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Abstract: To address the problem of network security situation assessment
in the Industrial Internet, this paper adopts the evidential reasoning (ER)
algorithm and belief rule base (BRB) method to establish an assessment
model. First, this paper analyzes the influencing factors of the Industrial
Internet and selects evaluation indicators that contain not only quantitative
data but also qualitative knowledge. Second, the evaluation indicators are
fused with expert knowledge and the ER algorithm. According to the fusion
results, a network security situation assessment model of the Industrial Inter-
net based on the ER and BRB method is established, and the projection
covariance matrix adaptive evolution strategy (P-CMA-ES) is used to opti-
mize the model parameters. This method can not only utilize semiquantitative
information effectively but also use more uncertain information and prevent
the problem of combinatorial explosion. Moreover, it solves the problem
of the uncertainty of expert knowledge and overcomes the problem of low
modeling accuracy caused by insufficient data. Finally, a network security
situation assessment case of the Industrial Internet is analyzed to verify the
effectiveness and superiority of the method. The research results show that this
method has strong applicability to the network security situation assessment
of complex Industrial Internet systems. It can accurately reflect the actual
network security situation of Industrial Internet systems and provide safe
and reliable suggestions for network administrators to take timely counter-
measures, thereby improving the risk monitoring and emergency response
capabilities of the Industrial Internet.
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1 Introduction

The Industrial Internet integrates various technologies, such as the internet, industrial networks,
the Industrial Internet of Things [1], and enterprise resource planning (ERP) systems, to improve
intelligent manufacturing technology. Its applications are not limited to key fields such as electricity,
natural gas, transportation, smart manufacturing, aerospace, and nuclear power plants [2,3]. Due to
the openness of the internet, the Industrial Internet faces various security threats; in some important
industrial application environments, attacks on the network may be fatal.

Since the Industrial Internet involves industrial control systems, which are the core part of
industrial production, security is an important indicator for evaluating the normal operation of
industrial control systems. When a security problem arises, the consequences can be disastrous. As
the Industrial Internet is an emerging technology, its security situation assessment technology still
needs to be developed. In most cases, network administrators find security vulnerabilities or attack
behaviors in the network after the Industrial Internet infrastructure suffers significant losses. Many
typical Industrial Internet security incidents have occurred [4]. For example, in 2010, an Iranian nuclear
power plant was attacked by hackers using the Stuxnet virus, causing more than 1,000 centrifuges to
be paralyzed and causing major damage to the entire nuclear power plant. In 2019, an American
electric power company was attacked by remote attackers through vulnerabilities in firewall firmware,
causing the equipment to restart continuously and interrupt network communication. In 2021, the
largest American oil pipeline company suffered a ransomware attack that forced it to shut down its
pipeline system. Thus, the security of the Industrial Internet is an important guarantee for safe and
reliable operation, and it is also a key issue that urgently needs to be solved.

Network security situation assessment is an important approach to measuring network security.
The assessment results can reflect the health of network security and provide safe, reliable and efficient
suggestions for network administrators to take effective countermeasures in a timely manner [5].

Similarly, network security situation assessment of the Industrial Internet is important. Because
the Industrial Internet is characterized by a complex structure, large data heterogeneity, and poor
protocol compatibility, it must meet the requirements of high-complexity calculation, high robustness
and security [6]. This makes it difficult to establish a comprehensive network security situation
assessment model for the Industrial Internet. The industrial production environment and industry
sensitivity make it difficult to collect industrial data [7,8]. In addition, the requirements for data
security are high, and the proportion of core sensitive data is small; thus, many factors must be
considered when establishing a model with high evaluation accuracy. Additionally, most factors
have some level of uncertainty (including probabilistic uncertainty and fuzzy uncertainty) [9–11].
Furthermore, the established model should be able to effectively and accurately assess the network
security situation of the Industrial Internet, thereby improving the risk monitoring and emergency
response capabilities of the Industrial Internet.

Currently, the main methods for network security situation assessment in the Industrial Internet
can be divided into the following three categories: methods based on qualitative knowledge, meth-
ods based on quantitative data and methods based on semiquantitative information [12]. Detailed
descriptions of these approaches are as follows:

(1) Assessment methods based on qualitative knowledge comprehensively consider various factors
that affect the network security of the Industrial Internet, and experts must determine the
weight of each factor according to practical experience and use appropriate algorithms to
calculate the network security situation values. Some example methods include the analytic
hierarchy process [13], cluster analysis [14], fuzzy logic [15], and expert systems [16]. Due
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to the complexity of the Industrial Internet and the unpredictability of network attacks,
methods based solely on qualitative knowledge are often insufficient to establish an accurate
evaluation model. In addition, this approach is based on subjective factors: if expert knowledge
is inaccurate, the results of the assessment are often subject to large errors. Furthermore, such
methods cannot effectively utilize various types of uncertain information.

(2) Assessment methods based on quantitative data use artificial intelligence algorithms to estab-
lish mathematical models and then train the assessment model on a large amount of data to
obtain the network security situation values [17]. Some example methods are the radial basis
function neural network (RBFNN) [18], random forest (RF) [19], network attack behavior
classification [20], the backpropagation neural network (BPNN) [21], the wavelet neural
network [22], deep autoencoders and deep neural networks [23]. However, these approaches
lack an effective explanation of the model mechanism, and they are difficult to apply to
the network security situation assessment of large and complex Industrial Internet systems.
Moreover, Industrial Internet network security situation assessment data cannot be directly
observed. When the number of data samples is insufficient, assessment methods based on
quantitative data cannot effectively learn data information when training the model, resulting
in reduced evaluation accuracy.

(3) Assessment methods based on semiquantitative information first set the initial parameters of
the model according to expert experience and then use quantitative data to train the model to
obtain the network security situation values. Some example methods include dynamic Bayesian
networks [24], hidden Markov models [25], D-S and BP neural networks [26], D-S and radial
basis perceptron (RBP) neural networks [27], long short-term memory networks and decision
tree algorithms [28]. Such methods consider both qualitative knowledge and quantitative data
and utilize expert knowledge for modeling in the early stage to ensure that the model can
accurately evaluate the security situation of the complex Industrial Internet network system
when few data samples are available. However, expert knowledge may be affected by factors in
the environment and the limitations of experts themselves, making expert knowledge uncertain,
thereby affecting the accuracy of the evaluation results. In addition, many kinds of uncertain
information exist in the large and complex network system of the Industrial Internet, which
is random and fuzzy. However, existing methods based on semiquantitative information can
handle only a single type of uncertain information.

