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Abstract: The term Epilepsy refers to a most commonly occurring brain dis-
order after a migraine. Early identification of incoming seizures significantly
impacts the lives of people with Epilepsy. Automated detection of epileptic
seizures (ES) has dramatically improved the life quality of the patients.
Recent Electroencephalogram (EEG) related seizure detection mechanisms
encountered several difficulties in real-time. The EEGs are the non-stationary
signal, and seizure patterns would change with patients and recording sessions.
Further, EEG data were disposed to wide noise varieties that adversely moved
the recognition accuracy of ESs. Artificial intelligence (AI) methods in the
domain of ES analysis use traditional deep learning (DL), and machine
learning (ML) approaches. This article introduces an Oppositional Aquila
Optimizer-based Feature Selection with Deep Belief Network for Epileptic
Seizure Detection (OAOFS-DBNECD) technique using EEG signals. The
primary aim of the presented OAOFS-DBNECD system is to categorize
and classify the presence of ESs. The suggested OAOFS-DBNECD tech-
nique transforms the EEG signals into .csv format at the initial stage. Next,
the OAOFS technique selects an optimal subset of features using the pre-
processed data. For seizure classification, the presented OAOFS-DBNECD
technique applies Artificial Ecosystem Optimizer (AEO) with a deep belief
network (DBN) model. An extensive range of simulations was performed on
the benchmark dataset to ensure the enhanced performance of the presented
OAOFS-DBNECD algorithm. The comparison study shows the significant
outcomes of the OAOFS-DBNECD approach over other methodologies. In
addition, the result of the suggested approach has been evaluated using the
CHB-MIT database, and the findings demonstrate accuracy of 97.81%. These
findings confirmed the best seizure categorization accuracy on the EEG data
considered.

Keywords: Seizure detection; EEG signals; machine learning; deep learning;
feature selection

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.036207
https://www.techscience.com/doi/10.32604/cmc.2023.036207
mailto:kayalvir@srmist.edu.in


4102 CMC, 2023, vol.75, no.2

1 Introduction

Epilepsy is a severe and persistent neurological disorder affecting the human brain. Over 50 million
people of distinct ages globally, with around 450,000 people below 17 in the US out of almost 3
million people, are detected with such disorders [1]. Its recurring unprovoked seizure acknowledges
epileptic seizure (ES). Epilepsy is a phase of synchronous, anomalous innervation of a population of
neurons that might last a few minutes [2]. While Epilepsy happens, a person has fleeting instances
of involuntary, abnormal body movements, either all at once or in spurts, and may or may not be
aware of what is happening. Although ES is uncommon, its consequences on patients’ emotions,
relationships, and ability to express themselves physically make diagnosing and treating Epilepsy
crucial and comprehensive [3]. The EEG signals are most preferable for detecting Epilepsy since they
are portable, economical, and depict precise rhythm from the frequency domain [4]. The EEG gives
the voltage variation generated by the ionic presence of neurons from the brain that characterizes the
brain’s bioelectric activities. It should be recorded for a longer duration to diagnose ESs. Moreover,
this signal is recorded in the number of channels, which makes the analysis complex [5]. Also, the EEG
signal is prone to artefacts generated by muscle tremors, main power supply, and electrode movements.
This might challenge physicians to detect ESs through noisy EEG signals [6]. Several studies have
been carried out to predict and diagnose ESs depending upon EEG modalities and other technologies
like MRI coupled with AI methods to overcome this problem. AI techniques like traditional DL and
machine learning algorithms were applied for ES diagnosis [7].

