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Abstract: Automatic Speaker Identification (ASI) involves the process of
distinguishing an audio stream associated with numerous speakers’ utterances.
Some common aspects, such as the framework difference, overlapping of
different sound events, and the presence of various sound sources during
recording, make the ASI task much more complicated and complex. This
research proposes a deep learning model to improve the accuracy of the
ASI system and reduce the model training time under limited computation
resources. In this research, the performance of the transformer model is
investigated. Seven audio features, chromagram, Mel-spectrogram, tonnetz,
Mel-Frequency Cepstral Coefficients (MFCCs), delta MFCCs, delta-delta
MFCCs and spectral contrast, are extracted from the ELSDSR, CSTR-
VCTK, and Ar-DAD, datasets. The evaluation of various experiments demon-
strates that the best performance was achieved by the proposed transformer
model using seven audio features on all datasets. For ELSDSR, CSTR-
VCTK, and Ar-DAD, the highest attained accuracies are 0.99, 0.97, and 0.99,
respectively. The experimental results reveal that the proposed technique can
achieve the best performance for ASI problems.

Keywords: Speaker identification; signal processing; Arabic; deep learning;
transformer

1 Introduction

Although, there are several ways available to exchange information among people, like text
messages and emails. In recent years some visual methods have also been utilized to show expressions,
such as pictures, emojis, and stickers, while communicating with each other. But these all are
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supplementary. Yet, speech remains one of the most effective ways of communication among humans
due to its exclusive data-enriched properties. Both linguistic and para lingual features can be extracted
from speech, which makes it distinct from other communication methods. In recent decades, scientists
have dedicated considerable attention to studying human voice and speech. Since this study focuses
on the speech signal, it discusses speech signal production and its perception in the following sections.

1.1 Speech Production

Fig. 1 shows the human speech/voice production system. This system can produce multiple
sounds. Speech production, however, mainly depends on three subsystems: the laryngeal subsystem
(larynx), the respiratory subsystem (lungs, diaphragm), and the articulatory subsystem (hard/soft
palate, nasal/oral cavities, jaw, tongue, teeth, and lips) [1]. The speech signal production formation
begins when air moves upward from the lungs into the larynx. Next, it passes through the trachea,
pharynx, and oral and nasal cavities. Finally, after cavities, it passes through the lips to generate vocal
sounds [2].

Figure 1: An overview of the human voice production system

The generation of sound depends on the vibration of vocal cords, either voiced or unvoiced [3].
The fluctuation of vocal cords depends on the tightness of cords that the muscles [in folds] and the
mass of cords control. However, the Bernoulli effect of air also affects the fluctuations. Later, airstream
impulses are broken by cords’ opening and closing. The shape and cycle of the impulses are determined
by the pitch and loudness of the speech signal. Thus, the pitch of the speech signal is the fundamental
frequency of the glottal pulse.

1.2 Speech Perception

Scientists use clues of human speech perception mechanisms for feature-level representation.
Fig. 2 provides basic information about a human’s ear’s interior settings that comprise three parts:
outer, middle, and inner.

The outer part—auricle or pinna—is connected to a short exogenous hearing canal; a membrane,
the eardrum, closes its end. The outer part is the gateway of sound that travels through the ear canal to
reach the middle part [4]. Once the sound waves reach the eardrum, the latter vibrates. Then the waves
hit three small bones—stapes (stirrup), incus (anvil), and malleus (hammer)—which are in the middle
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part. The main task of the middle part is to turn sound waves into vibrations and send them to the
inner part of the ear. Thus, in addition to delivering sounds, the middle part shields human hearing
from high-intensity sounds [5].

Figure 2: Human ear anatomy

A spiral-shaped cavity, cochlea, is the primary component of the [liquid-filled] inner part. The
cochlea is padded with thousands of microscopic hairy cells. After the sound vibrations reach liquid,
the latter, contingent on the inbound sound, vibrates in multiple patterns. The ensuing vibration causes
movement in the cochlea hair that transforms vibration into a nerve signal. Then through the hearing
nerve, the nerve signal is delivered to the brain.