In summary, neither the first nor second methods can effectively utilize qualitative knowledge and
quantitative data simultaneously. Although the third method can effectively utilize semiquantitative
information, it can handle only a single type of uncertain information and does not take into account
the uncertainty of expert knowledge. Therefore, to solve the above problems, Wang et al. proposed
the ER algorithm [29] and BRB method [30]. ER is a multicriteria decision analysis method that can
effectively utilize semiquantitative information, fuse multiattribute information [31] and prevent the
combinatorial explosion problem of the BRB model. BRB is a complex system modeling method
based on If-Then rules that uses ER as a reasoning tool, which enables it to describe more types
of uncertain information [32]. Moreover, it can comprehensively utilize qualitative knowledge and
quantitative data. Zhou et al. extended the BRB model on the basis of existing theory and further
proposed using semiquantitative information to predict the hidden behavior of complex systems,
established a new prediction model based on BRB and used the CMA-ES algorithm to optimize
the model [33]. Hu et al. applied the BRB method to the field of network security situational
awareness [34], proposed a BRB-based combined classification model for network security factor
classification, proposed a BRB-based network security situation quantification method for network
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security situation assessment, applied the hidden behavior prediction model based on CHBRB to
network security situation prediction [17,35], and applied the PHBRB hidden behavior prediction
model under the power set identification framework to the security situation prediction of special
network systems [36]. This approach fully excavates the hidden information behind massive network
data, provides new network defense tools for managers, and meets the security protection requirements
of large and complex networks. He et al. proposed a fault assessment and prediction model for a
wireless sensor network (WSN) based on ER and BRB [37], used the ER algorithm to fully evaluate
the fault state of the WSN and then used the BRB method to accurately predict the fault state of
the WSN. The model makes better use of semiquantitative information and solves the influence of
uncertain information on modeling.

Therefore, based on the above description, this paper adopts the ER algorithm and BRB method
to establish an Industrial Internet network security situation assessment model and then uses the
P-CMA-ES algorithm [36] to optimize the model, which solves difficult modeling problem caused by
the complexity of the Industrial Internet system. The ER iterative algorithm can effectively utilize
semiquantitative information in the Industrial Internet system to establish a model and integrate
more uncertain information to prevent the combinatorial explosion problem of the BRB model. The
BRB uses ER rules as a reasoning tool to make the reasoning process visible and the reasoning
results explicable and traceable, and it can overcome the problem of the poor modeling accuracy of
complex Industrial Internet systems, which is caused by insufficient data due to the difficulty of data
collection in the Industrial Internet. The P-CMA-ES optimization algorithm can address the problem
of the uncertainty of expert knowledge to improve the accuracy of the assessment model. Accurate
assessment results can provide network administrators with reliable suggestions so countermeasures
can be taken in a timely manner, thereby improving the risk monitoring and emergency response
capabilities of the Industrial Internet.

The organizational structure of this paper is as follows. In Section 2, the problem formulation
of the Industrial Internet network security situation is described. In Section 3, an Industrial Internet
network security situation assessment model is constructed based on ER and BRB. In Section 4, a case
study is designed to verify the validity of the Industrial Internet network security situation assessment
model. Finally, Section 5 concludes this paper.

2 Problem Formulation

The question of network security situation assessment in the Industrial Internet includes
evaluation indicator fusion and security situation assessment.

(1) Evaluation indexes are determined by analyzing the influencing factors of the Industrial
Internet network security situation, and the ER iterative algorithm is selected to fuse the
evaluation indexes. Evaluation indicators are characterized by large numbers, many types and
high uncertainty. The ER iterative algorithm can solve the fusion problem of multiple uncertain
indexes.

(2) By analyzing the fusion results of the evaluation indicators, the BRB method is used to establish
an Industrial Internet network security situation assessment model based on the fusion results.
The model can effectively improve the accuracy of the Industrial Internet network security
situation assessment.
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2.1 Parameter List

All parameters are listed in Table 1.

Table 1: Parameter list

Parameter Meaning

ri The ith evaluation indicator
Dn The nth evaluation grade
βn,i The belief degree assigned to the nth evaluation grade in the ith evaluation indicator
� The global ignorance
β�,i The unassigned belief degree in the ith evaluation indicator
L The number of evaluation indicators
N The number of evaluation grades
ωi The weight of the ith evaluation indicator
mn,i The basic probability mass of the nth evaluation grade in the ith evaluation indicator
m�,i The unassigned basic probability mass in the ith evaluation indicator
mθ ,i The unimportance degree of the ith evaluation indicator
�

mθ ,i The incomplete degree of the ith evaluation indicator
mn,r(2) The combinatorial probability mass assigned to the nth evaluation grade after the

fusion of evaluation indicators r1 and r2

r (2) The belief degree distribution after the fusion of evaluation indicators r1 and r2

u (Dn) The utility set of the evaluation grade Dn

α
j
i The matching degree of the ith attribute in the jth belief rule

αk The matching degree of the kth belief rule
wk The activation weight of the kth belief rule
βn The belief degree of the nth evaluation grade
Ω0 Initial parameters set
∼ The same left and right distributions
Ω

g+1
k k solutions of the g + 1th generation

pdmg The mean of the population distribution of the gth generation
sg The step size of the gth generation
CMg The covariance matrix of the gth generation
N(•) Normal distribution
vne The number of variables of equality constraints in the solution
xn The number of equality constraints in the solution
Ae The parameter vector of the equation
τ The population size of the offspring
hk The weight of the kth solution
Ω

g+1
k : λ The kth solution selected from λ individuals in generation g + 1

a1, aτ The learning rate
epg The evolutionary path of the covariance matrix in the gth generation
aep The parameters of the evolutionary path
ds The damping coefficient
E ‖N (0, I)‖ The expectation of the Euclidean paradigm ‖N (0, I)‖

(Continued)
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Table 1: Continued
Parameter Meaning

I The unit matrix
as The parameters of the conjugate evolutionary path

2.2 Fuse Evaluation Indicators

To conveniently describe the integration problem of the assessment indicators, a four-level
assessment indicator is defined for the network security situation of the Industrial Internet, and the
sets of the four-level assessment indicators are defined as Dxyz, Cxy, Bx, and A.

Step 1 The evaluation indicator set is defined as follows:

Dxyz = {
dxyzk|x = 1, 2; y = 1, 2, 3; z = 1, 2, 3, 4, 5; k = 1, 2

}
(1)

Cxy = {
cxyz|x = 1, 2; y = 1, 2, 3; z = 1, 2, 3, 4, 5

}
(2)

Bx = {
bxy|x = 1, 2; y = 1, 2, 3

}
(3)

A = {ax|x = 1, 2} (4)

where Dxyz denotes the 4th level evaluation indicator set, Cxy denotes the 3rd level evaluation indicator
set, Bx denotes the 2nd level evaluation indicator set, and A denotes the 1st level evaluation indicator
set. dxykz denotes all evaluation indicators of the 4th level, cxyk denotes all evaluation indicators of the
3rd level, bxy denotes all evaluation indicators of the 2nd level, and ax denotes all evaluation indicators
of the 1st level. x denotes the xth evaluation indicator of the 1st level, y denotes the yth evaluation
indicator of the 2nd level, z denotes the zth evaluation indicator of the 3rd level, and k denotes the kth
evaluation indicator of the 4th level.

Step 2 The fusion process of evaluation indicators at all levels is expressed as follows:

cxyz = ER
(
Dxyz, γ

)
(5)

bxy = ER
(
Cxy, β

)
(6)

ax = ER (Bx, α) (7)

where ER(•) denotes the nonlinear transformation process based on the evaluation indicator fusion
of the ER iterative algorithm. a, β, and γ represent the set of ER parameters. cxyk denotes the 3rd level
evaluation indicators obtained by fusing all evaluation indicators in set Dxyz, bxy denotes the 2nd level
evaluation indicators obtained by fusing all evaluation indicators in set Cxy, and ax denotes the 1st
level evaluation indicators obtained by fusing all evaluation indicators in set Bx.

