. Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2023.036505 .
Article
Check for
updates

A Secure and Effective Energy-Aware Fixed-Point Quantization Scheme for
Asynchronous Federated Learning

Zerui Zhen', Zihao Wu’, Lei Feng'-*, Wenjing Li', Feng Qi' and Shixuan Guo'

'Beijing University of Posts and Telecommunication, Beijing, 100876, China
2Vanderbilt University, Nashville TN, 37240, USA
*Corresponding Author: Lei Feng. Email: fenglei@bupt.edu.cn
Received: 02 October 2022; Accepted: 06 January 2023

Abstract: Asynchronous federated learning (AsynFL) can effectively mitigate
the impact of heterogeneity of edge nodes on joint training while satisfying
participant user privacy protection and data security. However, the frequent
exchange of massive data can lead to excess communication overhead between
edge and central nodes regardless of whether the federated learning (FL)
algorithm uses synchronous or asynchronous aggregation. Therefore, there is
an urgent need for a method that can simultaneously take into account device
heterogeneity and edge node energy consumption reduction. This paper pro-
poses a novel Fixed-point Asynchronous Federated Learning (FixedAsynFL)
algorithm, which could mitigate the resource consumption caused by fre-
quent data communication while alleviating the effect of device heterogeneity.
FixedAsynFL uses fixed-point quantization to compress the local and global
models in AsynFL. In order to balance energy consumption and learning
accuracy, this paper proposed a quantization scale selection mechanism. This
paper examines the mathematical relationship between the quantization scale
and energy consumption of the computation/communication process in the
FixedAsynFL. Based on considering the upper bound of quantization noise,
this paper optimizes the quantization scale by minimizing communication and
computation consumption. This paper performs pertinent experiments on the
MNIST dataset with several edge nodes of different computing efficiency.
The results show that the FixedAsynFL algorithm with an 8-bit quantization
can significantly reduce the communication data size by 81.3% and save
the computation energy in the training phase by 74.9% without significant
loss of accuracy. According to the experimental results, we can see that the
proposed AsynFixedFL algorithm can effectively solve the problem of device
heterogeneity and energy consumption limitation of edge nodes.

Keywords: Asynchronous federated learning; artificial intelligence; model
compression; energy consumption; fixed-point quantization; learning
accuracy

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.036505
https://www.techscience.com/doi/10.32604/cmc.2023.036505
mailto:fenglei@bupt.edu.cn

2940 CMC, 2023, vol.75, no.2

1 Introduction

Machine learning (ML) has been in rapid development in the last decade, constantly evolving and
innovating in academia and industry. Several state-of-the-art ML algorithms have emerged, which are
utilized in the industrial internet-of-things (IoT), 5G communication, chemical molecular research,
and other fields, and drive these fields to a further study level. The wide application of big data
technology brings new opportunities and challenges for ML. On the one hand, big data provides
massive amounts of information in the training phase of ML, which improves the accuracy and
applicability of model training. On the other hand, with the further development of 5G IoT technology,
privacy and security have become critical points for the industry to consider [1]. FL [2] dramatically
guarantees data privacy in the model training process [3] and provides an effective solution to the
islanding effect in ML. Based on securing the data privacy of industrial devices, FL can incorporate
numerous industrial devices into the ML training process, saving communication resources during
model training [4] and improving the training convergence rate and learning accuracy [5].

However, FL for [oT networks faces several challenges in its implementation. First, [oT devices are
diverse in real-world applications and have heterogeneous computing resources (e.g., smartphones vs.
smart watches). The slowest nodes maybe become the bottleneck and delay the entire training process
[6-10]. Second, synchronous uploading of large amounts of local model updates by edge nodes can
lead to congestion in the communication channel and decrease communication efficiency.

In order to handle the above challenges, an AsynFL framework is proposed, which could provide a
more flexible global update and alleviate the instantaneous communication load [11]. AsynFL allows
model aggregation without waiting for stale devices [12,13] in the way that the central server conducts
global model aggregation as soon as it collects a local model [14].

In spite of these advantages, in such AsynFL, the flexible model update generates more commu-
nication rounds for the faster edge nodes, which leads to more communication energy consumption.
Meanwhile, both in academia and industry, deep learning models are gradually becoming larger
and more complex to provide more powerful model training capabilities and more accurate model
prediction capabilities. Such large and complex models can be deployed in the cloud in centralized
ML frameworks, where computational resources are abundant [15]. However, in applying AsynFL
to industrial IoT, such complex models pose a severe challenge to industrial devices’ computing
power and battery capacity during computation and communication. Therefore, breaking resource
constraints becomes an important research direction for applying FL in industrial [oT.

Model compression is a proven method to reduce edge nodes’ computation and communication
consumption. Currently, popular model compression methods are low-rank decomposition [16,17],
knowledge distillation [18,19], network pruning [20,21], and fixed-point quantization [22]. Low-rank
decomposition can improve inference speed but has a lower compression effect than network pruning
and fixed-point quantization [I17]. Federated Distillation (FDD) algorithm based on knowledge
distillation method is more demanding and has the risk of user privacy leakage [22]. The main idea of
network pruning is to remove the smaller elements from the weights matrix and retain only the more
important part of the weights [20].

