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Abstract: Face forgery detection is drawing ever-increasing attention in the
academic community owing to security concerns. Despite the considerable
progress in existing methods, we note that: Previous works overlooked fine-
grain forgery cues with high transferability. Such cues positively impact
the model’s accuracy and generalizability. Moreover, single-modality often
causes overfitting of the model, and Red-Green-Blue (RGB) modal-only is
not conducive to extracting the more detailed forgery traces. We propose a
novel framework for fine-grain forgery cues mining with fusion modality to
cope with these issues. First, we propose two functional modules to reveal
and locate the deeper forged features. Our method locates deeper forgery
cues through a dual-modality progressive fusion module and a noise adap-
tive enhancement module, which can excavate the association between dual-
modal space and channels and enhance the learning of subtle noise features.
A sensitive patch branch is introduced on this foundation to enhance the
mining of subtle forgery traces under fusion modality. The experimental
results demonstrate that our proposed framework can desirably explore the
differences between authentic and forged images with supervised learning.
Comprehensive evaluations of several mainstream datasets show that our
method outperforms the state-of-the-art detection methods with remarkable
detection ability and generalizability.

Keywords: Face forgery detection; fine-grain forgery cues; fusion modality;
adaptive enhancement

1 Introduction

Recent studies have shown rapid advances in face forgery techniques [1–4], which allow attackers
to perform facial area manipulation at a much lower cost. With the remarkable success represented
by Deepfakes, the subtle differences between authentic and forged images are indistinguishable.
Face forgery’s malicious usage may cause serious social problems and political threats. Therefore,
developing high-performance detection methods has become a popular research direction.

Face forgery detection technology intends to prevent the harm caused when Deepfakes technology
is abused. Such as preventing Deepfakes technology from manipulating elections [5], interfering
with media messages [6], creating pornography featuring female celebrities, creating fake accounts,
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and financial fraud. Some forgeries involving politics are likely to have unpredictable consequences
[7]; in December 2020, DeepFake videos featuring Vladimir Putin and Kim Jong-un appeared on
social media, exciting discussions about elections and democracy in the United States. Hence high-
performance face forgery detection methods have become a hot research concern. The ideal detection
model can be applied to most forgery data in the first place and has good detection ability and
generalizability to deal with unseen forgeries.

Researchers have developed various methods to detect face forgery employing distinct traces, such
as apparent visual artifacts [8–10], temporal inconsistencies [11–15], and multimodal conflicts [16–18].
These traces are not universal. Existing methods are more demanding on data and less meaningful in
real scenarios. In the real Internet, the vast majority of face forgery is presented as images. Thus we
put our research on the image-based face forgery detection method. Previous image-based research
focused on modifying the network structure or extracting various features. These methods are based
on single-modality or physiological features, which could otherwise be more satisfactory in terms
of accuracy and generalization. Spatial-based detection methods generally apply modified visual
network architectures to face forgery detection, such as capsule networks [19], Xception [20], vision
transformers [21], etc. The above methods’ robustness is susceptible to image post-processing, such
as video compression and smoothing. Some image processing methods, such as frequency analysis,
have been introduced for highly compressed datasets to face forgery detection. Durall et al. [22]
utilized the unnatural spectral distribution generated by the prevalent generative models for detection.
Frank et al. [23] found that the generative adversarial network (GAN)-generated images exhibited
severe artifacts in the frequency domain. These methods are still single-modal-only, and the upper
limit of performance achieved on different datasets is somewhat constrained. Moreover, these single
modality-based detection methods fail to explore forgery patterns. These forgery traces extracted
depend heavily on the training data and may fail on unseen forgeries.

Supervised face forgery detection methods rely on neural network fitting capabilities for learning.
With a narrow gap between network architectures, how to uncover more critical and more general-
izable forgery features becomes a problem worth investigating. From how face forgery images are
generated [24,25], a forgery face often blends two existing faces or is synthesized by deep neural
networks (DNNs). This mode has some similarities with image splicing. Both are similar to the
blending of two types of images. However, there are obvious signs of tampering at the boundary
between the manipulated region and the genuine region of the spliced image.

In contrast, face forgery images represented by Deepfakes tend to have fine-grain forgery cues,
such as visual artifacts and unusual noise, resulting in an anomaly in high-frequency regions. For
face forgery detection tasks, local cues play a more critical role than global semantics. Unlike image
splicing detection, which utilizes boundary information, several advanced manipulation methods
[26,27] generate local forgery traces, leading to global facial features’ discriminability suffering from
small-scale tampering. Therefore, exploring the universal local forgery traces is the key to the face
forgery detection task.