Several ML approaches have been introduced based on time, statistical and frequency domains for
diagnosing ESs [8]. A trial-and-error methodology could create the classification model and feature
selection in ML techniques. To suggest a suitable approach, one must have a solid understanding of
signal processing and data mining methodologies [9]. Currently, with enhanced accessibility of data,
ML techniques might not perform well. Therefore, the DL technique, a state-of-the-art algorithm, is
used. Unlike traditional ML approaches, DL models need enormous amounts of data from the trained
stage [10]. Because the model has massive feature spaces, it could face the problem of overfitting in case
of insufficient data. Here, the author provided a method for detecting epileptic seizures from EEG data
using an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network (OAOFS-
DBNECD). The primary objective of the presented OAOFS-DBNECD algorithm is to categorize and
classify the presence of ESs. The OAOFS technique selects an optimal subset of features using the
pre-processed data. For seizure classification, the presented OAOFS-DBNECD technique applies an
artificial ecosystem optimizer (AEO) with a deep belief network (DBN) model for seizure classification
purposes. An extensive range of simulations is accomplished on the benchmark dataset to ensure the
enhanced performance of the presented OAOFS-DBNECD approach.

The remainder of this paper is divided into five sections. Section 2 presents the literature
review results. Section 3 lays out the methodology proposed for data pre-processing, extracting the
features and categorizing, class labelling, hyperparameter tweaking, design architecture, optimization
strategies, and mathematical and conceptual framework. Section 4 compares the suggested technique
to the various approaches by portraying the simulated outcomes. Finally, Section 5 highlights the
conclusion.

2 Literature Survey

Usman et al. [11] proposed a DL-related ensemble learning technique for predicting ESs. In
the presented approach, EEG signals were pre-processed through empirical mode decomposition,
and bandpass filtering was applied to remove noise. With synthetic preictal segments generated by
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utilizing GAN, the class imbalance problem was mitigated. Hilal et al. [12] introduced an intelligent
deep canonical sparse AE-related ES detection and classification (DCSAE-ESDC) method using an
EEG signal. In the end, the parameter tuning of a DSCAE process is carried out through the krill
herd algorithm (KHA). Anter et al. [13] modelled a novel technique for distinctly recognizing seizure
conditions (for instance, interictal, ictal, and preictal) from EEG from the IoT structure to monitor
patients. Divya et al. [14] devised a fully automatic system similar to Hybrid GWO-Improved Sine
Cosine Algorithm (HGWOISCA) with improved SVM called HGWOISCA-SVM for classifying EEG
signals. Bhandari et al. [15] devised the new ES recognition utilizing the Improved Ensemble Learning
Model (I-ELM). A novel meta-heuristic technique named Modified Tunicate Swarm Algorithm (M-
TSA) was implemented to reduce the feature length, manage the training difficulty, and improve
detection performance for precise FS.

In [16], a technique for classifying EEG data utilizing DNN structure was presented. Bi-LSTM, a
type of RNN, has been used in this technique. In [17], a projected hybrid cuckoo finch optimizer tuned
DCNN classifier for predicting and recognizing the incidence of ES using EEG signal data gained by
IoT. The author [18] explained each component’s detailed explanation and an overview of the many
diagnostic approaches used for epilepsy. In conclusion, the study proposed several novel ideas for
seizure detection using DL methods, which are gaining popularity. In [19], medical professionals in
the field of neurology have a time-consuming challenge when they must visually examine long-term
electroencephalography (EEG). The suggested seizure detection approach was tested using the CHB-
MIT scalp EEG database, which achieved a sensitivity of 93.89 per cent and a specificity of 98.49 per
cent. In the article [20], to alleviate the burden of data labelling, the author presented a hybrid system
that combines unsupervised learning (UL) with traditional supervised learning (SL). Through testing
on the CHB-MIT scalp EEG dataset, the proposed seizure detection system is shown to have an overall
accuracy of 92.62%, a sensitivity of 95.55%, and a specificity of 92.57%. An improved evolutionary
approach is suggested to extract the same features from many networks with different numbers of
layers (IGA) [21]. Results for ACC, SPE, SEN, and F1 on the Siena scalp database are 99.13%, 98.36%,
and 98.75%, respectively.