Fixed-point quantization can improve the effect of model training while ensuring a small error.
Fixed-point quantization can significantly reduce the representation cost of neural network param-
eters [23] and thus reduce storage pressure. Due to its architectural characteristics, neural network
computation has a low demand for high precision and high dynamic range in digital storage [22,24].
The moderate noise in neural network parameters even could improve the training performance
[25,26]. However, the quantization noise tolerance is not boundless in the utilization of fixed-point

CMC, 2023, vol.75, no.2 2941

quantization. When the quantization bit-width is set as an extreme situation, the training accuracy
would deteriorate dramatically. Thus, it is important to find a balance between the quantization scale
and energy consumption in the fixed-point quantization utilization.

Considering the above challenge in AsynFL and fixed-point quantization, this paper has made
the following contributions to the paper:

1) This paper proposes an AsynFL algorithm based on fixed-point quantization. Introducing
fixed-point quantization in FL and reducing the model size to a suitable scale can effectively reduce
the upstream and downstream communication loss during federated training. At the same time,
maintaining the model at a smaller bit-width can also effectively reduce the computation consumption
during inference and improve the applicability of neural networks on computationally sensitive devices.

2) This paper proposes a quantization scale selection mechanism based on optimal energy con-
sumption. The bit-width that minimizes the communication energy consumption and the computation
energy consumption is calculated while ensuring that the quantization error is within a specific range.

3) This paper applies the FixedAsynFL algorithm to Convolutional Neural Network (CNN), and
the results show that the training accuracy loss is in an acceptable state and the energy consumption
reduction is significant.

The main structure of this paper is as follows. Section 2 shows some recent work on fixed-point
quantization and CNN energy consumption. Section 3 will briefly introduce the basic principles of
AsynFL and fixed-point quantization. Section 4 will give a detailed description of the proposed FL
algorithm model based on fixed-point quantization. Section 5 will show the experimental simulation
results to support the proposed FixedAsynFL algorithm.

It is shown in Table 1 that the utilized key notations in this paper. In order to clearly represent
mathematical symbols, this paper uses regular letters, boldface lowercase letters, and boldface upper-
case letters to denote scalars, vectors, and matrices respectively.

Table 1: List of key notations

Notation Description

B Bit-width of the fixed-point numbers
H Frequency bandwidth

N Number of edge nodes

R Number of global rounds

h Channel gain

By Bit-width of the weights that belong to the neural network

D, Local dataset of the i edge nodes

K Number of local iterations of the i” edge nodes in the r”
communication round

N, Power spectral density of white Gaussian noise

™ Computation time of the i” edge node

Ter Uplink communication time of the i edge node

df Mini-batch data in the k" local iteration of the i edge nodes

p Runtime power of the i” edge nodes

(Continued)

2942 CMC, 2023, vol.75, no.2

Table 1: Continued
Notation Description

Communication data size of the i edge nodes
A scalar in floating-point format

A scalar in fixed-point format

Mixing hyperparameter

Quantization step size

Quantization noise

Learning rate

Uplink communication rate of edge nodes
Global model in the 7" communication round
Local model in the " communication round
Quantized ML model

Input feature of the m” mini-batch sample
Output label vector of the m” mini-batch sample

e

&

gl~§~“§~ms n o Q

S

2 Related Work

After the proposal of the Asynchronous Federated Optimization (FedAsync) algorithm [13], there
have been some efforts toward optimizing AsynFL. Y. Chen et al. designed an asynchronous online FL.
framework, where multiple user equipment (UEs) with continuously arriving samples learn an effective
shared model collaboratively [27]. M. Chen et al. proposed a novel FL algorithm that dynamically
adjusts the number of local iterations on stragglers to reduce the impact of staleness on the convergence
of the global model [28]. All of the above work absorbs the asynchronous aggregation in order to
mitigate the heterogeneity of devices in the FL training. These researches paid more attention to the
slow edge node in the AsynFL but did not concern with the frequency of communication between the
central node and fast edge nodes, which could result in high energy consumption.

Fixed-point quantization could effectively reduce this high energy consumption and optimize the
effect of neural network training [29]. There have been many recent studies focusing on fixed-point
quantization [22,30-35], which is summarized in Table 2.

Table 2: Summarization of related works in the field of fixed-point quantization

Ref. Proposed work Focuses

[22] Deep neural network using low-precision Limited precision arithmetic
fixed-point arithmetic

[30] Cross-layer bit-width optimization Signal-to-quantization-noise-ratio
algorithm (SQNR)

(Continued)

CMC, 2023, vol.75, no.2 2943

Table 2: Continued

Ref. Proposed work Focuses

[31] Integer-only quantization scheme 8-bit quantization, quantized inference
framework, quantized training framework

[32 INTS training method (Octo) Quantization error, INTS training

[33] Relaxed Quantization (RQ) Network discretization, “Smooth”
quantization procedure

[34] Quantization-interval-learning (QIL) Quantization in low bit-width network,
Trainable quantization interval

[35] Data-free quantization method (DFQ) Cross-layer range equalization,

algorithm Quantization bias correction

Gupta S et al. trained a deep network based on 16-bit fixed-point representation with almost
no loss of accuracy for the classification task [22]. Jacob B et al. proposed a quantized inference
framework, which could quantize both the weights and activations in the neural network [31]. Based
on the first two works, a lightweight INTS training method was proposed, in which both forward and
backward stages were optimized by fixed point quantization [32]. The above researches deeply discuss
the problems encountered when fixed-point quantization is applied to neural network training and
give effective solutions. However, these articles lack the consideration of the quantization scale on
training accuracy and energy consumption.

Several researchers have combined FL with the quantization method [36—40]. However, these
works only focus on model training mechanisms and lack attention to the energy consumption
of network quantization in the training process. Chen R [41] combined fixed-point quantization
with synchronous FL (SynFL) to reduce energy consumption during both the training process and
communication process. This paper does not consider the limitations of SynFL.