2.3 Security Situation Evaluation

To describe the problem of Industrial Internet network security situation assessment, the
assessment result is represented by y, and the process is described as follows:

y = BRB (a1, a2, η) (8)

where BRB(•) denotes the nonlinear transformation process based on BRB. η denotes the set of BRB
parameters.
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In summary, this paper defines the problem of the Industrial Internet network security situation
assessment as the problem of solving ER(•), BRB(•) and parameters a, β, γ , η.

3 Network Security Situation Assessment of an Industrial Internet Model Based on ER and BRB
3.1 Assessment Process

The assessment process of the Industrial Internet network security situation is shown in Fig. 1.
The evaluation process is divided into three steps:

Step 1 According to the influencing factors of the Industrial Internet network security situation,
the appropriate evaluation indicators are selected; decision-makers determine the weight of each
evaluation indicator and establish a four-level evaluation indicator structural framework for the
network security situation assessment of the Industrial Internet according to expert knowledge and
practical investigation. Then, the decision-makers analyze the evaluation grade of each indicator and
determine its reference value corresponding to the evaluation grade.

Step 2 The ER-based Industrial Internet network security situation assessment model is
established, and the qualitative and quantitative indicators are gradually fused with uncertainty layer
by layer through the ER iterative algorithm. Then, the fusion results of the evaluation indicators are
calculated.

Step 3 The BRB-based Industrial Internet network security situation assessment model is
established. The ER fusion results are taken as inputs, and the ER analytic algorithm is used to
calculate the assessment results. The P-CMA-ES algorithm is then used to optimize the constructed
BRB assessment model to improve its evaluation accuracy.

Evaluation indicators

ER iteration
Evaluation 

result

Four-level 
evaluation indicator 

framework
The weight of 

evaluation indicators

Expert 
knowledge

BRB 

Optimization
parameters

P-CMA-ES

ER analytic

Expert 
knowledge

The evaluation grade 
and its reference value

Fusion result

Initial
parameters
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factors

As input to 
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Step 1 Step 2 Step 3

Figure 1: The assessment process of the Industrial Internet network security situation

3.2 Assessment Indicators and Grades
3.2.1 Assessment Indicators

Due to the complexity of the Industrial Internet system, as well as the difficulty of data collection,
this paper considers only external attacks on the Industrial Internet [38]. Based on the factors
influencing the network security situation of the Industrial Internet, an assessment indicator structure
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was established, taking into account the actual situation of the Industrial Internet system and the data
information collected, as shown in Fig. 2.
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Figure 2: The assessment indicator structure for the network security situation of the Industrial
Internet

The assessment indicator structure is divided into two parts: software security and hardware
security. The evaluation indicators for software security include the communication protocol, operat-
ing system and application program; the evaluation indicators for hardware security include those for
the monitor, router, and server. These hardware and software devices are mainly attacked by denial
of service (DoS), distributed denial of service (DDoS), ransomware, scanning, backdoor, injection,
cross-site scripting (XXS) and password attacks. The type of attack varies for different hardware
and software devices. Among the above eight attack types, only 4–5 of the attack types will impact a
software or hardware device. For each type of attack, the considered indicators include the frequency of
the attack and its severity. The attack frequency is quantitative data calculated according to the number
of attacks in the collected dataset. The severity of an attack is qualitative knowledge determined by
experts according to their own experience and actual investigation.
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After the Industrial Internet network security situation assessment indicator structure is con-
structed, decision-makers assign different weights (ω) to the assessment indicators (r) according to
the importance of each level of the assessment indicator and then establish a four-level assessment
indicator framework table for the network security situation of the Industrial Internet, as shown in
Table 2. The first level includes software security and hardware security, the second level includes
equipment belonging to software security and hardware security, the third level includes the types of
attacks suffered by each device, and the fourth level includes the attack frequency and attack severity.
The weights (ω) of all assessment indicators (r) are illustrated in the table.

Table 2: The four-level assessment indicator framework table for the network security situation of the
Industrial Internet

First grade Second grade Third grade Fourth grade

Industrial
internet network

Software
security

Communication
protocol

Backdoor
(r111)(ω111= 0.1610)

Attack frequency (r1111)(ω1111= 0.5149)
Attack severity (r1112)(ω1112= 0.4851)

security (r1)(ω1= 0.3344) (r11)(ω11= 0.5326) Injection Attack frequency (r1121)(ω1121= 0.5244)
situation (R) (r112)(ω112= 0.2181) Attack severity (r1122)(ω1122= 0.4756)

Password
(r113)(ω113= 0.1745)

Attack frequency (r1131)(ω1131= 0.5122)
Attack severity (r1132)(ω1132= 0.4878)

Scanning
(r114)(ω114= 0.1733)

Attack frequency (r1141)(ω1141= 0.5057)
Attack severity (r1142)(ω1142= 0.4943)

XSS
(r115)(ω115= 0.2732)

Attack frequency (r1151)(ω1151=0.5040)
Attack severity (r1152)(ω1152= 0.4960)

Operating system
(r12)(ω12= 0.0340)

DoS
(r121)(ω121= 0.2281)

Attack frequency (r1211)(ω1211= 0.4997)
Attack severity (r1212)(ω1212= 0.5003)

Password
(r122)(ω122=0.2989)

Attack frequency (r1221)(ω1221= 0.5007)
Attack severity (r1222)(ω1222= 0.4993)

Ransomware
(r123)(ω123= 0.2381)

Attack frequency (r1231)(ω1231= 0.5004)
Attack severity (r1232)(ω1232= 0.4996)

Backdoor
(r124)(ω124= 0.2349)

Attack frequency (r1241)(ω1241= 0.5)
Attack severity (r1242)(ω1242=0.5)

Application
(r13)(ω13 = 0.4334)

Injection
(r131)(ω131= 0.2153)

Attack frequency (r1311)(ω1311= 0.5038)
Attack severity (r1312)(ω1312=0.4962)

Password
(r132)(ω132 = 0.1808)

Attack frequency (r1321)(ω1321= 0.5003)
Attack severity (r1322)(ω1322 = 0.4997)

XSS
(r133)(ω133 = 0.2657)

Attack frequency (r1331)(ω1331 = 0.5001)
Attack severity (r1332)(ω1332 = 0.4999)

Scanning
(r134)(ω134 = 0.3383)

Attack frequency (r1341)(ω1341= 0.4975)
Attack severity (r1342)(ω1342 = 0.5025)

Hardware security
(r2)(ω2 = 0.6656)

Monitor
(r21)(ω21 = 0.3464)

DDoS
(r211)(ω211 = 0.1827)

Attack frequency (r2111)(ω2111 = 0.5191)
Attack severity (r2112)(ω2112=0.4809)

Injection
(r212)(ω212 = 0.2360)

Attack frequency (r2121)(ω2121 = 0.5166)
Attack severity (r2122)(ω2122 = 0.4834)

Industrial
internet network

Hardware security
(r2)(ω2=0.6656)

Monitor
(r21)(ω21 = 0.3464)

Password
(r213)(ω213 = 0.1736)