In [22], the author presented a unique approach to the few-shot issue by reducing the need for vast
data: an automated system based on Deep Metric Learning (DML) for identifying epileptic episodes.
Based on the Bonn dataset, the most challenging classification of interictal vs. ictal, an impressive
accuracy of 98.60% and specificity of 100% was attained. Because of an unacceptable amount of false
alarms [23] produced by cutting-edge technology, automated long-term detection of focal seizures
remains one of the most pressing concerns in epilepsy. To speed up the diagnosis of epilepsy, automatic
seizure identification from an electroencephalogram (EEG) is crucial [24]. In this study [25], the author
implemented an automated learning framework for EEG seizure detection based on the Fourier-Bessel
expansion-based empirical wavelet transform (FBSE-EWT) technique. The models were trained and
tested using a 10-fold cross-validation procedure. To improve the feature embedding of raw EEG
signals throughout seizure and non-seizure periods, a new seizure detection model based on a linear
graph convolution network (LGCN) was developed [26].

The authors offered CW-SRNet, a complete epilepsy detection model [27]. The proposed model
outperformed other methods with a sensitivity of 96.84% and an absolute specificity of 99.66% on
the CHB-MIT dataset. In this work [28], the author presented two innovative strategies for extracting
features from EEG data and classifying them using Convolutional Neural Networks (CNNs). The
results of the studies showed that the suggested technique outperforms the others in terms of sensitivity,
specificity, classification accuracy, and runtime. In this study [29], the author presents the creation
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of a neural network in software for seizure detection using EEG data. With custom CNN’s built-
in software, the author performed training and inference on the CHBMIT dataset and obtained an
accuracy of 96.74%. In this research [30], the author presents a two-stage process for identifying
epileptic seizures and diagnosing epilepsy. In this study [31], the author contributed a reliable auto-
mated seizure detection system that may provide a reliable diagnosis of these disorders. The obtained
results proved the effectiveness of the proposed technique, which delivers up to 100% classification
results and surpasses similar state-of-the-art methods. To define the dynamic behaviour of juvenile
seizure occurrences, the author suggested a novel approach [32], in addition to a comprehensive system
for identifying the nullclines on the dimensional space in situations when the governing differential
equations are unavailable.

In this study [33], the author discussed a seizure detection system that combines frequency-domain
data with a k-means closest neighbour (NL-kNN) classifier based on the principles of neutrosophic
logic. Classification accuracies of 98.16%, 100% and 89.06% were attained, respectively. The author
of this article [34] built a convolutional neural network (CNN) that automatically detects seizure
activity in EEG spectral analysis and assesses their performance. To prevent overfitting, each CNNs
was constructed on the VGG-net architecture.

This work aims to assist neurologists in their diagnosis of epilepsy by automating the identification
of epileptic seizures from EEG data using machine learning methods. Two ways were used to predict
the likelihood of an epileptic seizure [35] occurring inside a windowed EEG recording of 18 channels,
which purely depends on convolutional neural networks (CNNs). In addition, a channel dropout
technique is presented [36] to gather subtle features from all channels of a specific EEG signal during
the model training phase. This research developed an automated method to distinguish seizure signals
from background noise. Before feature extraction, raw EEG signals were first preprocessed to eliminate
unwanted noise and artefacts [37]. To examine the EEG signal, the author [38] rebuilt the time series
EEG signal in High dimensional Phase Space. When calculating features, it is helpful to record where
PCs and the Poincare section overlap.

In previous researches, with enhanced accessibility of data, ML techniques might not perform
well. Therefore, the DL technique, with specific optimization algorithms are proposed. Unlike
traditional ML approaches, DL models need enormous amounts of data from the trained stage, the
reason behind is the DL model has massive feature spaces, it could face the problem of overfitting in
case of insufficient data. With this, we have devised our objective to classify the seizure using OAOFS-
DBNECD model.