We observe that if only the RGB modality is employed, detailed local properties are prone to
be overlooked as the perceptual field increases. Moreover, we assume that the key to exploring the
critical local forgery traces is to exploit the inconsistency in details between authentic and forged
images. Several works have proposed solutions in response to this phenomenon. Dang et al. [28] utilized
attention maps to locate manipulated parts, Chai et al. [29] segmented images into local patches, and
Zhao et al. [30] employed multiple spatial attention heads to focus on the image’s different regions.
Although the above approaches emphasize local features, local forgery features that rely only on color
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space are fragile for image post-processing. Future solutions need to be more robust and practical
in real scenarios. The noise modality, on the other hand, due to its local properties, its introduction
helps the model to learn some local anomalies or local forgery traces. Previous works utilizing image
noise modality still intrinsically treat the noise modality as an independent complementary feature to
enhance the model’s accuracy. Zhou et al. [31] leveraged the complementary properties of RGB and
noise streams to detect and locate tampered images efficiently. Luo et al. [32] observed that current
convolutional neural network (CNN)-based detectors tend to over-fit color textures and proposed
introducing multi-scale noise features to improve generalization across multiple benchmark datasets.
Fei et al. [33] proposed a learnable adaptive spatial rich model (ASRM) filter to compensate for
conventional noise features’ shortcomings in adaptive. Previous work ignored the correspondence
between noise features and RGB features in the spatial domain. We expect to exploit the spatial
commonality of the two modal features to guide the model’s perception of local forgery cues.

In contrast to the above approaches, which utilize two modalities of global image features to
complement each other, our method is expected to learn more about generalizable forgery patterns. We
design a novel fusion enhancement method to introduce the noise modality and employ a particular
chunking learning approach to enhance the sensitivity to fine-grain face forgery cues. We design a
novel fusion enhancement method to introduce the noise modality and employ a particular chunking
learning approach to enhance the sensitivity to fine-grain face forgery cues.

Based on these observations of face forgery image properties, the main motivations behind our
work are: (1) In this work, we focus on capturing forgery traces from the perspective of fine-grain face
forgery cues. Such local semantics with high transferability have better detectability and generalization.
In contrast, learning the global features of images is less important. (2) Specifically, unlike the previous
view of frequency information as a separate feature stream, we note that noise features contain some
fine-grained local anomalies that are often not easily detectable in RGB features. As an inherent
property of images, noise features also correspond to RGB features spatially, and the two features can
somewhat complement each other. Therefore, we want to fuse noise features to guide the network to
notice such local anomalies of forged images and use them as forgery cues for subsequent sensitive
block mining. (3) Since deeper features correspond to larger perceptual fields, a deep network is
challenging to learn fine-grained noise features adequately. We design a novel adaptive enhancement
method for noise features in the fusion modality that can adaptively adjust the magnitude of the
enhancement according to data. (4) We employ a novel chunking learning approach to enhance the
network’s learning of fine-grained face forgery cues. Specifically, given a face image, we select the
sensitive blocks that are most important for detection results by aggregating deep feature descriptors.
Unlike previous patch-wise learning methods, our approach adaptively learns vital local forgery
patterns while ignoring the less critical features and does not require external annotation.

Our contributions can be summarized as follows:

We propose a novel perspective to address the face forgery detection task, aiming at mining fine-
grain face forgery cues to learn the difference between authentic and forged images. To end this, we
introduce and adaptively enhance the image noise modality utilizing sensitive blocks to ensure the
discrimination between genuine and manipulated regions in deep local features.

We propose two functional modules to reveal and locate the deeper forged features. A dual-
modality progressive fusion module (DPFM) is designed to explore dual-modal correlations in spatial
and channel dimensions in shallow features and fuse them on this basis. Furthermore, a noise
adaptive enhancement module (NAEM) is designed to excavate the artifact hidden in the noise feature
adaptively.
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We design a sensitive patch branch (SPB) shared with the main network parameters to isolate
vital subtle forgery traces. SPB selects as input the sensitive blocks corresponding to the most critical
windows for classifiers. SPB effectively enhances the learning of the network for forgery cues, which
gives the network remarkable detectability and generalization.

We performed a comprehensive evaluation of mainstream face forgery datasets. The experimental
results demonstrate our proposed method’s effectiveness with the most advanced competitors.