In view of the advantages and disadvantages of the related works, this paper applies the fixed-
point quantization theory in AsynFL, aiming at reducing the energy consumption and communication
consumption of edge nodes, and optimizing the quantization scale selection based on the consideration
of energy consumption and quantization error.

3 Preliminary Knowledge

3.1 Asynchronous Federated Learning

In AsynFL, w, denotes the global model on the central node at the " communication round,

which are the weights and bias parameters in the network. Furthermore, w/ denotes the local model
trained on the i edge node.

At the beginning of the FL training, the central node distributes the initial global model to all edge
nodes participating in the first round of training. As shown in the Fig. 1, the central node in the SynFL
mode would not start aggregating uploaded models and generating a new global model w, until it has
received the local models of all participating edge nodes. On the contrary, in the AsynFL, the server
immediately updates the global model whenever it receives an uploaded model from any participating
edge nodes by weighted averaging, which is shown in the following equation:

Wit = (1 —a)w, +aw/*, (1)

2944 CMC, 2023, vol.75, no.2

- --- Global update I Communication process
[Local training process Waiting process
Central Node I Central Node I (y
| | | 11
—— O oo
Edge Node 1 : Edge Node 1 : : :
2) s ol] I |
Edge Node 2 : Edge Node 2 [J|
1 | -
Edge Node 3 Edge Node 3
Synchronous Asynchronous
Federated Learning Federated Learning

Figure 1: Synchronous federated learning and asynchronous federated learning

where @ € (0, 1) is a hyperparameter.

As a comparison, in SynFL, the aggregated update formula for the global model is
1 N
r+1 r
wt = ¥ El W, (2)

3.2 Fixed-Point Quantization Method

In computer science, the floating-point format is commonly used for computing and storing
binary numbers, which is based on scientific notation and is the best way to store huge and tiny
numbers [42]. The 4-byte single-precision floating-point number could be taken as an example,
which is also named the FP32 format. However, the massive parameters in neural networks pose a
more significant challenge to the edge nodes’ computational power and battery capacity [43]. After
quantizing the network parameters in fixed-point format, the communication consumption in the FL.
and the computing energy in the CNN inference process could be reduced.

The fixed-point format of numbers fixes the number’s decimal point at a specific location
during the storage and computation of the data. This paper use B to denote the bit-width of the
fixed-point numbers, B to denote the bit-width of the integer part, and B to denote the fractional
part. Clearly, there is B = B + B, Unlike floating-point format, there is a particular data range
for fixed-point numbers: 1) for signed numbers, the fixed-point format sets the range of the data to
[—28"1 28" -1 _2-8"] 2) while for unsigned numbers, after quantizing them as fixed-point format, the
range of the data is [—25", 25" — 2-5"]. 278" is the smallest positive number that can be represented
by a fixed-point number, also known as step size or quantization step. In the following, § denotes this
number.

This paper defines x, as a floating-point format data and x, as its corresponding fixed-point
format and uses round(-) to denote the round half-up method. Then the mapping of the floating-point
data x; to the signed fixed-point data x, is as follows [25]:

— 281 Xp < 281
x, =16 round (1), x; e [-25", 20" 2] 3)

IL IL FL
281 _ s, x; > 281 o

CMC, 2023, vol.75, no.2 2945

When mapping a set of data x;, in floating-point format to fixed-point data, the decimal point
position is determined by the range of the data set. For data of signed type, B = 1+ [logz[max{|xf |}ﬂ;
and for data of unsigned type, B" = [log,[max{|x,|}]]. And the quantization noise can be expressed
as e= max{|x¢|} - §.

3.3 Convolutional Neural Networks

The layersin a CNN can be divided into three categories: convolutional layer, fully connected layer,
and pooling layer. Furthermore, among them, it is the convolutional layer and the fully connected layer
that occupy more computational energy consumption. The fully connected layer has a similar structure
to Multilayer Perceptron (MLP). Thus, the main layers that need to be quantized are convolutional
layers and fully connected layers.

4 Fixed-Point Quantization in the Asynchronous Federated Learning

This section will briefly introduce the FixedAsynFL algorithm, including the model training
process, quantization method, and the derivation of two kinds of energy consumption. Furthermore,
the optimization objective is given at the end: the most suitable quantization scale is selected within
the exhaustive method to achieve the minimum value of communication energy consumption and
inference energy consumption.

4.1 System Model

In AsynFL, the weight parameters are carried out in the uplink and downlink communication
between the edge nodes and the central node. Thus, the objects of fixed-point quantization are the
weights in the neural network, which is quantized to the bit-width of Bj,. A pseudo-code of our
FixedAsynFL algorithm is presented in Algorithm 1.

At the beginning of the proposed FixedAsynFL algorithm, the central node generates an ini-
tialized global model w; and broadcasts this initialized global model to all of the edge nodes. Then,
the edge nodes in different computing and communication capability would start their first round of
asynchronous local training.

4.1.1 Quantization and Local Model Update

The main procedure on the edge node is fixed-point quantization and local training by the mini-
batch gradient descent method. As shown in Fig. 2 and the 3" to 11” lines in Algorithm 1, the i edge
node firstly downloads the latest global model w? from the central node in the r,” round of global
training. Then, the global model w» would be quantized into a B,-bit fixed-point model w” based on

Fq. (3) and is also seen as the initialized local model w!"™. Just to be clear in advance, the value of
bit-width By, is determined by considering the computation and communication energy consumption
of edge nodes, which will be described later.