3 The Proposed Model

A novel OAOFS-DBNECD methodology was formulated for seizure classification using EEG
signals. The major purpose of the presented OAOFS-DBNECD system is to categorize and classify
the presence of ESs. To accomplish this, the OAOFS-DBNECD technique uses OAOFS for data
preprocessing, feature selection, DBN classification, and AEO hyperparameter tuning. The block
diagram of OAOFS-DBNECD system is demonstrated in Fig. 1.

3.1 Data Pre-Processing

Initially, the presented OAOFS-DBNECD technique transforms the EEG signals into .csv format
to make it compatible with further processing. Followed by, the min-max scaler for normalizing the
input data. Min-Max scaling is a normalized approach which allows us to scale data from the database
to particular range utilizing all the feature’s minimal and maximal values as shown in Fig. 2.
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Figure 1: Schematic diagram of OAOFS-DBNECD system

Figure 2: Input data

3.2 Design of OAOFS Technique

Following the data preprocessing stage, the OAOFS technique selects an optimal subset of features
using the pre-processed data. Abualigah et al. [39] proposed the Aquila Optimizer which is a typical SI
technique. The approach can be enhanced by mimicking four behaviors of predator prey of the Aquila
based on: exploring within different search spaces by contour flight with short glide attack; swooping,
walking, and grabbing prey; High soar and a vertical stoop choose the search space, whereas a low fly
and a leisurely descending attack take advantage of a converging search space.

The following are short discussions of the AO’s four approaches:

Strategy1: Expanded exploration (X1).
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The Aquila searches for the state space by using high soar and vertical stoop to determine the
hunting zone, which may be described mathematically as:

X1 (t + 1) = Xbest (t) ×
(

1 − t
T

)
+ (XM (t) − Xbest (t) · R1) (1)

XM (t) = 1
N

∑N

i=1
Xi (t) , ∀j = 1, 2, 3, . . . , Dim (2)

From the expression, Xbest(t) signifies the better location in the present iteration, X(t) indicates
the average value of the position, R1 represents a random value between [0, 1], Dim indicates the
dimensional weight of problems, N characterizes the amount of Aquila population, t and T represents
the existing iteration and the maximal amount of iterations, correspondingly.

Strategy2: Narrowed exploration (X2).

The Aquila uses spiral flight over prey and hunts over a brief glide, as shown below.

X2 (t + 1) = Xbest (t) × Ly (D) + XR (t) + (y − x) · R2 (3)

In Eq. (3), R2 refers to a random value ranging from zero to one, X(t) indicates a random value
chosen from Aquila population, D denotes dimensionality, and Ly(D) signifies the Levy flight function
as in below equation [40]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ly (D) = s × u × σ

|v| 1
β

σ =
� (1 + β) × sine

(
πβ

2

)

�

(
1 + β

2

)(
β1

)

× β × 2

(4)

In Eq. (4), s refers to constant equivalent to 0.01, β is equivalent to 1.5, u and v represent random
number ranges from zero to one, y and χ indicate the spiral flight path in the solution space as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = r × cos (θ)

x = r × sin (θ)

r = R3 + 0.00565 × D1

θ = −0.005 × D1 + 3π

2

(5)

In Eq. (5), D1 indicates an integer value from 1 to D dimensionality length and R3 is an integer
which indicates the search cycles [1,41].

Strategy 3: Expanded exploitation (X3).

The Aquila’s technique, which comprises a vertical drop while seeking solution space through
lower flight before striking the target, is mathematically expressed as follows:

X3 (t + 1) = (Xbest (t) − XM (t)) × α − R4 + ((UB − LB) × R5 + LB) × δ (6)

In Eq. (6), α and δ indicate integer number equivalent to 0.1 that is utilized for adjusting
exploitation, R4 and R5 shows random values in (0, 1), LB and UB represent upper and lower limits
of the problem, correspondingly.

Strategy 4: Narrowed exploitation (X4).