Attack frequency (r2131)(ω2131 = 0.5062)
Attack severity (r2132)(ω2132 = 0.4938)

security Backdoor Attack frequency (r2141)(ω2141=0.5114)
situation (R) (r214)(ω214 = 0.1675) Attack severity (r2142)(ω2142 = 0.4866)

Ransomware
(r215)(ω215 = 0.2403)

Attack frequency (r2151)(ω2151=0.5039)
Attack severity (r2152)(ω2152 = 0.4961)

Router
(r22)(ω22 = 0.2589)

Scanning
(r221)(ω221 = 0.2556)

Attack frequency (r2211)(ω2111 = 0.4974)
Attack severity (r2212)(ω2212 = 0.5026)

DDoS
(r222)(ω222 = 0.1002)

Attack frequency (r2221)(ω2221=0.5019)
Attack severity (r2222)(ω2222 = 0.4981)

DoS
(r223)(ω223 = 0.1954)

Attack frequency (r2231)(ω2231 = 0.5104)
Attack severity (r2232)(ω2232 = 0.4896)

XSS
(r224)(ω224 = 0.2024)

Attack frequency (r2241)(ω2241 = 0.5028)
Attack severity (r2242)(ω2242 = 0.4972)

(Continued)
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Table 2: Continued
First grade Second grade Third grade Fourth grade

Injection
(r225)(ω225 = 0.2465)

Attack frequency (r2251)(ω2251=0.5111)
Attack severity (r2252)(ω2252 = 0.4889)

Server
(r23)(ω23 = 0.3947)

Scanning
(r231)(ω231 = 0.2540)

Attack frequency (r2311)(ω2311=0.4985)
Attack severity (r2312)(ω2312 = 0.5015)

DDoS
(r232)(ω232 = 0.1783)

Attack frequency (r2321)(ω2321=0.5093)
Attack severity (r2322)(ω2322 = 0.4907)

DoS
(r233)(ω233 = 0.2045)

Attack frequency (r2331)(ω2331 = 0.5046)
Attack severity (r2332)(ω2332 = 0.4954)

Injection
(r234)(ω234 = 0.2005)

Attack frequency (r2341)(ω2341 = 0.4995)
Attack severity (r2342)(ω2342 = 0.5005)

Password
(r235)(ω235 = 0.1628)

Attack frequency (r2351)(ω2351=0.5039)
Attack severity (r2352)(ω2352 = 0.4961)

For the weights of the evaluation indicators, according to the specificity of the network security
situation assessment, the stronger the data volatility of the evaluation indicators is, the greater the
impact on the situation evaluation results. In other words, the more volatile the evaluation indicators
are, the greater the weights. This is exactly in line with the algorithm ideology of the entropy value
method [39], so the decision-maker can determine the weight of each evaluation indicator according
to the entropy value method. The calculation process is described as follows:

Step 1: Generate the initial indicator data matrix.

Generate the original indicator data matrix X from the four-level assessment indicator data.

X = (
xij

)
n × m

, i = 1, . . . n; j = 1, . . . m (9)

where xij denotes the value of the jth assessment indicator of the ith sample, n denotes the number of
samples, and m denotes the number of assessment indicators.

Step 2: Normalization.

Normalize the values of the assessment indicators.

xij = xij − min
(
x1j, . . . , xnj

)
max

(
x1j, . . . , xnj

) − min
(
x1j, . . . , xnj

) (10)

Step 3: Calculate the proportion of assessment indicators.

Calculate the proportion pij of the ith sample value under the jth assessment indicator to the
assessment indicator.

pij = xij∑n

i=1 xij

(11)

Step 4: Calculate the entropy values.

Calculate the entropy values ej of the jth assessment indicator.

ej = −k
n∑

i=1

pij ln
(
pij

)
, k = ln−1

(n) , 0 ≤ ej ≤ 1 (12)

Step 5: Calculate the information entropy redundancies.

Calculate the information entropy redundancy dj of the jth assessment indicator.

dj = 1 − ej (13)
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Step 6: Calculate the weight.

Calculate the weight ωj of each assessment indicator.

ωj = dj∑m

j=1 dj

(14)

Step 7: Calculate the comprehensive score.

Calculate the comprehensive score si of each sample.

si =
m∑

j=1

ωjpij (15)

3.2.2 Assessment Grades

According to the four-level assessment indicator framework table (Table 2) established in Section
3.2.1, the assessment grades of the Industrial Internet network security situation are determined.

For qualitative indicators, the assessment grade is determined by experts based on their own
experience. The qualitative indicators are divided into reasonable evaluation intervals based on expert
knowledge to accurately reflect the actual security status of the Industrial Internet. For quantitative
indicators, five assessment grades are considered: very low (VL), low (L), medium (M), high (H)
and very high (VH). The evaluation intervals of the quantitative indicators are set based on expert
experience and actual investigations to ensure the accuracy and traceability of the data. For a complex
system, such as in the Industrial Internet, the use of semiquantitative information inference methods
to address security indicators has considerable advantages.

As the indicators of the last level are the attack frequency and severity of the external attacks
on the software and hardware devices, all attack frequencies are expressed by Eq. (16), and all attack
severities are expressed by Eq. (17):

rxyz1, x = 1, 2; y = 1, 2, 3; z = 1, 2, 3, 4, 5 (16)

rxyz2, x = 1, 2; y = 1, 2, 3; z = 1, 2, 3, 4, 5 (17)

where x denotes the xth evaluation indicator of the first level, y denotes the yth evaluation indicator
of the second level, and z denotes the zth evaluation indicator of the third level.

In summary, the reference values of the evaluation grades corresponding to each evaluation
indicator are shown in Table 3.

Table 3: The reference values of the evaluation grades corresponding to the evaluation indicator

Indicators VL L M H VH

rxyz1 0 times/min 5 times/min 15 times/min 30 times/min 50 times/min
rxyz2 Determined by expert knowledge
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3.3 Industrial Internet Network Security Situation Assessment Model Based on ER

According to the four-level assessment indicator structure and assessment grades in Section 3.2,
the ER iterative algorithm is used to gradually fuse all indicators step by step to obtain the fusion
result. The fusion process is shown in Fig. 3.

The calculation process of the ER iterative algorithm [29] is shown in Fig. 4. The detailed
calculation process is described as follows:
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Figure 3: The fusion process of the ER iterative algorithm

Begin

End

Step 4: Calculate the fusion results

Step 1: Initialization

Step 2: Calculate the basic probability masses

Step 3: ER iterative algorithm
(a) Calculate the combinatorial probability mass.

(b) Calculate the combinatorial belief degree.
(c) Calculate the final belief degree distribution.

Figure 4: The calculation process of the ER iteration algorithm
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Step 1: Initialization.

The belief degrees of different evaluation grades in each evaluation indicator are initialized, and
the evaluation indicator ri of each level is described as follows:

ri = {(
Dn, βn,i

)
,
(
Θ, βΘ,i

)
; i = 1, . . . , L; n = 1 . . . N

}
(18)

Step 2: Calculate the basic probability masses.