Security of information is one of the vital areas of research these days. For security, human
biometrics are usually used as they distinguish between individuals. In the context of biometrics, an
automated recognition of different human biological and behavioral identifications is made, which
may include human eyes (cornea, iris), human gestures, fingerprints, face, voice, and Deoxyribonucleic
Acid (DNA) analysis. The human voice is one of the communicative biometrics that holds information
about a person’s distinctive traits, such as identity, age, gender, and emotion. Voice, as a biometric for
identifying a particular human, is known as speaker identification in academic literature. Speaker
identification can be applied in various applications while being an accurate source of human
identification, a suitable and convenient technology. It is more likely to apply speaker identification
to several applications to authenticate humans. Some suitable applications might include forensic
voice verification to detect suspects by government law enforcement agencies [6,7], access control to
different services, such as telephone network services [8], voice dialing, computer access control [9],
mobile banking, and mobile shopping. Moreover, speaker identification systems are extensively used
to improve security [10], automatic speaker labeling of recorded meetings, and personalized caller
identification using intelligent answering machines [11]. These applications are a source of motivation
to design and develop an automated system for speaker identification.

Voice recognition system (VRS) in mobile has better market advantages than same system installed
on a PC. A VRS in smartphones, or other 3C portable devices can process the user’s voice and
understand its commands. With such a recognition system, some practical algorithms can be applied
to devices mentioned above, not only to protect the devices from unauthorized use but also to make
them convenient and friendly. Generally, a Personal Computer (PC) has better computing power and
capabilities than a mobile device. So, running the algorithms of voice recognition on a mobile device
can be a difficult task. To imply these algorithms in a mobile device, the mobile needs better operational
efficiency, processing capability, and the number of resources it consumes [12].
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In this study, acoustic features are extracted from each audio file for automatic speaker identi-
fication. These features include spectral contrast, Mel-scaled spectrogram, tonnetz representations,
chromagram, Mel-frequency cepstral coefficients (MFCCs), delta (�) MFCCs, and delta-delta (��)
MFCCs. Afterward, the derived features were fed as input to the transformer model. To evaluate
the performance of the transformer model, this study employed three datasets: the English Language
Speech Database for Speaker Recognition (ELSDSR), the Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS), and the Surrey Audio-Visual Expressed Emotion (SAVEE).
The proposed method yields better identification performance for an automatic speaker identification
system. In this work, an efficient algorithm to derive discriminative and salient features for automatic
speaker identification is proposed. Moreover, the proposed transformed model achieved better speaker
identification performance over the existing baseline methods.

The rest of this work is organized as follows: Section 2 presents the literature review on automatic
speaker identification methods. Section 3 describes the datasets utilized to perform experiments, the
feature retrieval process, and deep learning-based transformer model adopted for automatic speaker
identification and evaluation parameters. The results of different experiments and the significance of
the observed findings is presented in Section 4. Finally, Section 5 concludes this study.

2 Literature Review

In literature, automatically identifying speakers can be divided into two stages. To identify the
speaker from speech signals, the first step is to extract valuable and discriminative features from the
speaker’s utterances. The second step is to select the classification algorithm. Below is a quick recap
of these two steps for automatic speaker recognition.

2.1 Feature Extraction

Two approaches have been widely employed in existing studies to extract the feature from audio
signals. The most commonly utilized approach for feature extraction is to split the Audio signal into
various frames of a specific length and retrieve low-local features from all frames. Generally, the
features used for automatic speaker identification are categorized into four types: linguistic feature,
acoustic feature, contextual feature, and hybrid feature. Acoustic properties are the best and most
widely used for automatic speaker identification. They consist of spectral features, voice quality
features, and prosodic features (duration, loudness, and pitch) (MFCCs etc.). In [13] the authors
have presented the fusion of MFCCs and 12 time-domain features (MFCCT). Using the LibriSpeech
dataset, the MFCCT feature was provided as input to a deep neural network in the second phase,
which resulted in 93% accuracy.