CMC, 2023, vol.75, no.2 4107

The Aquila pursues prey while taking into account the stochastic escape path and attacks the
victim on the ground. This behavior may be mathematically expressed in terms:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X4 (t + 1) = QF × Xbest (t) − (G1 × X (t) × rand) − G2 × Ly (D) + rand × G1

QF (t) = t
2×rand−1
(1−T)2

G1 = 2 × rand − 1

G2 = 2 ×
(

1 − t
T

) (7)

In Eq. (7), QP indicates a quality function parameter that is employed for tuning the search
strategy, rand refers to a random number ranges between [0, 1], G1takes a random value within [−1, 1]
indicating the Prey monitoring habit, and G2 denotes the flight slope while hunting prey that is reduced
from two to zero.

The OAO is derived by the use of oppositional based learning (OBL) approach that stems from
the concurrent estimation of opposite pairs of the base agent for improving the probability of meeting
an equivalent agent [41]. Contrary to real number N ∈ [jL, jU ] is offered by N→ as:
→
N = jL + jU − N (8)

Whereas jL and jU are recognized as the lower as well as upper limits of real number. But the
multidimension space, Nis formulated as Nk = {Nk1, Nk2, Nk3, Nk4 . . . Nkt} and Nkt∈ [jLt, jUt], where
t = 1, 2, 3, 4, . . . , n and the equivalent opposite point is shown below:

N = {
Nk1, Nk2, Nk3, . . . Nkt

}
Nkt = jLt + jUt − Nkt (9)

The optimized method changes opposite points by equivalent solution N dependent upon
optimum fitness values.

In OAOFS, the continual values in the search space are mapped to binary values utilizing this
devised technique for deriving binary position vectors for the solutions. Every location dimension
is considered by applying a specific S-shaped transfer operation for computing the solution for
movement in binary space. In Eq. (10), the S-shaped function is presented for generating probability
values.

S
(
X d

i (iter + 1)
) = 1

1 + e

(
−

X
id

(iter)

3

) (10)

The value of S (Xj
∧d (iter + 1)) indicates the possibility of altering the ith solution’s binary position

value in the dth dimension. The binary value is computed as probability, and the threshold values are
compared as presented in Eq. (11), whereas rand denotes a random value between 0 and 1.

X d
i (iter + 1) =

{
1 , if rand ≤ S

(
X d

i (iter + 1)
)

0 , otherwise
(11)

3.3 Epileptic Seizure Classification

For seizure classification, the presented OAOFS-DBNECD technique utilizes AEO with the DBN
model. A DBN model comprises two processes: fine-tuning the weight parameter of the whole network
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through backpropagation (BP) and training RBM layer-wise to create the deep network [42] initially.
The architecture of DBN is tuned to the features of the input dataset. Invariably, the number of regions
in the brain corresponds to the number of neurons in the output layer. The pre-training procedure has
as its goal the achievement of an appropriate value for the whole network. DBN uses RBM as its
learning module, an advancement of the DL method. It is a 2-layer network for the accessible neurons
and the hidden ones. The Energy function of RBM is expressed below:

E (v, h) = −
∑n

i
aivi −

∑m

j
bjhj −

∑nm

ij
Wijvihj (12)

In Eq. (12), wij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) refers to the weight among vi and hj; m indicates the
number of hidden neurons and n indicates the number of visible neurons, correspondingly; ai and bj

represents biases of vi and hj, correspondingly. RBM is trained for recreating the input and minimizing
the reconstructed errors among the reconstructed and original inputs. Furthermore, a technique
named contrastive divergence (CD) takes k iteration to accomplish an estimated convergence state for
training the RBM that could decrease the reconstructed error efficiently. During the training phase, the
prior RBM’s feature input is used as feed to the succeeding RBM. Independent tests are conducted
on each RBM structure to guarantee that feature information is maintained when feature variables
are moved to other feature areas. Fig. 3 demonstrates the architecture of DBN. The hyperparameters
related to the DBN model are fine-tuned via the AEO algorithm. The AEO algorithm depends on the
energy transfer model between living organisms that assist in maintaining the stability of species [43].
For this purpose, three operators namely, decomposition, production, and consumption, are used to
accomplish the solution.