The basic probability masses of the evaluation indicators ri are calculated according to the belief
degrees ρn,i, which are described as follows:

mn,i = ωiβn,i (19)

mθ ,i = 1 − ωi

N∑
n=1

βn,i (20)

mΘ,i = 1 − ωi (21)

m̃θ ,i = ωi

(
1 −

N∑
n=1

βn,i

)
(22)

Step 3: ER iterative algorithm.

This paper uses Dempster rules to fuse multiple evaluation indicators. The fourth-level
assessment indicators r1 (attack frequency) and r2 (attack severity) in the four-level assessment
indicators framework table are fused, and the derivation process is as follows:

(a) Calculate the combinatorial probability mass.

mn, r(2) = K0 [mn,1mn,2 + mn,1mθ ,2 + mθ ,1mn,2] (23)

mθ ,1 = mθ ,1 + m̃θ ,1 (24)

m̃θ ,r(2) = K0 [m̃θ ,1m̃θ ,2 + m̃θ ,1mθ ,2 + mθ ,1m̃θ ,2] (25)

mθ ,r(2) = K0mθ ,1mθ ,2 (26)

K0 =
[

1 −
N∑

i=1

N∑
j=1, i �=j

mi,1mj,2

]−1

(27)

(b) Calculate the combination belief degree.

r (2) = {(
Dn, βn, r(2)

)
,

(
�, β�,r(2)

)
, n = 1, . . . , N

}
(28)

βn, r(2) = mn, r(2)

1 − m�, r(2)

(29)

βtheta, r(2) = m�, r(2)

1 − m�, r(2)

(30)
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(c) Calculate the final belief degree distribution.

According to the fusion process of the evaluation indicators, the final belief degree distribution of
evaluation grades can be obtained by cycling (a) and (b) successively, and the results are as follows:

r (L) = {(
θn, βn,r(L)

)
,
(
Θ, βΘ,r(L)

)
, n = 1, . . . , N

}
(31)

Step 4: Calculate the fusion results.

Assuming that the utility set of the evaluation grade Dn is u(Dn), the fusion results can be calculated
by the utility formula:

u =
N∑

n=1

u (Dn) βn, r(L) (32)

The fusion results are quantified as follows:

(1) The final fusion result is standardized to the interval of [0, 1].
(2) The lower the final fusion result is, the safer the Industrial Internet, showing a negative

correlation.

The ER iterative algorithm is used to deduce the network security situation assessment model of
the Industrial Internet, and the fusion results of the evaluation indicators are obtained. After layer-
by-layer fusion, the fused software security and hardware security results are taken as input attributes
of the BRB model, and the final fusion result is taken as the actual output of the BRB model.

3.4 Industrial Internet Network Security Situation Assessment Model Based on BRB

The fused software security and hardware security results are expressed by SW and HW
respectively, and are analyzed to calculate the final Industrial Internet network security situation value.
The BRB model can be described as:
Rk : If SW is X k

1 ∧ HW is X k
2

Then y is
{(

D1, β1,k

)
, . . . ,

(
DN, βN,k

)}
With rule weight θk and attribute weight δ1, δ2

(33)

where Rk, k = 1 . . . K denotes the kth rule of the model. X k
1 , X k

2 denotes the reference values of the two
input attributes of the kth rule. βn,k denotes the belief degree of the nth evaluation grade of the kth rule.
θ k denotes the weight of the kth rule. δ1 and δ2 denote the weights of the two input attributes.

The ER analytical algorithm is used to deduce the network security situation assessment model
for the Industrial Internet based on BRB [30], and the calculation process is shown in Fig. 5. The
detailed calculation process is described as follows:
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Begin

End

Step 2: Calculate the total matching degree

Step 3: Calculate activation weight

Step 4: ER analytic algorithm(Combine rules)

Step 5: Utility calculation

Step 1: Calculate attribute matching degree

Figure 5: The calculation process of the BRB algorithm

Step 1: Calculate the attribute matching degree.

When the input premise attribute data are available, the matching degree of its attribute reference
value is calculated by the following formula, and the input premise attribute data are converted into a
unified format.

αi
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vi(k + 1) − v∗
i

vi(k + 1) − vik

j = k, vik ≤ v∗
i ≤ vi(k+1)

v∗
i − vik

vi(k + 1) − vik

j = k + 1

0 j = 1 . . . L, j �= k and k + 1

(34)

Step 2: Calculate the total matching degree.

Based on the model framework, the following formula is used to calculate the total matching
degree of all attributes.

αk =
M∏

i=1

(
αi

k

)δi (35)

Step 3: Calculate the activation weight.

If the input attribute is available, it will activate the belief rules in the evaluation model, and the
activation weights are calculated by the following formula:

wk = θkαk∑K

l=1 θlαk

0 ≤ wk ≤ 1,
K∑

k=1

wk = 1 (36)



2542 CMC, 2023, vol.75, no.2

Step 4: ER analytic algorithm (Combine the rules).

After the belief rules are activated, the rules are combined by the ER analytic algorithm, and the
calculation formula can be described as:

βn =
μ

[
L′∏

k=1

(
wkβn,k + 1 − wk

N∑
j=1

βj,k

)
−

L′∏
k=1

(
1 − wk

N∑
j=1

βj,k

)]

1 − μ

[
L′∏

k=1

(1 − wk)

] (37)

μ =
[

N∑
n=1

L′∏
k=1

(
wkβn,k + 1 − wk

N∑
j=1

βj,k

)
− (N − 1)

L′∏
k=1

(
1 − wk

N∑
j=1

βj,k

)]−1

(38)

Step 5: Utility calculation.

After obtaining the belief degree of each evaluation grade, the utility formula is used to calculate
the final evaluation result of the Industrial Internet system, which is the Industrial Internet network
security situation value.

y =
N∑

n=1

u (Dn) βn (39)

3.5 Optimized BRB Model Based on the P-CMA-ES Algorithm

Due to the complexity of the actual Industrial Internet system and the influence of interference
factors in the environment, experts cannot provide completely precise system information, resulting
in uncertainty in expert knowledge. To address the impact of expert knowledge uncertainty, the
P-CMA-ES algorithm is used to establish an optimization model to improve the accuracy of the
BRB-based Industrial Internet network security situation assessment model.

The optimization model and restrictions of the BRB-based Industrial Internet network security
situation assessment model are described as follows:
min MSE

(
θk, βn,k, δi

)
s.t.

N∑
n=1

βn,k = 1, k = 1 . . . K

0 ≤ βn.k ≤ 1, 0 ≤ θk ≤ 1

0 ≤ δi ≤ 1, i = 1, 2

(40)

where MSE(•) denotes the mean square error (MSE) function that reflects the accuracy of the BRB-
based Industrial Internet network security situation assessment model, and it can be described by the
following formula:

MSE
(
θk, βn,k, δi

) = 1
T

T∑
t=1

(
outputestimated − outputactual

)2
(41)

where outputactual denotes the actual security situation of the Industrial Internet system, which is
determined by the final fusion result. outputestimated denotes the estimated output of the evaluation

model, and it is calculated by outputestimated =
N∑

n=1

u (Dn) βn· T is the number of training samples. The
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goal of model optimization is to minimize the MSE, and the smaller the final MSE is, the higher the
accuracy of the assessment model.

The calculation process of the P-CMA-ES optimization [36] algorithm is shown in Fig. 6. The
detailed calculation process is described as follows:

Begin

Maximum generation?