2 Related Work

Spatial-based forgery detection methods. Early face forgery techniques tend to generate obvious
forged signs. Many manual feature-based methods explore forgery image anomalies in the spatial
domain. These manual features include image noise residual [34,35], face warping artifacts (FWA) [8],
visual artifacts [9], etc. Face X-ray [36] is based on the property of blending boundaries when faces are
swapped, significantly generalizing local forged images. However, this method achieved undesirable
results in highly compressed or entire synthetic datasets. Given the excellent performance of deep
neural networks in computer vision, DNN-based methods have gradually become the mainstream of
research. Some works directly applied existing classification networks [37–39]. MesoNet [40] utilized
a shallow CNN architecture for forgery detection based on mid-level semantics. Bayer et al. [41]
developed a new convolutional layer capable of adaptively learning manipulation detection features.
Current state-of-the-art methods explore and learn about forged features. Dang et al. [28] decom-
posed the face forgery detection task into the localization of manipulated regions and detection.
Zhao et al. [30] modeled the detection task as a fine-grain image classification task, leading to learning
the proposed Multi-attentional Deepfake Detection (MAT) framework for local forgery traces and
shallow texture features in manipulated images.

The above spatial-based detection methods tend to modify the network structure. Their detection
performance varies widely across diverse datasets. RGB-modal-only Methods can render the detector
overfit to method-specific color texture and thus fail to generalize. Furthermore, these methods
are highly impacted by image post-processing, such as compression and smoothing masks—lack
applicability in real scenarios.

Frequency-based forgery detection methods. The spatial-based detection methods are susceptible to
compression rate. There are anomalies, such as distribution differences of high-frequency components
and checkerboard artifacts in the synthetic images. Furthermore, researchers have applied many
traditional mathematical methods to practical tasks [42–45] with impressive results in recent years.
Thus, frequency analysis is introduced into the detection task and achieves desired results in highly
compressed datasets. Some works utilized digital image processing methods such as Discrete Fourier
Transform (DFT) [46,47] and Discrete Cosine Transform (DCT) [48] to obtain frequency domain
features and detect anomalies. Frequency in Face Forgery Network (F3-Net) [49] proposed frequency-
aware decomposition and local frequency statistics to obtain forgery information in the frequency
domain. Fake Generated Painting Detection via Frequency Analysis (FGPD-FA) [50] performs
forgery detection by fusing three distinct frequency domain features.

However, since different forgery generation methods vary dramatically in the frequency domain
space, we observe that the accuracy of the frequency-based detection method alone is substantially
reduced on unseen datasets. Most existing frequency analysis-based methods directly convert the
entire image into a spectrum. Locally tampered faces [27,51] show indistinct anomalies in the global
frequency domain. Thus, these methods also suffer from subtle local forgery traces.
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Forgery detection methods combine spatial and frequency features. Due to single-modality lim-
itations, dual-modality-based detection methods are becoming mainstream research [11,12,32,52].
Spatial-Phase Shallow Learning (SPSL) [53] employed a shallow network to capture the pixel dif-
ferences in the phase spectrum of the synthetic images. The shallow network makes it difficult for the
method to detect subtle forgery traces. Frequency-aware Discriminative Feature Learning (FDFL)
[54] designed a single-center loss to improve intra-class compactness and inter-class separability in
the embedding space with dual-modal features. Multimodal Contrastive Classification by Locally
Correlated Representations (MC-LCR) [55] proposed a novel perspective that aims to amplify the
implicit local discrepancies between authentic and forged face images from dual-modality features.

Previous works treat spatial and frequency domain features as two separate feature streams but
neglect the existence of correspondence between the two features in terms of location. In essence, they
need to explore the forgery cues on dual-modal features further.

Forgery detection methods utilize local receptive fields. Previous methods of patch-wise training
tend to perform even chunking [29,55]. We note that existing patch-wise detection methods ignore the
variation in the forged features between patches and lack of adaptivity. To end this, we introduce more
flexible activation map-based sensitive patches, which can extract vital features of arbitrary size. The
sensitive patch-based detection method can improve our framework’s accuracy and generalization.
Sensitive patches can enhance the learning of manipulated patterns rather than global features, such
as visual artifacts. In addition, such local semantics makes the detector less susceptible to high-level
facial image features, achieving better generalization.

3 The Proposed Method

Owing to post-processing with compression or smoothing in mainstream datasets, the difference
between authentic and forged images is difficult to discriminate by RGB features alone. Face forgery
images usually consist of authentic areas as well as forged areas. Noise features are inherent to the
specificity of images. The noise features of the post-generated forged region and the genuine region
are difficult to match. We, therefore, carefully design two modules to integrate RGB features with noise
features fully. Furthermore, extract important local features employing sensitive patches to guide the
learning of our framework for fine-grained forgery cues. Our framework is illustrated in Fig. 1.