With finishing fixed-point quantization, the edge nodes perform the weights update process by
B,,-bit mini-batch gradient descent (mini-batch GD) method. The dataset of the i edge node is
denoted by D, with a size of |D;|. In the mini-batch GD, the local dataset is divided into |D;| /M
batches, and the sampled mini-batch data is represented by d* = {x,,,y,}).,, where M is batch size and
{x,,»,} are input feature and output label respectively.

2946 CMC, 2023, vol.75, no.2

Central Node
g : | : e .-
1 1] ']
0 1 2 3
{ ® Global Model Update } [Global Model Update] [Global Model Update } eoe

k gﬁ: (1_) _(;ﬂ"’ ,~171 ;23(1—) ;1+ ,~;’z grz: (1_) ;z+ ,~gr3 /
@ Download

@ Upload

Edge Node 1 Edge Node 2 Edge Node 3
@ Quantization Quantization Quantization
i =7 i’ =73 s =>4 oo
@ Local Training Local Training Local Training
~;0 > ~171 ~;0 > ~Zfz ~;1 > ~;3

Figure 2: Fixed-point quantization asynchronous federated learning

In the r," round, the objective of the i” edge node’s local training is given as follows:
o

min F (W) = Kzl: @f (w5 d¥) 4)

0 ' P | D P

where K is the number of local training iterations; / (w;°; d) denotes the loss function with respect to

the fixed-point model and sampled data d. In each iteration of local training, with the learning rate

n, the local model is updated by equation """ « " — nVf (W""; d¥).

After K! local iterations, the local training of this global round is finished and the local model
update of the i” edge node is w;' = wi " which will be immediately transmitted to the central server.
It should be clear that the global round r, and r, are not adjacent. Because of the characteristic of
AsynFL, there might be another edge node uploading its local model w; to the central node before
the global round 1, (r, < r* < 1).

4.1.2 Global Model Aggregation

Unlike synchronous aggregation of SynFL, AsynFL updates the global model as soon as it
receives local model update w;*' from the i edge node by Eq. (1). Then central node will transmit
the new global model back to the i” edge node. Since the central node has sufficient computing power,
the parameters in the aggregation process are not necessary to be quantized to fixed-point format.

During the global model aggregation, other edge nodes are also performing their own local
training and do not conflict with each other.

The detailed proposed FixedAsynFL algorithm flow can be referred to the Algorithm 1.

Algorithm 1: The proposed FixedAsynFL algorithm

1 Input: Multiple edge nodes participated in the FixedAsynFL algorithm, learning rate n, batch
size M, and hyperparameter o.

(Continued)

CMC, 2023, vol.75, no.2 2947

Algorithm 1: Continued
2 Initialize: the global model of the 0" round w
3 Procedure at Edge Node / at round r,
4 Download the latest global model w.
5 Quantize this floating-point model w? into Bj,-bit fixed-point model .
6 Initialize: the local model of the 0* local iteration ;" = #
7 for all local iteration k € [K°] do
8 Sample mini-batch data d* = {x,,,y,}"_, from local data set D,
9 Perform the local training and update the new local model """ « " — nVf (w""; d¥)
10 end for
(%)

11 Send the new local model w;' = w;
13 Procedure at Central Server

14 for global round r = {1,2,...,1,,1,,...R} do:

15 Receive the update local model w;' from the edge node i
16 Compute the new global model w} by Eq. (1)

17 Send w;! back to edge node i

18 end for

19 Output: The final global model w

" to the Central Server

4.2 Computation Energy Consumption

The computation energy consumption is the required energy for performing arithmetic operations
such as addition and multiplication in the local training process, which can be obtained by multiplying
the runtime power of the edge nodes’ processors and the local training time delay in a training iteration.

The runtime power p/ of the i edge node is:
p:un — cfmc (I/ipmc)zfiproc +p?’ (5)

where V™ and /7 denote core voltage and core frequency of the i” edge node’s processor respectively.
And ¢ is a constant coefficient that is related to the computing power and hardware configuration
of edge nodes i". p) is the power consumption unrelated to the processor’s core voltage/frequency.

The local training time of edge nodes can be expressed by the following equation:
k(B,) vy
T

In the Eq. (4), v denotes the number of cycles for the data fetching and data computing of the i*
edge node’s processor, which would be reduced with a linear function k (B, because of the fixed-point
quantization. Besides, this paper use # to represent the other component unrelated to the training task.

T (B,) = +1, ©6)

1

Therefore, the computation energy consumption of the edge node i could be obtained by
calculating the product of processor runtime power and local training time delay.

E™(B,) =p"-T™ (B,) . D

4.3 Communication Energy Consumption

In the FixedAsynFL algorithm, this paper sets the uplink communication of edge nodes as a
frequency division multiplexer protocol. A H,-Hz frequency band is equally divided for all edge nodes

2948 CMC, 2023, vol.75, no.2

in the r” round. In AsynFL, the number of edge nodes in the global training would alter in the different
communication rounds. Thus, the optimal value of H, would not be a constant number. For the ith
edge node, the uplink communication rate is denoted as

hi t.ran
éi = Hl-),logz (1 + ﬁ) . (8)
0L4Lir

H,, denotes the uplink bandwidth of edge node i” in the r” round. This paper uses /; to denote
channel gain and p to denote the transmission power of the i edge node. N, is the Gaussian white
noise. The channel gain /; is assumed as a constant and deterministic value during the training process.