Due to the limits of machine learning classifiers to handle massive databases and considerable
advancements in computer capability, deep learning techniques for automatic speaker recognition
have been gaining attention recently. To do this, [13] proposed a gated recurrent unit (GRU) and 2D
Convolutional Neural Network (CNN) for automatic speaker identification. In the pro-posed model,
the convolutional layer was used to extract the voiceprint features and reduce the dimensionality
in both frequency and time domains. The GRU layer was used to fast the computation process.
The authors of this study evaluated various network structures including, deep Recurrent Neural
Network (RNN), 2D CNN and Long Short-Term Memory (LSTM) on the Aishell-1 database. The
experimental results revealed that the proposed GRU model obtained an accuracy of 98.9%. In another
study, [14] conducted a thorough analysis of deep learning techniques such as CNN, RNN, Deep Belief
Network (DBN), and Restricted Boltzmann Machine (RBM) with their features, advantages, and
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disadvantages. Also covered was a survey of several AI algorithms for speaker recognition on demand.
In another article, Bai et al. [15] reviewed different subtasks of automatic speaker identification
and focused on deep learning approaches. The authors discussed the significant advantages of deep
learning approaches over classical machine learning methods. The deep learning approaches can
extract highly abstract features from speaker utterances. The authors of this study paid close attention
to fundamental components of speaker identification involving the inputs, structures of the network
for feature extraction, pooling strategies, and impartial functions, respectively. Moreover, this survey
also focused on speech enhancement and domain adaptation to deal with noise issues and domain
mismatch. Another study [16] presented a novel method to enhance the performance of an automatic
speaker identification systems in the presence of interference using CNN for robot applications. Firstly,
the authors divided the audio signal into frames, each of which was converted into a spectrogram and
consequently, Radon transformation was estimated for this spectrogram. Afterward, spectrograms
and their Radon transformation were utilized as input to the CNN model. The proposed CNN model
comprised of six convolutional layers (CLs) followed by six Max. Pooling layers. The experimental
results revealed that the proposed model achieved a high accuracy of up to 97%.

An et al. [17] presented two variations of CNN for automatic feature learning, the residual
neural networks (ResNets) and the visual geometry group (VGG) nets using a self-attention layer.
The weighted average over all time steps was learned by this layer. In addition to handling varied
length frames, the suggested model with self-attention structure also acquired speaker characteristics
from diverse angles. The proposed model was evaluated using the benchmark dataset, VoxCeleb
and experimental results showed the superiority over the traditional i-vector speaker identification
models. In another study [18], authors conducted experiments using little training data and a deep
learning approach. In this approach, authors omitted the pre-processing step and considered large
segments of speech signals. The proposed Bidirectional Long Short-Term Memory (BLSTM) achieved
an accuracy of 77% on individual speech segments and 99.5% when segments of each speaker
were considered as a bundle. To identify the speakers in stressful environments, Nassif et al. [19]
presented an effective technique called radial basis function neural network-CNN. In this study, the
proposed model was evaluated on Arabic Emirati-accent and English Speech Under Simulated and
Actual Stress (SUSAS) databases. The authors extracted the MFCCs feature and fed it as input to
the proposed model. Comparing the proposed model and traditional machine learning classifiers
revealed that the proposed model outperformed the other methods in stressful environments. Another
study Nassif et al. [20], evaluated the performance of automatic speaker identification in real-time
situations such as emotional and noisy conditions. The authors incorporated two modules: a pre-
processing module called computational auditory scene analysis and a cascaded Gaussian mixture
model (GMM)-CNN model for ASI. The experimental results demonstrated that the proposed
method produced promising results and outperformed other classifiers.

2.2 Classification Methods

Multiple machine learning-based classifiers, including the GMM, hidden Markov model (HMM)
[21], multilayer perceptron (MLP), k-nearest neighbor (k-NN) [22], support vector machine (SVM)
[23], and random forest (RF), have been used by many researchers to identify speakers from audio data
signals. These classifiers have been extensively used in speech-related applications, including automatic
speaker identification and emotion recognition. The classifiers RF, J48, k-NN, Naive Bayes (NB), and
SVM are employed in this work. These classifiers’ performance is assessed for accuracy and contrasted
with the performance of the transformer model.
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3 Proposed Methodology

This section presents the general research methodology for developing the features fusion and
transformer model for the ASI system. Recently, various techniques have been proposed for developing
the ASI system. However, these techniques present some drawbacks that have hindered their efficient
implementation. Therefore, two techniques identified to reduce the limitations inherent in the current
systems include feature fusion and transformer model for automatic feature representation. Feature
fusion method handles high dimensional data, increases reliability, and improves the generalization
of the ASI system. Conversely, the transformer model is an automated feature representation method
that uses hierarchical layers to extract the discriminative features from speech data. The proposed
research methodology consists of five different processes. These include the methodology employed
for the research, data collection, feature extraction, brief descriptions of the proposed model, analysis,
and performance evaluation techniques. The high-level description of the proposed ASI method
is presented in Fig. 3. All experiments are performed on a laptop with 64-bit Windows 11 OS,
8 GB RAM, Intel® Core (TM) i5-3210M CPU, and Spyder (Python 3.8.5) environment. A detailed
explanation of the proposed method is given in subsequent subsections.