Figure 1: In the dual-modality progressive fusion module, dual-modal spatial and channel correlations
are mined separately using the spatial feature interaction module and channel attention fusion module.
Different levels of noise features are enhanced adaptively in the noise adaptive enhancement module
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Our framework’s overall training and testing process is illustrated in Fig. 2. Our framework
contains a novel modal fusion-enhancement process and an adaptive sensitive patch mining-learning
process. Specifically, in the training phase, we obtain critical sensitive patches based on fusion modality
and input them into a sensitive patch branch shared with the main network parameters. In the testing
phase, we directly use the main network for testing.

Figure 2: The overall training and testing process of our framework

3.1 Dual-Modality Progressive Fusion Module

Most of the existing face forgery generators are based on GAN, where the up-sampling causes
anomalies in the frequency domain features of the face forgery images. As an inherent property
of the image, the noise features of the manipulated region are often inconsistent with those of the
genuine region. The image’s post-forged part leaves a unique trace in the noise space, and this location
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information can correspond well to the RGB space. This property helps our proposed framework to
locate high discrepancy regions between authentic and forged images. We thus introduce noise features
to guide our framework in mining the differences between authentic and forged images.

In previous work, RGB and noise features were often treated as two separate feature streams
and concatenated directly in the high-level features on the channel dimension. However, the RGB
and noise features are not wholly unrelated features. There is quite a lot of shared information in
these two modalities. Two-Stream networks may weaken the correlation between spatial features and
cause redundancy in the network structure. Therefore, we propose a progressive fusion method to fully
obtain the spatial and channel features of the two modalities.

As the network deepens, semantic information increases as the reception field increases, and
spatial information diminish as the resolution decreases. We need to retain the spatial information
in both modalities for sensitive patch mining. We use a progressive fusion strategy on feature maps
of different resolutions in the fusion process. To this end, we propose a dual-modality progressive
fusion module in the shallow layer to fully fuse the dual-modal features at different scales. Our
proposed module consists of two sub-modules: a spatial feature interaction module and a channel
attention fusion module (See Fig. 3), which explore the spatial and channel correlations between the
two modalities separately.

Figure 3: The spatial feature interaction module and the channel attention fusion module

In the spatial feature interaction module, let XRGB, XSRM ∈ R
C×H×W denote the input of RGB

features and noise features. First, we obtain the information within each modality by QRGB, QSRM ∈
R

C×W×H and KRGB, KSRM ∈ R
C×H×W . Then, stitching in spatial dimensions to obtain the fused modalities

QFusion ∈ R
C×W×2H and KFusion ∈ R

C×2H×W . On this basis, the fusion attention map M ∈ R
C×W×W is

obtained:

M = softmax (QFusion ⊗ KFusion) (1)

where ⊗ denotes the multiply operator, the final output is X′
RGB, X′

SRM ∈ R
C×H×W :

X′
RGB = XRGB + BN (Conv (XSRM ⊗ M)) (2)

X′
SRM = XSRM + BN (Conv (XRGB ⊗ M)) (3)



4032 CMC, 2023, vol.75, no.2

where BN denotes batch normalization, + denotes the sum operator. X′
RGB and X′

SRM can interact with
the features of another modality effectively.

The channel attention fusion module utilizes the attention mechanism to facilitate inter-channel
interactions. This module combines information from all channels and determines each channel’s
significance. Let X′

Fusion, X′
Fusion ∈ R

C×H×W denote the fusion modality feature maps of the input and
output:

XFusion = Conv (Cat (XRGB, XSRM)) (4)

X′
Fusion = XFusion + XFusion ⊗ σ (MLP (GAP (XFusion) + GMP(XFusion))) (5)

where Cat is the concatenate operator in the channel dimension, MLP is a multi-layer perceptron,
GAP denotes the global average pooling, GMP denotes the global max pooling, and σ is the sigmoid
activation function. We adopt this progressive fusion method to fully obtain the information of both
modalities, using this fusion modality as a basis for mining the differences between authentic and
forged images.

3.2 Noise Adaptive Enhancement Module

For datasets with insignificant forgery features, subtle noise will play a critical role in forgery cue
mining. The neural network has a low learning priority spectral bias for high frequencies. Furthermore,
the sizeable perceptual field of high-level features is challenging to extract local noises. To this end, we
design a noise adaptive enhancement module (See Fig. 4) to excavate the artifact hidden in the noise
feature.