The uplink communication time delay of the i edge node is defined as 7" and the commu-
nication data size as s;. The communication data of the edge node is the local model update, i.c.,
s; = |lw;ll, - B,. The || - | |, denotes the /, norm, which indicates the number of non-zero elements in the
vector.

Thus, the uplink communication delay 77°" can be calculated as follow:

_ Si _ [lwill - B, 9)
§ Hlog (1+2%)

NoHr

com

And the communication energy consumption of edge nodes can be calculated as the product of
communication delay and communication transmission power.

com com ran | |Wi | | i B“’ tran
Ei ([—[i,r,Bw> = 7-', p:‘ = - /l,pl'ran 'p/' N (10)
B, log, (1 + ”—)

NoHi

4.4 Problem Formulation

The optimization objective of this paper is to reduce the uplink communication energy consump-
tion and the local training energy consumption of the edge nodes while maintaining the quantization
error within a specific range. This paper uses N to denote the number of edge nodes and R; to denote
the number of global training rounds that the i edge node has participated. Based on what is discussed
in this paper, the following optimization objectives are constructed as follows:

N R
1 cmp com
mngZ{E (B,) + E=" (B, H), an
subject to,
l «— ,
N2 =E (12)
R i=1
D AT AT < TV (13)
r=1
H
H = "
TN (14)
H, e [1.5x 10%,2.5 x 10°], 15)

B, €[2,10], (16)

CMC, 2023, vol.75, no.2 2949

where the variables are the quantized bit-width By, and the total frequency band H,. E is the acceptable
upper limit of quantization noise. In this paper, the sum of local training time and communication time
of any edge node cannot exceed 7.

5 Performance Evaluation

In this section, we conduct abound experiments on the physical platform and the simulated
environment to evaluate the effectiveness of our proposed algorithms. We first discuss the experimental
settings in detail, and then present the experimental results on the prototype system and simulated
environment, respectively. Finally, we provide a brief summary of those results.

5.1 Experiment Settings

In this section, we perform extensive experiments on the simulated environment to evaluate the
effectiveness of our proposed algorithms. This section introduces the experiment settings in detail, and
then discusses and analyses the experiment results in the simulated environment.

5.1.1 Experiment Environment

Our team deployed the proposed FixedAsynFL algorithm on a GPU Server named Supermicro
SuperServer 4029GP-TRT. This server is carrying a 40-core Intel(R) Xeon(R) Silver 4210R CPU and
one NVIDIA GeForce RTX 3090 GPU with 24GB RAM. The operation system (OS) is Ubuntu
18.04.6 LTS. We simulate the actual FL training environment which includes the central node and
edge node on this server at the code level. Meanwhile, to reflect the heterogeneity of clients, we set
different local training delays for each edge node.

As for the communication environment parameters, the total frequency band is set to 200 MHz,
and the transmission power of edge nodes is set to 0.2W. The channel gain is 1 and the power spectral
density is —174 dBm.

5.1.2 Model and Dataset

To test the proposed algorithm, we choose a commonly-used neural network: LeNet-5 [44]. LeNet-
5 is a simple CNN model with one input layer, two convolutional layers, two pooling layers, and three
fully connected layers, with the last fully connected layer being the output layer. The network structure
1s 6C5-MP2-16C5-MP2-120FC-84FC-10, where C5 means 5 x 5 kernels, MP2 means 2 x 2 max pooling,
and FC means fully connected components. In the local training, we set the batch size and learning
rate as 10 and 0.01, respectively. The global training epoch is set as 150.

The dataset is the well-known Modified National Institute of Standards and Technology (MNIST)
database [44], which is composed of 60,000 handwritten digits for training and 10,000 for testing. The
training set is gathered from 250 people. Half of them are senior high school students and the other
staff from the USA Census Bureau. The data distribution of the testing set is the same as the training
set. Each image in the MNIST is 256 grayscale images and is represented by a matrix whose size is
28 x 28.

5.2 Experimental Results on the FixedAsynFL

As shown in Fig. 3, this paper compares the proposed algorithm with two FL algorithms for
performance evaluation. The red line in Fig. 3 is the first FL algorithm, FedAsync [13], which is a

2950 CMC, 2023, vol.75, no.2

well-known AsynFL scheme. The global model and local model in this scheme are both in floating-
point format, e.g., FP32. The purpose of comparing FedAsync with the proposed FixedAsynFL is
to see how much fixed-point quantization affects AsynFL in terms of both training accuracy and
energy consumption. The two kinds of blue lines in Fig. 3 are the second FL algorithm, Federated
Learning with Quantization (FLQ) [27], which performs synchronous aggregation and quantization
compression in global training. The blue solid line is the training accuracy of the FLQ algorithm with
the bit-width B, of 8-bit, e.g., INT8. And the sky-blue dash-dot line is the FLQ algorithm in the INT4
fixed-point quantization format. The purpose of comparing FLQ with the proposed algorithm is to
demonstrate the benefits of the asynchronous aggregation mode in training performance while using
fixed-point quantization. The two kinds of green lines are the proposed algorithm, FixedAsynFL. Just
like the FLQ algorithm, the green solid line, dash-dot line, and dotted line represent the FixedAsynFL
algorithm in the INT8, INT6, and INT4 fixed-point quantization respectively.