Figure 3: Proposed research methodology for ASI

3.1 Datasets Description

The benchmark datasets were utilized for experiments conducted in this research. The speech
datasets were collected from several male and female speakers under different conditions, recording
devices, technical settings, number of sessions, demography, and linguistic variability. The charac-
teristic of each dataset is explained in detail below. The datasets utilized in this research provide
various characteristics to ensure the comprehensive implementation of the proposed techniques.
Unlike datasets employed by recent studies [24,25] for deep learning-based speaker identification, this
study comprehensively analyses three datasets of different conditions.

ELSDSR is a speech dataset in the English language that was created for the use and testing
of SI and accent recognition systems. 10 female students and 12 male students and researchers at the
Technical University of Denmark’s chamber building participated in a single recording session (DTU).
Among a total of 22 speakers, 20 were Dane, one was an Icelander, and the other was a Canadian. The
average age of male speakers was lower than that of a female because of unequal gender distribution
at the recording site. The utterances were captured using the Pulse Coded Modulation (PCM) method
at a sampling rate of 16 kHz and a bit rate of 16 bits on a MARANTZ PMD670 recorder into the
most common .wav file format. The corpus is then separated into 44 (2 × 22) test utterances and 154
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(7 × 22) training utterances. The average time for reading the training data is 88.3 s for females, 78.6 s
for males, 83 s for all speakers. Similarly, the average duration for test data is 19.6 s (female), 16.1 s
(male), 17.6 s (for all speakers). Table 1 shows the reading duration spent on both training and test
data individually.

Table 1: Reading duration for training and test data

No Female Train (s) Test (s) Male Train (s) Test (s)

1 FAML 99.1 18.7 MASM 81.2 20.9
2 FHRO 86.6 21.2 MFKC 91.6 15.8
3 FDHH 77.3 12.7 MCBR 68.4 13.1
4 FEAB 92.8 24.0 MLKH 76.8 14.7
5 FMEL 76.3 18.2 MKBP 69.9 15.8
6 FJAZ 79.2 18.0 MMNA 73.1 10.9
7 FSLJ 80.2 18.4 MMLP 79.6 13.3
8 FMEV 99.1 24.1 MOEW 88.0 23.4
9 FUAN 89.5 25.1 MNHP 82.9 20.3
10 FTEJ 102.9 15.8 MREM 79.1 21.8
11 MPRA 86.8 9.3
12 MTLS 66.2 14.05

CSTR-VCTK (Centre for Speech Technology Voice Cloning Toolkit) is a dataset that holds the
speech data of 109 native English speakers having different accents. Every speaker reads almost 400
sentences, including a passage from The Herald (Glasgow) newspaper and the Rainbow Passage. In
addition, to distinguish the speaker’s accent, it included an elicitation paragraph. The selected text from
the newspaper was granted permission from Herald & Times Group. Moreover, every speaker recorded
a different set of sentences compared to the other speakers. For the selection of the set of sentences
and to maximize contextual and phonetic coverage, a greedy algorithm was employed. Conversely, all
109 speakers used the same elicitation paragraph and Rainbow Passage in their recorded utterances.

Ar-DAD (Arabic diversified audio dataset): The audio clips include two subdirectories named
reciters and imitators. Besides, it has a third directory, including similar Quran verses as plain text. The
reciters’ directory contains 37 folders and 15,810 files. All files in the reciter’s directory are arranged as
chapters, and each chapter contains verses, and each verse includes reciters that cover Quranic chapters
starting from 74 to 114. Each chapter has subfolders of verses, and all verse folders contain 30 audio
clips. The data format is in WAV form with a 44.1 kHz sampling rate, stereo channel, and 16-bit depth.
Both manual and acoustic approaches were used to create the WAV format because it is acceptable by
well-known machine learning algorithms.