Step 1: Initialization

End

Step 2: Sampling

Step 3: Projection

Step 4: Selection and recombination

Step 5: Update the covariance matrix

Figure 6: The calculation process of the P-CMA-ES optimization algorithm

Step 1: Initialization.

The initial parameter vector Ω0 is determined as the initial expectation of the P-CMA-ES
algorithm. The initial parameters are described as follows:

Ω0 = {
θ1 . . . θK , β1,1 . . . βN,K , δ1 . . . δM

}
(42)

Step 2: Sampling.

The population is selected through the following formula:

Ω
g+1
k ∼ pdmg + sgN (0, CMg) k = 1 . . . λ (43)

The covariance matrix is the normal distribution of Cg:

pdmg + sgN (0, CMg) ∼ N
(
pdmg, (sg)

2 CMg
)

(44)

Step 3: Projection.

The projection operation is performed on each equality constraint to map the candidate solution
back to the feasible region so that it satisfies the constraint conditions:

Ω
g+1
k (1 + vne × (xn − 1): vne × xn) = Ω

g+1
k (1 + vne × (xn − 1): vne × xn)

−AT
e × (

Ae × AT
e

)−1 × Ω
g+1
k (1 + vne × (xn − 1): vne × xn) × Ae

(45)
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The hyperplane can be defined as:

AeΩ
g
k (1 + vne × (xn − 1): vne × xn) = 1 (46)

Step 4: Selection and recombination.

A selection operation is performed to update the mean by the following formula:

pdmg+1 =
τ∑

k=1

hkΩ
g+1
k : λ (47)

Step 5: Update the covariance matrix.

When all the solutions in the population satisfy the constraint conditions, the covariance matrix
of the population needs to be updated to obtain the evolutionary trend of the population and the
search range of the population. The updating process of the covariance matrix of the population can
be described as:

CMg + 1 = (1 − a1 − aτ ) CMg + a1epg + 1
(
epg + 1

)T + aτ

τ∑
k=1

hk

(
ω

g + 1
k : λ − pdmg

sg

) (
ω

g + 1
k : λ − pdmg

sg

)T

(48)

Then, the update process is continued according to the following formula:

epg + 1 = (
1 − aep

)
epg +

√√√√aep

(
2 − aep

) (
τ∑

k=1

h2
k

)−1

pdmg + 1 − pdmg

sg
(49)

Next, the step size σ is updated according to the following formula:

sg + 1 = sg exp

(
as

ds

( ∥∥epg + 1
s

∥∥
E ‖N (0, I)‖ − 1

))
(50)

Additionally, pσ is updated according to the following formula:

epg + 1
s = (1 − as) epg

s +
√√√√as (2 − as)

(
τ∑

k=1

h2
k

)−1

× CMg− 1
2

pdmg + 1 − pdmg

sg
(51)

The above steps are repeated until the number of evolution generations of the population reaches
the maximum; then, the final optimal parameter is output.

4 Case Study

The aim of this case study is to demonstrate the validity of the proposed evaluation method. The
TON_IoT dataset [40–42] proposed by UNSW Canberra is adopted for experiments in the context of
Industrial Internet systems, and the data in the Train_Test_dataset folder are selected and processed.
The datasets were collected from a realistic and large-scale network designed at the Cyber Range
and IoT Labs, UNSW Canberra. A new testbed network was created for the Industry 4.0 network.
The testbed was deployed using multiple virtual machines and hosts with Windows, Linux and Kali
operating systems, and various attack techniques were used to attack web applications, operating
systems, communication protocols, and various network devices. The dataset has the versatility of
the Industrial Internet, and the built experimental platform environment also has the commonality
of the Industrial Internet; hence, the feasibility and effectiveness of the model proposed in this paper
can be verified. For each specific industry, the network architecture is different, and the generality
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and universality of the model constructed is low. This paper uses part of the dataset and builds the
experimental topology for simulation experiments.

All experiments were executed with MATLAB tools in Windows 10 on an Intel core i7-12700H
3.60 GHz CPU, NVIDIA RTX3060 6 GB graphics card and 16 GB memory.

4.1 Problem Formulation

The topological structure diagram of the experiment is constructed based on the dataset, the test
platform environment in the literature [42], and the description of the equipment, as shown in Fig. 7.
The dataset contains data on attacks on multiple devices. In this paper, the selected software devices
are the Modbus communication protocol, the operating system of a device whose IP is 192.168.1.193
and the web application of a device whose IP is 192.168.1.195. Moreover, the selected hardware devices
are a weather monitor, a router whose IP is 192.168.1.1 and a server whose IP is 192.168.1.190.

information management layer

firewall

Internet operator 
station

engineer 
station

field control layer field equipment layer

switch

Weather monitor

router
IP 192.168.1.1

office 
terminal

Web  server
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PLC controller

communication server
(Modbus Protocol)

Remote access serverApplication server
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IP:192.168.1.193

Database server
IP:192.168.1.190

switch

Figure 7: Topology structure diagram of the experiment

The considered attack types are DoS, DDoS, ransomware, scanning, backdoor, injection, XXS
and password attacks. Each device suffers from four to five main attack types. After determining the
hardware and software devices and attack types, all the data from 24 h is divided into 15 min bins (96
groups in total), and the attack frequency of each attack type on all devices is calculated every 15 min.

4.2 ER Iterative Algorithm Fusion Experiment

The experimental process of ER iterative algorithm fusion is shown in Fig. 3.

According to the evaluation indicators and evaluation grades in Section 3.2 and the ER model in
Section 3.3, a layer-by-layer fusion experiment is performed to obtain the software security, hardware
security and final fusion results, as shown in Figs. 8–10. The fusion results of the software security
and hardware security were taken as premise attribute 1 and premise attribute 2 of the BRB evaluation
model respectively, and the final fusion result was taken as the actual output of the BRB evaluation
model.
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Figure 8: Fusion result of software security

Figure 9: Fusion result of hardware security

Figure 10: The final fusion result

As shown in Fig. 10, the overall security situation of network systems in the first three groups is
relatively good, and even if network attacks occur, they will not cause serious harm to the security
of the entire system. However, the security situation value suddenly increases in the 4th group, which
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indicates that this network system suffered more serious attacks than the first three groups. Then,
from the 4th group to the 33rd group, the network system is basically maintained in a relatively good
security state, and the attacks suffered during this process do not cause serious harm to the security
of the entire system. However, in the 34th group, the security situation value of the network system
suddenly increases sharply, indicating that the network system suffered major attacks, and it is not
until the 42nd group that it recovers to a very safe state. In the 52nd group, the security situation value
of the network system suddenly increases sharply again, which means that the network system suffered
major attacks again. It is not until the 72nd group that it returns to normal and remains in a safe state.