100 4
90 -
80 A1
—~ 704
g
g 601
§ 50
b4
2 404
=
& 30 — FLQ, INT8
—-= FLQ, INT4
204 —— FixedAsynFL, INT8
10 - FixedAsynFL, INT6
- FixedAsynFL, INT4
0 —— FedAsync, FP32

T T T T T T T
0 20 40 60 80 100 120 140
Number of Communication Rounds

Figure 3: Training accuracy in different FL mechanisms and the different quantization scale

In the comparing experiment, the number of edge nodes is set as 20. Looking at Fig. 3, it is
apparent that without the asynchronous aggregation in the central node, the straggler effects of FLQ
seriously affect training efficiency. The aggregation can’t be performed in the central node until the
lowest edge node has uploaded the local model. Therefore, after the training accuracy of FedAsync
and FixedAsynFL is in a trend of smooth and steady, the accuracy of FLQ has not converged yet
because of its limited global rounds.

Besides, from Fig. 3 we can also find that the introduction of fixed-point quantization does not
cause a significant drop in training accuracy. At the end of the training, the green and red solid lines are
not far apart, and the distance between them is perfectly acceptable. According to the comparison of
the different quantization scales, the FixedAsynFL with INT4 quantization represented by the green
dotted line has a visible impact on the training accuracy situation. When B, is set to 6-bit and 8-bit,
the loss of training accuracy is in a small interval, which demonstrates that a certain amount of model
compression can guarantee the accuracy of neural network training.

Fig. 4 shows the growing trend of average energy consumption per edge node in the proposed
FixedAsynFL algorithm and Fed Async algorithm. The reason for the absence of the FLQ algorithm is
that when the two AsynFL algorithms complete global training, the FLQ algorithm has not completed

CMC, 2023, vol.75, no.2 2951

global convergence and the local training rounds of edge nodes are quite limited. The prominent red
polyline belongs to FedAsync, where both computing and communication are based on FP32 format
data. It is clear that the fixed-point quantization could retrench much energy consumption in the
FixedAsynFL. Besides, it could be found that the energy consumption of FixedAsynFL decreases
significantly as the selected fixed-point quantization bit width is reduced. However, this trend is not
linearly rising, but oscillating rising. The reason is that due to the heterogeneity of the computational
power and hardware level of the edge node devices, the edge nodes involved in the asynchronous model
aggregation are not the same in different global rounds, thus leading to variable energy consumption
for each global model aggregation.

le8

3.5 4 —— FixedAsynFL, INT2
—— FixedAsynFL, INT4
il e FixedAsynFL, INT8
—— FedAsync, FP32
25
=
2
@ 2.0
=
w
&
@ L5
g
I
1.0 4
T e

0 20 40 60 80 100 120 140
Number of Communication Rounds

Figure 4: Energy consumption of FixedAsynFL vs. energy consumption of FedAsync
Table 3 indicates the average uplink communication data size in different quantization bit-width.
The data size results show that the size of the communication package is linearly related to the

quantization scale. And this result is consistent with the principle of fixed-point quantification that
has been described in the previous section.

Table 3: Communication data size in different quantization bit-width
2-bit 4-bit 6-bit 8-bit 10-bit FedAsync
Datasize 3.4 KB 103KB 160KB 21.7KB 27.2KB 87.3KB

Besides the above experiments, another simulation is also performed which focuses on the number
of edge nodes attending the AsynFL. The quantity of edge nodes is varied from 10 to 35. As Figs. 5a
and 5b show, the training accuracy of both the FixedAsynFL algorithm and baseline algorithms is
better when more edge nodes are involved in the training. This is because as the number of edge nodes
involved in training increases, the training dataset used for AsynFL increases accordingly.

2952 CMC, 2023, vol.75, no.2

100 100
90 4 90
B0 4 B0
- 701 = 701
£ 2
2 60+ g 60
5 3
o o 50 4
4 % 2
o o
c 401
= o £
; 10 edge nodes E 30 —— FixedAsynFL, 10 edge nodes
01 —— 15 edge nodes —— FixedAsynFL, 20 edge nodes
=04 20 edge nodes 20 FedAsync, 10 edge nodes
—— 25 edge nodes 10 —— FedAsync, 20 edge nodes
10 4 —— 30 edge nodes —— FLQ, 10 edge nodes
—— 35 edge nodes o4 —— FLQ, 20 edge nodes
(1] T T T T T T T T T T T T T T T T
o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140
Number of Communication Rounds Number of Communication Rounds
(a) (b)

Figure 5: (a) Training accuracy with different numbers of edge nodes in the FixedAsynFL algorithm;
(b) Training accuracy with different numbers of edge nodes in the three FL algorithms

As depicted in Fig. 6a, the impact of this change on the training accuracy by modifying the
hyperparameter a in the proposed FixedAsynFL algorithms and thus adjusting the weight of the
local model in the global model update. It can be seen that the training accuracy decreases when
the a is larger, which means when the local model takes up a higher weight. This is because there
is a staleness effect in AsynFL, i.e., some edge nodes take longer to train locally due to their lack
of computing power, and the local model trained by such edge nodes lags behind the current latest
global model, which eventually causes a loss in training accuracy. A similar comparison experiment is
depicted in Fig. 6b. The hyperparameter « is adjusted in three values, and we could see the effect of
hyperparameter o on the proposed FixedAsynFL and the FedAsync algorithm. The results show that
different o leads to obvious differences in the training accuracy of the FedAsync algorithm. However,
for FixedAsynFL, the final training results are more similar except in the case of larger o, which
proves that AsynFL can rely more on the new local model after adopting the fixed-point quantization
algorithm.

