveness of the algorithms, the KTIM algorithm achieves better results.

In terms of efficiency, as shown in Table 2, the KTIM algorithm is at least an order of magnitude
faster than the IMIT algorithm and four times faster than the TIM algorithm. The reason is as follows,
the time complexity of the KT algorithm is (O(T + kn)) and the KTIM algorithm is (O(T + n + kN)).
From reference [2,3], the time complexity of the IMIT algorithm is (O (ϕ (v) |V |) k + |V |log2|V |k)

and the TIM algorithm is (O(n + kRKlog2|V |k). Since N is the number of the candidate seeds, which
is much smaller than the number of nodes |V |, so the KTIM algorithm has a shorter running time
compared to the IMIT and TIM algorithms. More precisely, although IMIT optimizes the calculation
of marginal gain, it still requires Monte Carlo simulations to calculate the influence, which takes a
long time. Compared with IMIT, TIM reduces the running time by reducing all nodes in the network
to candidate seed nodes, but it still requires a longer running time than KT and KTIM.

In terms of effectiveness, the KT algorithm proposed in this paper is slightly inferior to the rest
of the temporal social network algorithms. However, the influence spread of the optimized KTIM
algorithm is close to that of the IMIT algorithm and the TIM algorithm, which indirectly proves that
the optimized seed selection strategy we propose is effective. Taking the Ask Ubuntu network in Fig. 9
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as an example, when k = 50, the influence ranges of IMIT, TIM, and KTIM are 5100, 5000, and 4953,
respectively, i.e., the influence spread of the KTIM algorithm is about 2.88% less than that of the IMIT
algorithm and about 0.94% less than that of the TIM algorithm.

In conclusion, it is clear from the above analysis that the KTIM algorithm can trade a balance
between effectiveness and efficiency. Therefore, considering the running time and influence range,
KTIM has the best results and can efficiently solve the IMT problem.

6 Conclusion

In this work, we study the problem of maximizing the influence of temporal social networks.
Although the greedy algorithm can solve this problem, it is time-consuming. To solve this problem,
we consider both the global and local structures of temporal social networks. In the global scope, we
propose an improved K-shell method to stratify the network according to the temporal characteristic
of nodes and calculate the kernel value Ks of nodes to represent their static properties. In the local
scope, we propose a calculation method of the comprehensive degree to weigh the influence of nodes in
each core layer, and use the comprehensive degree to represent the dynamic properties of these nodes.
On this basis, we propose the KT algorithm. It selects seed nodes with the highest comprehensive
degree at each core layer from the central core to the edge core. Furthermore, we propose a more
efficient KTIM algorithm by optimizing the seed selection strategy. It adds the nodes near the central
core to the candidate seed set and then selects seed nodes with the highest comprehensive degree in the
candidate set. Experimental results show that the KTIM algorithm runs at least an order of magnitude
faster than the IMIT algorithm, has a similar influence range as it, and is suitable for temporal social
networks. In the future, we will study the IMT problem in combination with more attributes, such as
dynamic attributes and location attributes.
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