Figure 4: The noise adaptive enhancement module

In the noise adaptive enhancement module, for the input feature map X ∈ R
C×H×W , we first conduct

two transformations:

URGB = Conv (X) (6)

UEM = Conv (Cat (Conv (X) , fSRM (X))) (7)
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where URGB, UEM ∈ R
C×H×W . Corresponding to Xception, we use the depthwise separable convolution

with a 3×3 kernel. We generate channel-wise statistics s ∈ R
C by fusing the RGB branch and enhanced

noise branch via element-wise summation and global average pooling:

s = fGAP (URGB + UEHM) = 1
H × W

H∑
i=1

W∑
j=1

(URGB (i, j) + UEHM (i, j)) (8)

Then, the squeeze-excitation operation is used to learn the feature associations on the channel
dimension. We obtain the compact feature descriptor z ∈ R

d and normalize the soft attention vectors
aRGB, aEHM ∈ R

C of the corresponding channels of two branches via a softmax operator.

z = fSqueeze (s) (9)

[aRGB, aEHM] = softmax
(

[fExcitation−RGB (z) , fExcitation−EHM (z)]
)

(10)

The final feature map is obtained through the attention weights of two branches:

XEHM = aRGB · URGB + aEHM · UEHM (11)

where XEHM ∈ R
C×H×W is the fusion modality feature map after adaptive enhancement, two noise

adaptive enhancement modules are inserted between the blocks of the backbone network, preserving
and amplifying subtle noise in low-level and high-level features, respectively. More helpful information
is provided for subsequent sensitive patch mining.

3.3 Sensitive Patch Branch

Across different forgery face generators, local forgery cues tend to have higher generalizability
than global structure. The global structure may vary among advanced semantic information about dif-
ferent faces. Nevertheless, local cues have better commonality across different manipulation methods,
such as shared visual artifact features. We, therefore, hypothesize that local cues are more conducive
to face forgery detection. In previous work, the features of interest to these networks were scattered,
with relatively poor generalizability. Some work uses image chunking or masking of specific regions
to limit the network’s perception field for learning. Such methods may lose some of the features of the
raw image or lack adaptivity. In particular, for partial forgery images, the network may have difficulty
converging during the training process if many non-forged regions are included in the patches labeled
as fake.

We propose a fine-grain forgery cue mining method (See Fig. 5) to precisely locate forged regions
and use them as sensitive patches to enhance network learning for different forgery cues. Specifically,
we use adaptive-sized sliding windows for extracting these sensitive patches. Furthermore, input these
patches into the sensitive patch branch that shares parameters with the main network during the
training phase. Our framework is ultimately more oriented towards the learning of crucial manipulated
patterns.

We aggregate the high-level feature maps XH ∈ R
C×H×W in the channel dimension to obtain the

corresponding activation maps A ∈ R
1×H×W :

A (x, y) =
C−1∑
i=0

xi (x, y) (12)

where xi is the ith feature map of XH, (x, y) denotes the coordinates of the feature descriptor in
space. The value of A(x, y) reflects the contribution of the descriptor to the result. To select patches
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containing more sensitive information, we use the average activation value within the sliding window
to define the score of these patches:

score = 1
W × H

W−1∑
x=0

H−1∑
y=0

A (x, y) (13)

Figure 5: The sensitive patch branch. The network parameters in the purple box are shared. The blue
box shows the extraction process of sensitive patches

where H and W are the height and width of windows, we sort by the score of all windows and select
the first few windows as sensitive patches. We adopt a non-maximum suppression (NMS) between
the extracted sensitive patches to mine more forgery cues. The sensitive patches with the highest score
values are eventually used as input to the branch. To thoroughly learn the subtle forgery traces within
sensitive patches, we adopt the Circle Loss as the metric loss to improve the intra-class compactness
and inter-class separability in the embedding space.

Our objective function contains the cross-entropy loss of the main network and patch branch and
the metric loss between sensitive patches:

LRaw-Softmax = − log (Praw (label)) (14)

LPatch-Softmax = −
N−1∑
n=0

log
(
Ppatch(n) (label)

)
(15)

LPatch-Metric =
N−1∑
n=0

LCircle

(
PEpatch(n)

)
(16)

where label is the raw image’s ground truth label, and Praw is the raw image’s category probability.
Ppatch(n) is the softmax layer’s output of the sensitive patch branch corresponding to the nth sensitive



CMC, 2023, vol.75, no.2 4035

patch. PEpatch(n) is the feature embedding of the nth sensitive patch. Since the unstable accuracy of the
activation map in the first epoch, the total loss is as follows:

Ltotal =
{

LRaw-Softmax if epoch = 1
LRaw-Softmax + LPatch-Softmax + LPatch-Metric otherwise

(17)

4 Experiments
4.1 Settings

Datasets. We adopt five widely-used public datasets in our experiments, i.e., FaceForensics++
(FF++) [56], FaceShifter (FSR) [57], DeepfakeDetection (DFD) [58], Celeb-DF [26], DeeperForensics-
1.0 (DF1.0) [59], and WildDeepfake [60] (See Table 1). We uniformly set the ratio of the training
and testing sets to 7:3. We take the high-quality version (c23) and the low-quality version (c40) of
FF++ and FSR. FF++ contains four manipulation methods: Deepfakes (DF), Face2Face (F2F)
[51], FaceSwap (FSP) [61], and NeuralTextures (NT) [27]. As the level of compression increases,
detection of forgery cues can become increasingly challenging.