-~ The training accuracy in different a o The training accuracy in different a
90 4 90 4
80 1 80 4
70 1 70 4
g | g
% 60 T 604
o w
g g
2 50 g so
2 £
E 40 a=02 .E 40 4 ~—— FixedAsynFL, a=0.2
= — a=0.4 " —— FixedAsynFL, a=0.5
' — a=05 01

—— FixedAsynFL, a=0.8
201 g=0.9 204 FedAsync, a=0.2

a=07 G

— FedAsync, a=0.5

10 — a=08 10 -
— a=09 —— FedAsync, a=0.8
o T T T T T T 1] T T T y T T T T
0 10 20 30 40 50 0 20 40 60 &80 100 120 140
Number of Communication Rounds Number of Communication Rounds
(a) (b)

Figure 6: (a) Training accuracy with different & in FixedAsynFL; (b) Training accuracy with different
a in two kinds of AsynFL algorithm

CMC, 2023, vol.75, no.2 2953

6 Conclusion

In this paper, we have proposed a secure and effective energy-aware FL mechanism, FixedAsynFL.
The main goal of the proposed algorithm was to mitigate the influence of massive communication
and devices heterogeneous to the FL deployment in industrial IoT. Experimental results show that the
fusion of asynchronous aggregation and fixed-point quantization can effectively reduce the energy
consumption for ML training and communication data size in FL while ensuring that the error
is within a certain range. Thus, deep integration of fixed-point quantization and neural network
will improve industrial IoT development. However, there is abundant room for further progress in
deploying the proposed FixedAsynFL algorithm in the physical platform and actual industrial IoT
scenario in order to further highlight the applicability of the FixedAsynFL algorithm.

The findings of this study have a number of important implications for future practice. Addi-
tionally, a further study could assess the restrictions of the large-scale FL from the communication
resources supplied by the FL server, which is usually deployed in the BS. In large-scale FL, massive
edge nodes would bring great challenges to the limited spectrum resources of BS. We will theoretically
analyze it in future work.

Funding Statement: This work was funded by National Key R&D Program of China (Grant No.
2020YFB0906003).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[11 M. Hosseinzadeh, A. Hemmati and A. M. Rahmani, “6G-enabled internet of things: Vision, techniques,
and open issues,” CMES-Computer Modeling in Engineering & Sciences, vol. 133, no. 3, pp. 509-556, 2022.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. Arcas, “Communication-efficient learning
of deep networks from decentralized data,” in Proc. of the 20th Int. Conf. on Artificial Intelligence and
Statistics, Fort Lauderdale, FL, USA, pp. 1273-1282, 2017.

[3]1 N.N. Thilakarathne, G. Muneeswari, V. Parthasarathy, F. Alassery, H. Hamam et al., “Federated learning
for privacy-preserved medical internet of things,” Intelligent Automation & Soft Computing, vol. 33, no. 1,
pp. 157-172, 2022.

[4] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li et al., “Federated learning for internet of
things: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622-1658,
2021.

[5] D.C. Nguyen, M. Ding, Q. V. Pham, P. N. Pathirana, L. B. Le ef al., “Federated learning meets blockchain
in edge computing: Opportunities and challenges,” IEEE Internet of Things Journal, vol. §, no. 16, pp.
12806-12825, 2021.

[6] Z.Chen, W. Liao, K. Hua, C. Lu and W. Yu, “Towards asynchronous federated learning for heterogeneous
edge-powered internet of things,” Digital Communications and Networks, vol. 7, no. 3, pp. 317-326, 2021.

[71 K. Yang, T. Jiang, Y. Shi and Z. Ding, “Federated learning via over-the-air computation,” IEEE Transac-
tions on Wireless Communications, vol. 19, no. 3, pp. 2022-2035, 2020.

[8] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya et al., “Adaptive federated learning in resource
constrained edge computing systems,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6,
pp. 1205-1221, 2019.

[9] G.Zhu, D. Liy, Y. Du, C. You, J. Zhang et al., “Toward an intelligent edge: Wireless communication meets
machine learning,” IEEE Communications Magazine, vol. 58, no. 1, pp. 19-25, 2020.

CMC, 2023, vol.75, no.2

M. S. H. Abad, E. Ozfatura, D. Giindiiz and O. Ercetin, “Hierarchical federated learning across hetero-
geneous cellular networks,” in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, pp. 8866-8870, 2020.

Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan et al, “Asynchronous federated learning over wireless
communication networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 6961-6978,
2022.

S. Samarakoon, M. Bennis, W. Saad and M. Debbah, “Distributed federated learning for ultra-reliable low-
latency vehicular communications,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 1146-1159,
2019.

C. Xie, S. Koyejo and I. Gupta, “Asynchronous federated optimization,” arXiv preprint arXiv:1903.03934,
2019.

C.Xu, Y. Qu, Y. Xiang and L. Gao, “Asynchronous federated learning on heterogeneous devices: A survey,”
arXiv preprint arXiv:2109.04269, 2021.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proc. of the 44th Annual Int. Symp. on Computer Architecture, New York, NY,
USA, pp. 1-12, 2017.

M. Denil, B. Shakibi, L. Dinh, M. Ranzato and N. Freitas, “Predicting parameters in deep learning,”
Advances in Neural Information Processing Systems, vol. 26, pp. 2148-2156, 2013.

Y. Idelbayev and M. A. Carreira-Perpinan, “Low-rank compression of neural nets: Learning the rank of
each layer,” in Proc. of the IEEEICVF Conf. on Computer Vision and Pattern Recognition, Seattle, WA,
USA, pp. 8049-8059, 2020.

G. Hinton, O. Vinyals and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, vol.2, no. 7, 2015.

E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis ez al., “Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid private data,” arXiv preprint arXiv:1811.11479,
2018.