3.2 Feature Extraction

At this phase, features are extracted from the collected dataset. The extraction of salient and
discriminative features that correctly identify speakers from voice is the most critical phase in the
success of the automatic speaker identification system [26]. The selection of suitable features can
significantly enhance the performance of the ASI system, while irrelevant features can delay the
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training process of the model [27]. In this research, Librosa [28] audio library was used to retrieve
the feature representations of an audio signals. These representations involve:

• Spectral contrast
• Mel-spectrogram
• Tonnetz representation
• Chromagram
• MFFCs
• �MFCCs
• ��MFCCs

The most common applications for MFCCs features are automatic speaker identification and
voice recognition [29]. A speech signal is initially broken into units of significance called frames to
recover the MFCC’s characteristics. Second, the stillness at the beginning and conclusion of each
frame is lessened by using a widely used technique called windowing operation. The Fast Fourier
Transform is then used to transform these frames from the time-domain to the frequency-domain
(FFT). Using Eq. (1), the frequency values generated by the FFT are evaluated on the Mel-scale. After
calculating the logs of the powers at each Mel-frequency, the Discrete Cosine Transform is used to
convert each log Mel-spectrum into a time-domain (DCT). The MFCCs are the computed amplitudes
from the resulting spectrum. Although MFCCs features are helpful for detecting and tracking timbre
variations in voice signals, they have trouble differentiating between pitches and harmony classes.
Chroma features are extracted from the speech stream using binning techniques and short-time Fourier
transform to solve this issue. All chromagram features for each frame are recorded and converted to
one coefficient in this work. An audio file is first separated into frames to obtain the Mel-spectrogram
feature, and then FFT is computed for each frame. After that, a Mel-scale is created by splitting the
frequency spectrum into equally spaced frequencies.

Finally, the frequencies are calculated on a Mel-scale for each audio frame. The Tonnetz represen-
tation, which displays the pitch relations in the rise and fall of voice signals, is a 6-dimensional tonal
centroid represented by the Harmonic Network. For each frame of the speech signal, the pitch space
(tonal centroid) features are computed in this work. By computing the root mean square divergence
between the spectral peak and the spectral depression for each frame, spectral contrast produces an
inclusive spectral proof of speech signal. To combine the many voice qualities, such as pitch, harmony,
timber, etc., into a single training utterance, 273 features (7 spectral contrast, 128 Mel-spectrogram,
6 tonnetz, 12 chromagram, 40 MFCCs, 40 delta MFCCs, 40 delta-delta MFCCs) are retrieved in
this work. Algorithm 1 represents the code to compute the master feature vector for input to the
transformer model.

Mel (f ) = 2595 × log10

(
1 + f

700

)
(1)

3.3 Transformer Model

When learning long sequences, vanishing gradient is a prevalent problem in Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) models. Though LSTM has addressed the
issue of RNN by using the carry-forward technique, which contains the information of previous
hidden layers and previous of the previous hidden layers. Nonetheless, when it comes to longer
sequential issues, this LSTM carrying forward technique may not work. Without employing RNNs or
aligned convolution, the transformer model with a self-attention mechanism is used to calculate the
representations of input and output. The technique of a self-attention to calculate the representation
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of a sequence, the self-attention mechanism links to various points of that sequence. Transformers
have stack-based encoder-decoder modules with a self-attention mechanism as its architecture.

Encoder: The input sequence is converted to a continuous representation sequence using the
encoder. Every time a step is produced, the transformer adds the previously generated representation
as an extra input sequence. This work’s encoder consisted of a stack of six identical layers, each was
further subdivided into two layers: a multi-head self-attention layer and a fully connected feed-forward
network. For every two sub-layers, a residual connection was used, followed by normalization.

Decoder: A stack of 6 similar layers made up the decoder as well. To guarantee that any sequence
predictions are based only on tokens that occurred before the current token, a third sub-layer known
as masked multi-headed attention was added to the decoder. Finally, residual connections were used
around each sub-layer, followed by the normalization layer.

Attention: It allows the transformer model to concentrate on other input audio sequences related
to that word. The self-attention is efficient in maintaining the context-based feature in an audio
sequence. These features are derived using a set of Quires Q, keys K, and values as given in Eq. (2):

Attention (Q, K, V) = Softmax (QKT) V (2)

A matrix containing the details of each audio sequence is the result of a given equation.
Transformers can parallelize training since, Q, K, and V are stacked as a matrix. A fully connected
feed-forward network was also applied to every point individually and uniformly in every encoder
and decoder layer. Here, a ReLU activation separates two linear transformations. The input and
output tokens were converted to dimensional vectors by using learned embeddings as well. To calculate
the class probabilities, the decoder output was transformed using a softmax function. The general
structure of the transformer model is shown in Fig. 4.