Table 1: Specifications of benchmark databases

Database Video scale Manipulation algorithm

FF++(c23/c40) 1000 real, 4000 fake DF, FSP, NT, F2F
FaceShifter(c23/c40) 1000 fake FSR
DFD 363 real, 3068 fake Improved DF
Celeb-DF 590 real, 5639 fake Improved DF
DF1.0 11,000 fake DF-VAE
WildDeepfake 3805 real, 3509 fake Improved DF

Data preprocessing. Since the dominant face forgery dataset today is in video format, some
preprocessing is necessary for our task. We extract keyframes for each video every 10 s, for a total of
30. This process can avoid data redundancy while maintaining the richness of the sample images. For
these keyframes, we use Retinaface [62] for face extraction and alignment and resize the aligned faces
to 299 × 299. This processing has become a default standard in face forgery detection and facilitates
comparing our method with other state-of-the-art works.

Implementation detail. Xception pre-trained on ImageNet is adopted as the backbone of our
framework, which is trained with AdamW optimizer with a learning rate of 2 × 10−4, weight decay of
1 × 10−5, and batch size of 8. The cosine decay is with a total of 20 epochs. We obtain the comparison
results from their paper and specify our implementation by † otherwise.

4.2 Ablation Study

Parameter influence. The number of sensitive patches tagged as num, and the minimum threshold
of window size tagged as thre may affect the final result. Primarily, thre controls the hierarchy of mined
forgery cues and flexibility. Furthermore, num controls our framework’s ability to extract forgery cues.
We conducted an empirical analysis based on the c23 version and the c40 version of FF++ to study
the optimal values of the two hyper-parameters.
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We observe that the sensitive patch’s window size correlates with score negatively. The window
size corresponding to the extracted sensitive patch tends to be around thre. If thre is too small, the
percentage of sensitive patches is small and relatively concentrated, which is not conducive to mining
forgery cues at different levels. Conversely, it may contain irrelevant regions that lack flexibility and
affect the training phase. As num increases, initially sensitive patches may capture more forgery cues,
but too large may introduce some authentic background regions to the detriment of the final result.
As illustrated in Figs. 6a and 6b, we get the best results when setting thre to be 4 × 4 and num to be 5.
Area Under Curve (AUC) reached 0.9961 on the c23 version and 0.9377 on the c40 version.

(a) (b)
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Figure 6: The detection performances achieve by (a) varying thre when num is fixed as 5 and (b) varying
num when thre is fixed as 4 × 4

Components. To demonstrate the effectiveness of each module, we evaluate the proposed frame-
work and its variants by intra-testing (See Table 2) and cross-testing (See Table 3).

Table 2: Ablation study on FF++ (c40) and FaceShifter (c40). The metric is AUC

Model DF F2F FSP NT FSR

RGB (Xception) 0.9791 0.9453 0.9441 0.7877 0.9658
RGB + SPB 0.9940 0.9654 0.9862 0.8232 0.9834
RGB + SRM (Baseline) 0.9865 0.9602 0.9778 0.8057 0.9798
Baseline + SPB 0.9956 0.9684 0.9887 0.8415 0.9861
Baseline + SPB + DPFM 0.9969 0.9740 0.9901 0.8443 0.9903
Baseline + SPB + DPFM + NAEM 0.9982 0.9806 0.9943 0.8564 0.9937

Taking Xception as the Baseline, RGB means RGB modality as the input, spatial rich model
(SRM) means noise modality as the input, and Baseline means fusion modality as the input. SPB,
DPFM, and NAEM represent the sensitive patch branch, dual-modality progressive fusion module,
and noise adaptive enhancement module.

We obtain the following conclusions from this experiment. First, the sensitive patch branch can
effectively improve the performance of our framework by fine-grain feature learning in both RGB



CMC, 2023, vol.75, no.2 4037

and fusion modalities. In addition, the improvement is insignificant if sensitive patches are mined
directly based on the fusion modality compared to the RGB-only modality. The experimental results
demonstrate that our specifically designed functional modules can better capture and utilize noise
information. As shown in the last three rows, the model’s performance gradually improves as each
module is added, demonstrating the effectiveness of each module.