Figure 3: DBN structure

In AEO, producers are characterized as the worst individuals in the population. The production
operator between randomly generated produces a new individual. (xrand) and the best (x) individuals
by replacing the preceding one and it is shown below:

x1 (t + 1) = (1 − α) xn (t) + αxrand (t) (13)

α =
(

1 − t
T

)
r1 (14)

xrand = r (Ub − Lb) + Lb (15)
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where n represents the size of population, T indicates maximal iteration count, Ub and Lb indicate
the upper and lower limits, and r1 random numbers between zero and one.α and r are the linear
weight coefficient and random vector value within zero and one, correspondingly. The α coefficient
provided in Eq. (13) assists in drifting the individual linearly from the random location towards
the better individual through iteration. The consumption operator could be implemented using the
consumer after the production operator finishes the producer. A Lévy flight-like random walk called
consumption factor (C) is determined for enhancing the exploration ability:

C = 1
2

v1

|v2| (16)

v1 ∼N (O, 1) , v2 ∼N (O, 1) (17)

where N(O, 1) characterizes a standard distribution so that the values of mean and standard deviation
are equivalent to 0 and 1, and diverse consumers adopt different strategies. A consumer eats only the
producer if it is arbitrarily selected as a herbivore (1-x2 and x5 are herbivore consumers, therefore, eat
only the producer x_1).

xi (t + 1) = xi (t) + C · (xi (t) − x1 (t)) , i ∈ [2, · · · , n] (18)

A consumer eats other consumers only with the highest level of energy in case of being selected
as a carnivore (consumers from individual of x2 to x5 are eaten by the consumer x_6 as carnivore and
has the lowest energy level when compared to the individuals of x2 to x5):

xi (t + 1) = xi (t) + C · (xi (t) − xi (t)) , i ∈ [3, · · · , n]

j = randi ([2i − 1]) (19)

xj (t + 1) = xj (t) + C · (
r2 · (

xj (t) − x1 (t)
)) + (1 − r2)

(
xj (t) − xj (t)

)
, i ∈ [3, · · · , n]

j = randi ([2i − 1]) (20)

Whereas r2 represents a random value between 0and 1. A movement is made to a search person’s
location based on the worst or a randomly picked member of the general population. Thus, it enables
to perform a global search. The decomposer chemically breaks down the residues of died individuals
in the population to provide essential nutrients for the growth of the producer. The weight coefficient
of h and e along with the decomposition factor of D are intended for mathematically modelling these
behaviors. This parameter helps to update the location of xj (i-th individuals) by the location of xn (the
decomposer location). Likewise, every individual’s next location is permissible to spread around the
decomposers (better individuals):

xi (t + 1) = xn (t) + D · (
e · xn (t) − h · xj (t)

)
, i ∈ 1, · · · , n (21)

D = 3u, u∼N (0, 1) (22)

e = r3 · rand i ([12]) − 1 (23)

h = 2 · r3 − 1 (24)

The AEO algorithm will derive a fitness function (FF) for estimating the enhanced classifier
performance. It would assign a positive value for indicating the superior performance of the candidate
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solutions. This method can take the reduced classifier error rate as the fitness function in Eq. (25).

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
Total number of samples

∗ 100 (25)

3.4 Dataset Description

EEG datasets that may be used for training and testing models are either freely accessible to the
public or need a paid membership to access. The accessibility of datasets has kicked off the transition
phase from the conventional component of learning by trial and error to the patient-centric part of
precision care. The CHB-MIT scalp EEG dataset is well-known due to the fact that it is both extensive
and annotated. The approach that was used in the preparation of the CHB-MIT scalp EEG database
is going to be presented in the following subsections. The pre-processed dataset has been uploaded to
IEEE Dataport for public use. In their studies, the researchers who came before you used data from
a very small number of patients who were included in the initial EEG database. In order to provide a
concise summary of the data, the authors of this study compiled a total of 168 complete minutes of
epileptic seizure durations from all of the patients, as well as 68 whole minutes of preictal time.