4.3 Establishment of an Industrial Internet Network Security Situation Assessment Model Based on
ER and BRB
After fusion of the evaluation indicators, the BRB-based Industrial Internet network security

situation assessment model is established. The two premise input attributes are software security and
hardware security, which are represented by SW and HW respectively. The five assessment grades of

Industrial Internet network security are defined as excellent (E), good (G), common (C), bad (B)
and dangerous (D), which can be described as follows:

y = {D1, D2, D3, D4, D5} = {E, G, C, B, D} (52)

In summary, the specific belief rules of the Industrial Internet network security situation assess-
ment model based on BRB are as follows:
Rk : If SW is X k

1 ∧ HW is X k
2 , Then y is{(

E, β1,k

)
,
(
G, β2,k

)
,
(
C, β3,k

)
,
(
B, β4,k

)
,
(
D, β5,k

)}
With rule weight θk and attribute weight δ1 δ2

(53)

First, the reference points of the two premise attributes (SW and HW ) and the evaluation results
are defined as excellent (E), good (G), common (C), bad (B) or dangerous (D). The reference values
of SW and HW are confirmed by experts according to the range of the data changes. Therefore, the
reference points and reference values of SW and HW are shown in Table 4. Second, the reference
points and reference values of the evaluation results are shown in Table 5. Finally, the initial BRB
model is constructed, in which the initial values of the rule weight and attribute weight are set to 1,
and the initial belief degree is given by experts, as shown in Table 6.

Table 4: Reference points and values of SW and HW

Reference points E G C B D

Reference values 1 2 3 4 5

Table 5: Reference points and values of the evaluation results

Reference points E G C B D

Reference values 0.2 0.4 0.6 0.8 1
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Table 6: Initial belief degree

No. θk SW HW
{(

E, β1,k

)
,
(
G, β2,k

)
,
(
C, β3,k

)
,
(
B, β4,k

)
,
(
D, β5,k

)}
1 1 E E {(E, 1), (G, 0), (C, 0), (B, 0), (D, 0)}
2 1 E G {(E, 0.5), (G, 0.5), (C, 0), (B, 0), (D, 0)}
3 1 E C {(E, 0.5), (G, 0.25), (C, 0.25), (B, 0), (D, 0)}
4 1 E B {(E, 0), (G, 0.5), (C, 0.25), (B, 0.25), (D, 0)}
5 1 E D {(E, 0), (G, 0.25), (C, 0.5), (B, 0.25), (D, 0)}
6 1 G E {(E, 0.5), (G, 0.5), (C, 0), (B, 0), (D, 0)}
7 1 G G {(E, 0.2), (G, 0.5), (C, 0.3), (B, 0), (D, 0)}
8 1 G C {(E, 0.1), (G, 0.5), (C, 0.3), (B, 0.1), (D, 0)}
9 1 G B {(E, 0), (G, 0.2), (C, 0.5), (B, 0.3), (D, 0)}
10 1 G D {(E, 0), (G, 0.1), (C, 0.2), (B, 0.5), (D, 0.2)}
11 1 C E {(E, 0.2), (G, 0.4), (C, 0.3), (B, 0.1), (D, 0)}
12 1 C G {(E, 0.1), (G, 0.4), (C, 0.4), (B, 0.1), (D, 0)}
13 1 C C {(E, 0.05), (G, 0.2), (C, 0.5), (B, 0.2), (D, 0.05)}
14 1 C B {(E, 0), (G, 0.1), (C, 0.4), (B, 0.4), (D, 0.1)}
15 1 C D {(E, 0), (G, 0), (C, 0.3), (B, 0.4), (D, 0.3)}
16 1 B E {(E, 0.1), (G, 0.2), (C, 0.4), (B, 0.2), (D, 0.1)}
17 1 B G {(E, 0), (G, 0.3), (C, 0.4), (B, 0.3), (D, 0)}
18 1 B C {(E, 0), (G, 0.1), (C, 0.4), (B, 0.4), (D, 0.1)}
19 1 B B {(E, 0), (G, 0), (C, 0), (B, 0.5), (D, 0.5)}
20 1 B D {(E, 0), (G, 0), (C, 0), (B, 0.3), (D, 0.7)}
21 1 D E {(E, 0.1), (G, 0.25), (C, 0.3), (B, 0.25), (D, 0.1)}
22 1 D G {(E, 0), (G, 0.3), (C, 0.2), (B, 0.2), (D, 0.3)}
23 1 D C {(E, 0), (G, 0), (C, 0.2), (B, 0.2), (D, 0.6)}
24 1 D B {(E, 0), (G, 0), (C, 0), (B, 0.1), (D, 0.9)}
25 1 D D {(E, 0), (G, 0), (C, 0), (B, 0), (D, 1)}

4.4 Training and Testing

The processed data were used for training and testing according to the evaluation model con-
structed in Section 4.3. The initial parameters of the model were adjusted and optimized by randomly
selecting 64 samples. The remaining 32 groups were used as test data to calculate the evaluation
precision of the model. In the training process, the model parameters were adjusted and optimized
by the P-CMA-ES algorithm in Section 3.5, and the optimized belief degree is shown in Table 7. This
paper conducted 10 rounds of experiments to verify the validity of the Industrial Internet network
security situation assessment model. The evaluation results of the model are shown in Fig. 11. The
green ellipse in Fig. 11 shows that when the Industrial Internet network security situation is stable,
its security situation can be accurately assessed; the purple ellipse in Fig. 11 shows that when the
Industrial Internet system is suddenly attacked, the security situation can still be accurately assessed.
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Therefore, the model proposed in this paper can accurately assess the network security situation of the
Industrial Internet.

Table 7: Optimized belief degree

No. θk SW HW
{(

E, β1,k

)
,
(
G, β2,k

)
,
(
C, β3,k

)
,
(
B, β4,k

)
,
(
D, β5,k

)}
1 0.5100 E E {(E, 0.1486), (G, 0.1130), (C, 0.1292), (B, 0.3751), (D, 0.2342)}
2 0.4965 E G {(E, 0.1681), (G, 0.3956), (C, 0.1756), (B, 0.1996), (D, 0.0611)}
3 0.6817 E C {(E, 0.4882), (G, 0.0587), (C, 0.1114), (B, 0.1925), (D, 0.1491)}
4 0.4248 E B {(E, 0.1698), (G, 0.2219), (C, 0.2959), (B, 0.1291), (D, 0.1833)}
5 0.5615 E D {(E, 0.0242), (G, 0.0856), (C, 0.4154), (B, 0.2775), (D, 0.1973)}
6 0.4539 G E {(E, 0.2541), (G, 0.2141), (C, 0.0768), (B, 0.1191), (D, 0.3360)}
7 0.4153 G G {(E, 0.1899), (G, 0.1560), (C, 0.4937), (B, 0.0638), (D, 0.0966)}
8 0.4133 G C {(E, 0.2554), (G, 0.0948), (C, 0.5384), (B, 0.1129), (D, 0)}
9 0.0482 G B {(E, 0.5538), (G, 0.0882), (C, 0.0249), (B, 0.2217), (D, 0.1114)}
10 0.6478 G D {(E, 0.1088), (G, 0.0009), (C, 0.0518), (B, 0.3629), (D, 0.4756)}
11 0.7875 C E {(E, 0.2681), (G, 0.2486), (C, 0.1497), (B, 0.1191), (D, 0.2145)}
12 0.4923 C G {(E, 0.3375), (G, 0.0461), (C, 0.4031), (B, 0.0740), (D, 0.1393)}
13 0.5018 C C {(E, 0.2020), (G, 0.1692), (C, 0.0109), (B, 0.2050), (D, 0.4130)}
14 0.4699 C B {(E, 0.0955), (G, 0.0788), (C, 0.3047), (B, 0.2353), (D, 0.2857)}
15 0.6757 C D {(E, 0.0328), (G, 0.0877), (C, 0.2437), (B, 0.2978), (D, 0.3379)}
16 0.8687 B E {(E, 0.3835), (G, 0.1415), (C, 0.3437), (B, 0.0917), (D, 0.0397)}
17 0.2474 B G {(E, 0.3323), (G, 0.1392), (C, 0.2234), (B, 0.1519), (D, 0.1531)}
18 0.0452 B C {(E, 0.4383), (G, 0.1354), (C, 0.2862), (B, 0.0523), (D, 0.0878)}
19 0.4176 B B {(E, 0.0449), (G, 0.1177), (C, 0.0584), (B, 0.2376), (D, 0.5414)}
20 0.6559 B D {(E, 0), (G, 0.0039), (C, 0), (B, 0.0596), (D, 0.9554)}
21 0.7081 D E {(E, 0.0364), (G, 0.4163), (C, 0.1377), (B, 0.1030), (D, 0.3066)}
22 0.2549 D G {(E, 0.0539), (G, 0.4996), (C, 0.0365), (B, 0.3952), (D, 0.0148)}
23 0.1498 D C {(E, 0.1463), (G, 0.2402), (C, 0.3016), (B, 0.2819), (D, 0.0300)}
24 0.6764 D B {(E, 0), (G, 0.0378), (C, 0.2329), (B, 0.0818), (D, 0.6520)}
25 0 D D {(E, 0.2306), (G, 0.2927), (C, 0.0597), (B, 0.2395), (D, 0.1774)}