S. Han, H. Mao and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

X. Qiu, Z. Ye, X. Cei and Z. Gao, “Survey of communication overhead of federated learning,” Journal of
Computer Applications, vol. 42, no. 2, pp. 333-342, 2022.

S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, “Deep learning with limited numerical
precision,” in Proc. of the 32nd Int. Conf. on Machine Learning. PMLR, Lille, France, pp. 1737-1746, 2015.
C. Sakr, Y. Kim and N. Shanbhag, “Analytical guarantees on numerical precision of deep neural networks,”
in Int. Conf. on Machine Learning, Sydney, Australia, PMLR, pp. 3007-3016, 2017.

L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in Neural Information
Processing Systems. Vol. 20. Vancouver, B.C., Canada, 161-168, 2007.

A. F. Murray and P. J. Edwards, “Enhanced MLP performance and fault tolerance resulting from synaptic
weight noise during training,” IEEE Transactions on Neural Networks, vol. 5, no. 5, pp. 792-802, 1994.

K. Audhkhasi, O. Osoba and B. Kosko, “Noise benefits in backpropagation and deep bidirectional pre-
training,” in The 2013 Int. Joint Conf. on Neural Networks (IJCNN), Dallas, TX, USA, IEEE, pp. 1-8,
2013.

Y. Chen, Y. Ning, M. Slawski and H. Rangwala, “Asynchronous online federated learning for edge devices
with non-iid data,” in 2020 IEEE Int. Conf. on Big Data (Big Data), Atlanta, GA, USA, IEEE, pp. 15-24,
2020.

M. Chen, B. Mao and T. Ma, “Efficient and robust asynchronous federated learning with stragglers,” in
Submitted to Int. Conf. on Learning Representations, Addis Ababa, Ethiopia, pp. 1-14, 2019.

V. Vanhoucke, A. Senior and M. Z. Mao, “Improving the speed of neural networks on CPUs,” in Deep
Learning and Unsupervised Feature Learning Workshop, NIPS 2011, Granada, Spain, pp. 4, 2011.

D. Lin, S. Talathi and S. Annapureddy, “Fixed point quantization of deep convolutional networks,” in Int.
conf. on machine learning, PMLR, New York, NY, USA, pp. 2849-2858, 2016.

CMC, 2023, vol.75, no.2 2955

(31]

(32]

(33]

[34]

(35]

(36]
[37]
[38]
[39]
(40]

[41]

[42]

[43]

[44]

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, pp. 2704-2713, 2018.

Q. Zhou, S. Guo, Z. Qu, J. Guo, Z. Xu et al., “Octo: {INT8} training with loss-aware compensation and
backward quantization for tiny on-device learning,” in 2021 USENIX Annual Technical Conf. (USENIX
ATC 21), Virtual Online, pp. 177-191, 2021.

C. Louizos, M. Reisser, T. Blankevoort, E. Gavves and M. Welling, “Relaxed quantization for discretized
neural networks,” in Int. Conf. on Learning Representations (ICLR), New Orleans, LA, USA, pp. 1-15,
2019.

S. Jung, C.Son, S. Lee, J. Son, J. Han et al., “Learning to quantize deep networks by optimizing quantization
intervals with task loss,” in Proc. of the IEEEICV'F Conf. on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, pp. 4350-4359, 2019.

M. Nagel, M. Baalen, T. Blankevoort and M. Welling, “Data-free quantization through weight equalization
and bias correction,” in Proc. of the IEEEICVF Int. Conf. on Computer Vision, Seoul, Korea, pp. 1325-1334,
2019.

S. Chen, C. Shen, L. Zhang and Y. Tang, “Dynamic aggregation for heterogeneous quantization in federated
learning,” IEEE Transactions on Wireless Communications, vol. 20, no. 10, pp. 6804-6819, 2021.

M. M. Amiri, D. Gunduz, S. R. Kulkarni and H. V. Poor, “Federated learning with quantized global model
updates,” arXiv preprint arXiv:2006.10672, 2020.

N. Shlezinger, M. Chen, Y. C. Eldar and S. Cui, “UVeQFed: Universal vector quantization for federated
learning,” IEEE Transactions on Signal Processing, vol. 69, pp. 500-514, 2020.

N. Tonellotto, A. Gotta, F. M. Nardini, D. Gadler and F. Silvestri, “Neural network quantization in
federated learning at the edge,” Information Sciences, vol. 575, no. 4, pp. 417-436, 2021.

T. Ma, H. Wang and C. Li, “Quantized distributed federated learning for industrial internet of things,”
IEEE Internet of Things Journal, early access, pp. 1, 2021. https://doi.org/10.1109/JI0T.2021.3139772

R. Chen, L. Li, K. Xue, C. Zhang, M. Pan et al, “To talk or to work: Energy efficient federated
learning over mobile devices via the weight quantization and 5G transmission co-design,” arXiv preprint
arXiv:2012.11070, 2012.

C. Petzold, Code: The Hidden Language of Computer Hardware and Software. Redmond, WA, USA:
Microsoft Press, 2000.

G. E. Dahl, D. Yu, L. Deng and A. Acero, “Context-dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no.
1, pp. 3042, 2011.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

https://doi.org/10.1109/JIOT.2021.3139772

	A Secure and Effective Energy-Aware Fixed-Point Quantization Scheme for Asynchronous Federated Learning
	1 Introduction
	2 Related Work
	3 Preliminary Knowledge
	4 Fixed-Point Quantization in the Asynchronous Federated Learning
	5 Performance Evaluation
	6 Conclusion
	References