Table 3: Ablation study from FF++(c23) to Celeb-DF. The metric is AUC

Model Celeb-DF

RGB (Xception) 0.6527
RGB + SPB 0.7451
RGB + SRM (Baseline) 0.7255
Baseline + SPB 0.7629
Baseline + SPB + DPFM 0.7724
Baseline + SPB + DPFM + NAEM 0.7868

4.3 Comparison with Recent Works

Within-manipulation-method evaluation. We compare our method with previous detection meth-
ods using frequency domain features on FF++ and FSR datasets. The results are shown in Tables 4
and 5. Xception, F3-Net, SPSL, and Generalizing Face Forgery Detection (GFF) are the most
advanced methods for face forgery detection. (Since SPSL is not open source, we are unable to
reproduce their method in our comparison experiments)

Table 4: Within-method evaluation of five manipulation techniques (c40). The metric is AUC

Model DF F2F FSP NT FSR

Xception† [37] 0.9791 0.9453 0.9442 0.7878 0.9657
F3-Net† [45] 0.9954 0.9713 0.9879 0.8264 0.9873
GFF† [32] 0.9945 0.9574 0.9592 0.7981 0.9735
SPSL [49] 0.9850 0.9462 0.9810 0.8049 –
Ours 0.9982 0.9806 0.9943 0.8564 0.9937

Table 5: Within-method evaluation of five manipulation techniques (c23). The metric is AUC

Model DF F2F FSP NT FSR

Xception† [37] 0.9956 0.9951 0.9894 0.9523 0.9910
F3-Net† [45] 0.9995 0.9989 0.9993 0.9884 0.9967
GFF† [32] 0.9942 0.9973 0.9969 0.9691 0.9942
SPSL [49] – – – – –
Ours 0.9999 0.9994 0.9998 0.9933 0.9976
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Our framework outperforms other advanced detection methods in terms of the AUC index on
different versions of the five manipulation methods. Especially in the most challenging c40 version, the
AUC metrics achieve more significant improvements. The experimental results show that our method
can effectively capture the features of the manipulation method and achieve the desired detection
results.

Within-database evaluation. We compared our method with several state-of-the-art methods. The
results are shown in Table 6. Our framework can utilize fusion modality to focus more on manipulated
patterns rather than global semantic information. It still has considerable advantages in large datasets
composed of multiple manipulation methods.

Table 6: Within-database evaluation on the FF++ dataset with c23 and c40 versions and WildDeep-
fake dataset. The metric is accuracy (Acc) and AUC

Model FF++ (c23) FF++ (c40) WildDeepfake

Acc AUC Acc AUC Acc AUC

Fridrich et al. [34] 70.97% – 55.98% – – –
Cozzolino et al. [35] 78.45% – 58.69% – – –
Bayar and Stamm [41] 82.97% – 66.84% – – –
Rahmouni et al. [39] 79.08% – 61.18% – – –
DSP-FWA [8] – 0.5750 – 0.6230 – –
MesoNet [40] 83.10% – 70.47% – – –
Face X-ray [36] – 0.8735 – 0.6160 – –
SPSL [49] 91.50% 0.9532 81.57% 0.8282 – –
Xception [37] 90.88%† 0.9347† 80.32%† 0.8176† 78.42%† 0.8677†
Add-Net [56] 96.78% 0.9774 87.50% 0.9101 77.01%† 0.8365†
F3-Net [45] 97.52% 0.9810 90.43% 0.9330 80.78%† 0.8756†
FDFL [50] 96.69% 0.9930 89.00% 0.9240 – –
MAT [30] 97.60% 0.9927 88.69% 0.9040 82.23%† 0.9098†
Ours 97.83% 0.9961 89.62% 0.9377 83.76% 0.9130

Cross-database evaluation. In the actual situation, we cannot predict the means of face image
forgery. Generalizability is also an essential criterion for evaluating detection models. The general-
izability of the model directly affects its practical application value. A comprehensive cross-database
evaluation is performed in this section to check the generalizability of our method. Our framework
is trained on different versions of the FF++ dataset and evaluated on DFD, WildDeepfake, Celeb-
DF, and DF1.0. In this section, our method is compared with several advanced methods in terms of
generalizability.

Specifically, cross-database evaluation is more challenging due to the difference in the distribution
of the training and testing sets. The compression level of DF1.0 is c23. Thus, we do not use DF1.0 to
evaluate the generalizability of the method when it is trained on the c40 version. From Table 7, we can
observe that our method significantly outperforms the rest of the competitors in almost all datasets.
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This advantage of generalizability can be further extended to about 5% to 6% with low-quality images
as the training set, as shown in Table 8.