4 Results and Discussion

The proposed model is simulated using Python 3.6.5 tool. In this section, the seizure classification
outcomes of the OAOFS-DBNECD technique are examined on a benchmark dataset [44,45] discussed
in earlier section. The dataset holds samples under two classes: seizure and no seizure. In addition, the
OAOFS system has chosen a sum of ten features out of 23 total features.

Ten selected features are FP1-F7, C4-P4, CZ-PZ, F4-C4, F7-T7, FP2-F4, FT9-FT10, FZ-CZ, P4-
O2, and P8-O2. Fig. 4 shows the convergence graph of the OAOFS technique. The figure implied that
the OAOFS technique had attained optimal convergence over several iterations. Fig. 5 portrays the
combination of loss and accuracy graph examination of the OAOFS-DBNECD algorithm with and
without feature selection. The outcomes displayed the accuracy value has increased, and the loss value
decreased with a rise in the count of epochs. It is worth noting that the training loss is lower, and the
validation accuracy is higher.

Figure 4: Convergence graph of feature selection model
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Figure 5: Without feature selection (a) Training accuracy (b) Training loss, with feature selection
(c) Training _Accuracy (d) Training_Loss

Fig. 6 establishes a detailed analysis of the OAOFS-DBNECD method without feature selection.
Fig. 6a shows the confusion matrix presented by the OAOFS-DBNECD approach under the training
set. The figure signified the OAOFS-DBNECD approach had identified 13522 instances under No
Seizure and 13033 samples under Seizure.

Likewise, Fig. 6b shows the confusion matrix rendered by OAOFS-DBNECD techniques under
the testing set. The figure signified that the OAOFS-DBNECD approach had identified 5852 instances
under NoSeizure and 5548 samples under Seizure. Then, Figs. 6c and 6d illustrate the precision-recall
analysis of the OAOFS-DBNECD algorithm under the training and testing set. By seeing the figure,
it is clear that the OAOFS-DBNECD approach has exhibited maximal precision-recall performance
in all classes. Last, Figs. 6e and 6f exemplify the ROC analysis of the OAOFS-DBNECD method in
the training and testing set. Maximum ROC values in various class labels showed that the OAOFS-
DBNECD method had produced desirable results.
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Figure 6: Without feature selection (a) Confusion matrix-training set (b) Confusion matrix-testing set
(c) PR-curve-training set (d) PR-curve-testing set (e) ROC-training set (f) ROC-testing set

Fig. 7 signifies a comprehensive analysis of the OAOFS-DBNECD methodology under feature
selection. Fig. 7a depicts the confusion matrix presented by the OAOFS-DBNECD method under the
training set. The figure denoted that the OAOFS-DBNECD technique has identified 13837 instances
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under NoSeizure and 13550 samples under Seizure. Also, Fig. 7b depicts the confusion matrix provided
by the OAOFS-DBNECD algorithm under the testing set. The figure indicated that the OAOFS-
DBNECD approach had identified 5953 instances under NoSeizure and 5774 samples under Seizure.
Then, Figs. 7c and 7d illustrate the precision-recall analysis of the OAOFS-DBNECD approach under
the training and testing set. By seeing the figure, it is clear that the OAOFS-DBNECD approach has
established maximal precision-recall performance in all classes. At last, Figs. 7e and 7f exemplify the
ROC analysis of the OAOFS-DBNECD algorithm under training and testing. The figure depicted
that the OAOFS-DBNECD approach has resulted in practical outcomes with maximal ROC values
in different Class labels.