Figure 4: Structure of transformer model
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Algorithm 1: Algorithm to Compute LIST of Features
Input: Path to folder of speaker dataset
Output: list of features for the input to transformer

1 N ← number of speakers in path dataset
2 FOR i := 1 to N DO LOOP
3 total ← number of audio files of single speaker
4 FOR j := 1 to total DO LOOP
5 X ← load audio file j.
9 SC ← spectral contrast from X
10 Mel ← melspectrogram from X
11 Tonnetz ← tonnetz representations from X
12 chroma ← chromagram from X
13 mfcc ← Mel-Frequency Cepstral Coefficients (MFCCs) from X
14 delta ← �MFCCs from X
15 delta-delta ← ��MFCCs from X
16 features ← hstack(SC, Mel, Tonnetz, chroma, mfcc, delta, delta-delta)
17 arr ← features, i
18 list ← arr
19 j ← j + 1
20 END
21 i ← i + 1
22 END

3.4 Evaluation Metrics

This study used accuracy, recall, precision, and F1-score as its four main assessment metrics to
assess the effectiveness of the automatic speaker identification model. The confusion matrix, which is
a table of false-positive (FP), false-negative (FN), and true-positive (TP), true-negative (TN), when the
classification algorithm effectively detects, was used to calculate the performance of all classes (Speaker
ID). Accuracy uses the total number of utterances to calculate the accurately identified classes (Speaker
ID) using Eq. (3).

Accuracy = 1
N

∑N

i=1

(TP + TN)i

(TP + TN + FP + FN)i

(3)

where N represents the number of utterances.

According to Eq. (4), the fraction of properly identified positive instances and the sum of correctly
and mistakenly identified positive and negative instances are used to compute a class’s recall. It stands
for the speaker identification model’s completion.

Recall = 1
N

∑N

i=1

(TP)i

(TP + FN)i

(4)

Precision of a class is calculated as the fraction of correctly identified positive instances and the
total number of correctly and incorrectly identified positive instances as given in Eq. (5). It reveals the
model’s factualness.

Precision = 1
N

∑N

i=1

(TP)i

(TP + FP)i

(5)



CMC, 2023, vol.75, no.2 4095

When the dataset is unbalanced, F1-score is frequently used to show how accurate each class is.
This study uses the F1-score measure to validate the fullness of the automatic speaker identification
models because the datasets used in this work are unbalanced, making it difficult to calculate the
accuracy of all speaker classes. Eq. (6) defines the F1-score as the weighted harmonic mean of recall
and precision.

F1 − Score = 1
N

∑N

i=1
2 × (recall × precision)i

(recall + precision)i

(6)

4 Results and Discussion

For automatic speaker identification, this study evaluated the proposed model by employing three
datasets for text-independent experiments. The percentage spilt method was used to evaluate the
proposed models, where 80% data was utilized to train the transformer model and the remaining 20%
of data was utilized to test the trained model [30,31]. Previous works have concluded that the optimum
performance of the model is obtained if the 20%–30% of the feature set is utilized for testing and the
rest of 70%–80% feature set is used for training. The model achieves an accurate and valid accuracy
for this data split method and does not report the overestimated accuracy.

The performance of the proposed transformer approach was evaluated using the ELSDSR,
CSTR-VCTK, and Ar-DAD datasets. The proposed model obtained 100% training accuracy for each
dataset except CSTR-VCTK where the proposed model obtained 98.5% training accuracy. This study’s
proposed transformer model increased precision and decreased loss for samples of training and testing
data, demonstrating the utility and importance of the transformer method across all three datasets, as
demonstrated in Fig. 5.

Figure 5: (Continued)
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Figure 5: The proposed model training and validation accuracy for (a) Ar-DAD (b), CSTR-VCTK,
and (c) ELSDSR

4.1 Models Prediction Performance

This research employed three datasets that have diverse speech signals. The prediction per-
formance of all the conducted experiments are presented in Tables 2–4. These tables present the
performance of proposed deep learning models for ELSDSR, Ar-DAD, and CSTR-VCTK. The tables
reveal the robustness of the DL models over the baseline methods.