Our method achieves superior results on cross-database evaluation. We also note that supervised
learning methods inevitably lead the framework to focus on textures generated by specific manipula-
tion methods. It leads to difficulties in achieving the desired results in the cross-manipulation-method
evaluation. Thus, how generalizing forgery cues among unknown manipulation methods is also a
problem worth investigating in the future. MLDG [63] and LTW [64] represent Meta-Learning for
Domain Generalization and Learning-To-Weight, respectively.

Table 7: Cross-database evaluation from FF++ (c23) to DFD, WildDeepfake, Celeb-DF, and DF1.0.
The metric is AUC. Results in gray indicate the within-database performance

Model FF++(c23) DFD WildDeepfake Celeb-DF DF1.0

Xception [37] 0.9347 0.8413 0.6617 0.6527 0.6824
EfficientNet-B4 [38] 0.9422 0.8737 0.6140 0.6852 –
Face X-ray [36] 0.8735 0.8560 – 0.7420 0.7230
MLDG [63] 0.9899 0.8814 0.6412 0.7456 –
F3-Net [45] 0.9810 0.8610 0.6771 0.7121 –
MAT [30] 0.9927 0.8758 0.7015 0.7665 –
LTW [64] 0.9917 0.8856 0.6712 0.7714 –
Local-relation [65] 0.9946 0.8924 0.6876 0.7826 –
GFF [32] 0.9930 0.9190 – 0.7940 0.9380
Ours 0.9961 0.9329 0.7213 0.7868 0.9421

Table 8: Cross-database evaluation from FF++ (c40) to DFD, WildDeepfake, and Celeb-DF. The
metric is AUC. Results in gray indicate the within-database performance

Model FF++(c40) DFD WildDeepfake Celeb-DF

Xception [37] 0.8176 0.6413 0.6059 0.6218
Add-Net [56] 0.9101 0.5736 0.5421 0.5603
F3-Net [45] 0.9330 0.6988 0.6039 0.6877
MAT [30] 0.9040 0.7418 0.6549 0.6904
Ours 0.9377 0.8134 0.7367 0.7830

5 Visualizations

Class Activation Mapping (CAM). We use Grad-CAM to visualize the attention map and thus
explore the regions of interest for the detection method, as shown in Fig. 7. We compare the differences
between our method and Xception class activation mapping. We observe that Xception’s attention is
scattered and focused on a larger area, sometimes exceeding the scope of the forged area. Furthermore,
it is unreasonable that Xception focuses on similar areas for different manipulation methods of
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images. Our framework can find key forgery cues and focus attention evenly on different manipulation
methods separately. Our method reaches better detection capability and generalization.

Figure 7: The attention maps of Xception and our framework for different kinds of faces

Adaptive Enhancement. Fig. 8 illustrates the enhanced region of different level feature maps via
the noise adaptive enhancement module. We observe that for low-level feature maps, the adaptive
enhancement regions are more discrete and vary considerably depending on the input. As for the high-
level feature maps, the proposed module focuses on potentially manipulated regions, such as the nose
and mouth. This noise adaptive enhancement mechanism can adaptively find and enhance helpful
subtle forgery cues among different levels of feature maps.

Sensitive Patch. We visualize the mined sensitive patches in Fig. 9. The sensitive patches are
represented as red, orange, yellow, and green. We observe that in RGB modality, the forged features
are mainly contained in the low-frequency part, such as irregular color blocks. Furthermore, the high-
frequency part plays a more prominent role in the noise modality, such as abnormal face detail features
and visual artifacts. There is a spatial correspondence between the two modalities so that they can
complement each other to some extent in the fusion modality.
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Figure 8: Adaptive enhancement of feature maps at different levels

Figure 9: Sensitive patches on RGB modality and noise modality



4042 CMC, 2023, vol.75, no.2

6 Conclusion

We propose a novel perspective of fine-grain forgery cues mining with fusion modality to address
the face forgery detection task. Firstly, a dual-modality progressive fusion module is designed to
complement the single-modal features by interacting and fusing the RGB and noise modalities at
different scales. A noise adaptive enhancement module is subsequently designed to enhance the subtle
noise features in the feature maps of different levels. Learning key manipulated patterns is achieved
by mining subtle forgery traces in the sensitive patch branch. Experiments demonstrate that our
method has considerable accuracy and generalization advantages. The visualization of class activation
mappings, feature maps, and sensitive patches reveals the intrinsic mechanism of our method and
explains its effectiveness.
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