Figure 7: With feature selection training set (a) Confusion matrix-training set (b) Confusion matrix-
testing set (c) PR-curve-training set (d) PR-curve-testing set (e) ROC-training set (f) ROC-testing set
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Table 1 provides the overall classification results of the OAOFS-DBNECD model without FS
and with FS processes. The OAOFS-DBNECD system has resulted in improved outcomes under both
TR and TS sets. For sample, on TR database, the OAOFS-DBNECD technique has attained accuy

of 94.84%, precn of 96.62%, recal of 92.95%, and F1_score of 94.75%. Also, on TS data, the OAOFS-
DBNECD model has attained accuy of 95%, precn of 97.03%, recal of 92.81%, and F1score of 94.87%. For
example, on the TR dataset, the OAOFS-DBNECD approach has reached accuy of 97.81%, precn of
98.97%, recal of 96.63%, and F1score of 97.79%. Similarly, on TS data, the OAOFS-DBNECD technique
has reached accuy of 97.72%, precn of 98.82%, recal of 96.59%, and F1score of 97.69%.

Table 1: Result analysis of OAOFS-DBNECD approach under without and with FS

Performance metrics With feature selection Without feature selection

Train_Set Test_Set Train_Set Test_Set

F1-score 97.79 97.69 94.75 94.87
Recall 96.63 96.59 92.95 92.81
Precision 98.97 98.82 96.62 97.03
Accuracy 97.81 97.72 94.84 95.00

A brief comparative study [12] is provided in Table 2 to ensure the enhanced seizure classification
outcomes of the OAOFS-DBNECD approach. The results indicated that the SVM and LR models
achieved lower accuy of 82.39% and 81.32%, respectively. Additionally, the ResNet-152, Inception-v3,
and EESC models have obtained somewhat closer accuy of 90.63%, 91.89%, and 93.92%, correspond-
ingly.

Table 2: Comparison of the OAOFS-DBNECD methodology with recent techniques

Methods Accuracy (%)

OAOFS-DBNECD 97.81
DCAE-MLP 97.17
SVM model 82.39
LR model 81.32
ResNet-152 90.63
Inception-V3 model 91.89
EESC model 93.92

Moreover, the DCAE-MLP model has gained a reasonable accuy of 97.17%. But the presented
OAOFS-DBNECD model has shown a maximum accuy of 97.81%. These results affirmed the
maximum seizure classification performance on the applied EEG signals. The error rate of the
classification is 2.19%.
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4.1 Impact of Result

The proposed research OAOFS-DBNECD model has shown maximum accuracy of 97.81%.
Based on the results, it is understand that the proposed model confirms the best seizure categorization
performance on the used EEG data.

4.2 Limitations

Although we have received 97.81% accuracy over proposed model, still there is a room to improve
the accuracy of detection. Since the domain of research is medical, not even single error will lead to
big mistakes.

5 Conclusion

In this article, a new OAOFS-DBNECD algorithm was formulated for seizure classification by
utilizing EEG signals. The primary objective of the presented OAOFS-DBNECD technique is to cat-
egorize and classify the presence of ESs. The proposed OAOFS-DBNECD technique transforms the
EEG signals into .csv format at the initial stage. Next, the OAOFS technique selects an optimal subset
of features using the pre-processed data. For seizure classification, the presented OAOFS-DBNECD
technique utilized AEO with the DBN model for seizure classification purposes. An extensive range of
simulations can be accomplished on the benchmark dataset to ensure the enhanced performance of
the presented OAOFS-DBNECD approach. The comparison study shows the significant outcomes
of the OAOFS-DBNECD technique over other algorithms. The proposed OAOFS-DBNECD model
has shown maximum accuracy of 97.81%. These findings confirmed the best seizure categorization
performance on the used EEG data. Therefore, in reality, the presented OAOFS-DBNECD technique
was utilized for automated seizure classification. Improved classification accuracies from OAOFS-
DBNECD may be achieved primarily in the future by deriving a hybrid DL classifier.
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