4.5 Comparison and Analysis

First, the initial BRB model is compared with the BRB model optimized by the P-CMA-ES
algorithm to demonstrate that the P-CMA-ES optimization algorithm can address the problem of
low accuracy caused by expert knowledge uncertainty. The comparison results are shown in Fig. 12.

Second, to prove the superiority of the BRB model, the BRB model is compared with the BPNN,
RBFNN and RF models. The BPNN, RBFNN and RF models are all typical models based on
quantitative data.
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Figure 11: Assessment results of the security situation assessment model

Figure 12: Comparison results of the initial BRB model with the optimized BRB model

The comparison results of the evaluation models established by the four methods are shown in
Fig. 13. The average MSE for each evaluation model in 10 rounds of experiments is shown in Table 8.

The evaluation results of each model were paired with the actual values, and the Wilcoxon signed-
rank test was performed using SPSS statistical software. The test results are shown in Table 9.
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Figure 13: Comparison results of the BRB model with other assessment models

Table 8: Average MSE values of different models

Model Initial BRB Optimized BRB BPNN RBFNN RF

MSE 0.0054 0.0015 0.0385 0.0349 0.0233

Table 9: Results of the Wilcoxon signed-rank test

Model Initial BRB Optimized BRB BPNN RBFNN RF

P 0.510 0.640 0.400 0.000∗∗∗ 0.000∗∗∗

Cohen’s d 0.094 0.017 0.183 0.725 0.782
Note: ∗∗∗, ∗∗, ∗ denote significance levels of 1%, 5%, and 10% respectively.

According to the above results, the Industrial Internet network security situation assessment
model proposed in this paper is reliable and effective and has high assessment accuracy. By analyzing
the experimental results, the following conclusions can be drawn:

(1) As shown in Fig. 12, the BRB model optimized by the P-CMA-ES algorithm significantly
improves the evaluation effect and reduces the influence of the uncertainty of expert knowl-
edge. Since the initial BRB model is constructed by experts and is an assessment method based
on qualitative knowledge, the semiquantitative information assessment method based on BRB
has higher accuracy than the evaluation method based on qualitative knowledge.

(2) As shown in Fig. 13, the evaluation results of the BRB method are more in line with the actual
security situation value, and the evaluation results of the other three methods have relatively
large errors. Because it is very difficult to collect data samples in complex Industrial Internet
systems and the number of collected data samples is small, methods based on quantitative data
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cannot be used to effectively evaluate complex network systems, resulting in low evaluation
accuracy. Thus, the semiquantitative information method based on BRB can more effectively
solve the situation assessment problem of complex Industrial Internet systems when there are
few data samples.

(3) As shown in Table 8, in ten rounds of experiments, the average MSE value of the BRB method
is 1.5 × 10−3, while the average MSE values of the other three methods are at the 10−2 level.
Therefore, the BRB method has better accuracy.

(4) As shown in Table 9, the P value between the estimated value of the initial BRB and the actual
value is 0.510, which is greater than 0.05, so the null hypothesis cannot be rejected. Therefore,
there was no significant difference between the two groups of data. Additionally, the Cohen’s
d value is 0.094, and the difference range is relatively small. The P value between the estimated
value of the optimized BRB model and the actual value is 0.640, which is greater than 0.05, so
the null hypothesis cannot be rejected. Therefore, there was no significant difference between
the two groups of data. Additionally, the Cohen’s d value is 0.017, the difference range is
very small, and there is almost no difference. The P value between the estimated value of the
BPNN and the actual value is 0.400, which is greater than 0.05, so the null hypothesis cannot
be rejected. Therefore, there was no significant difference between the two groups of data.
Additionally, the Cohen’s d value is 0.183, and the difference range is relatively small. The P
values between the estimated values of the RBFNN and RF models and their actual values
are both less than 0.05, so the null hypothesis is rejected: there is a significant difference, and
the difference range is relatively large. This shows that the difference between the evaluation
results of the optimized BRB model and the actual security situation value is the smallest,
and the second smallest difference is observed for the initial BRB model. Therefore, the
BRB-based method can be used to accurately evaluate the network security situation of the
Industrial Internet.

5 Conclusion

By selecting the common characteristics and assessment indicators of many Industrial Internet
systems, an Industrial Internet network security situation assessment model based on ER and BRB is
established in this paper. This model can solve the difficult modeling problem caused by the complexity
of Industrial Internet systems. It can not only effectively use semiquantitative information but also
accurately describe various uncertain information and address the uncertainty of expert knowledge by
using the P-CMA-ES optimization algorithm. The experiments show that the ER and BRB evaluation
method based on semiquantitative information has higher accuracy than other machine learning
methods, is more applicable to the security situation of complex Industrial Internet systems and
can accurately reflect the actual network security situation of the Industrial Internet. The accurate
assessment results can provide network administrators with safe and reliable recommendations so
that they can discover unsafe events in the network and take countermeasures in a timely manner,
thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.
However, this model may still encounter the problem of unreliable expert knowledge, and this work
only addresses the assessment problem of network security situation awareness in the Industrial
Internet. Therefore, based on the above description, future work will mainly include the following
two points:

(1) To solve the problem of unreliable expert knowledge, by reducing unreliable rules, a BRB
model considering the reliability of rules will be constructed and applied to the network
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security situation assessment of the Industrial Internet, and this model will further improve
the assessment accuracy.

(2) The improved BRB method will be used to further study the problem of the Industrial Internet
network security situation prediction, and the prediction component of the Industrial Internet
security situation awareness will be perfected.
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