Table 2: Performance of proposed DL models for ELSDSR dataset

Deep learning
model

Achieved performance

Accuracy Precision Recall F-measure

Conventional
CNN

0.97 0.97 0.97 0.97

TL (VGG−16) 0.97 0.96 0.97 0.97
Transformer 0.99 0.99 0.99 0.99

Table 3: Performance of proposed DL models for Ar-DAD dataset

Deep learning
model

Achieved performance

Accuracy Precision Recall F-measure

Conventional
CNN

0.97 0.97 0.97 0.97

TL (VGG−16) 0.93 0.94 0.93 0.94
Transformer 0.99 0.99 0.99 0.99



CMC, 2023, vol.75, no.2 4097

Table 4: Performance of proposed DL models for CSTR-VCTK dataset

Deep learning
model

Achieved performance

Accuracy Precision Recall F-measure

Conventional
CNN

0.92 0.92 0.92 0.92

TL (VGG−16) 0.95 0.95 0.95 0.95
Transformer 0.97 0.98 0.97 0.98

4.2 Comparison with Baseline Methods

This work used ELSDSR, Ar-DAD, and CSTR-VCTK to compare the results of the proposed
model with the performance of existing baseline approaches to show the value and robustness of the
suggested method for automatic speaker identification. Table 5 provides a thorough summary of the
comparative analysis. The robustness of the suggested models is shown in the table, which shows that
the proposed speaker identification models perform considerably better than baseline methods. In a
few instances, the identification rate of the suggested models for specific speakers is slightly lower
than the standard operating procedures. Although this effort obtained an average accuracy of 98% as
opposed to the baseline of 93%, baseline procedures were exceeded by this work. The suggested ASI
technique accurately identified each speaker, required less time and computer resources, and worked
well for real-time applications.

Table 5: Comparison of the proposed method and baselines methods

Study Dataset Features Model Accuracy

[22] ELSDSR MFCCT DNN 89%
[32] ELSDSR MFCC ANN 93%
[33] ELSDSR MFCC VQ-UBM-GMM 98%
Proposed model ELSDSR Chromagram,

MFCCs,
�MFCCs,
��MFCCs,
Spectral contrast,
Mel-spectrogram,
Tonnetz

Transformer 99%

4.3 Comparative Analysis with Machine Learning Classifiers

To build the automatic speaker recognition models, the resulting features were provided as input to
five machine learning algorithms: Support Vector Machine (SVM), decision tree (J48), random forest
(RF), Naive Bayes (NB), and k-Nearest Neighbour (k-NN). Additionally, 15 analyses (3 datasets × 5
ML techniques) were conducted to gauge how well the retrieved features and ML algorithms worked
together.
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Fig. 6 illustrates how the suggested transformer model beat all five machine learning techniques,
with average accuracy for ELSDSR, Ar-DAD, and CSTR-VCTK of 98.8%, 99.6%, and 97.4%, respec-
tively. The ML algorithms’ average accuracy revealed a strange tendency. Using the ELSDSR dataset,
the k-NN and RF algorithms achieved high weighted accuracy of 90.2% and 86.2%, respectively, as
opposed to 79.2% for SVM, 76.4% for J48%, and 63.1% for NB. Furthermore, employing Ar-DAD
and CSTR-VCTK, RF beat the other four ML methods. The J48 and SVM algorithms and the NB
algorithm have the lowest levels of accuracy. In conclusion, employing all three datasets, the suggested
transformer model for SER beat the ML classifiers because of its higher average accuracy.

Figure 6: Comparative analysis of ML algorithms with proposed transformer model

5 Conclusion

Extraction of salient features and classification are two complex tasks in automatic speaker
identification. A lightweight transformer model for speaker identification was presented in this study
based on the combination of seven different acoustic properties. The effectiveness of the proposed
technique was evaluated using the ELSDSR, Ar-DAD, and CSTR-VCTK datasets to demonstrate its
robustness and importance. The proposed technique outperformed the baseline methods regarding
recognition rate across all three datasets. Our proposed model achieved 99%, 97% and 99% accuracies
for the ELSDSR, CSTR-VCTK and Ar-DAD datasets.

Speech analysis has recently drawn more and more attention. Numerous research challenges—
from dataset collection methods to the usage of features—have emerged with the study of spontaneous
human behavior (e.g., lexical information aside from prosodic features). However, there is little
discussion of the function of contextual data in ASI. Exploring the role of contextual information
can therefore be a helpful study contribution because it is clear that speaker identification depends
heavily on the context.
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