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Abstract: Traditional indoor human activity recognition (HAR) is a time-
series data classification problem and needs feature extraction. Presently, con-
siderable attention has been given to the domain of HAR due to the enormous
amount of its real-time uses in real-time applications, namely surveillance
by authorities, biometric user identification, and health monitoring of older
people. The extensive usage of the Internet of Things (IoT) and wearable
sensor devices has made the topic of HAR a vital subject in ubiquitous
and mobile computing. The more commonly utilized inference and problem-
solving technique in the HAR system have recently been deep learning (DL).
The study develops a Modified Wild Horse Optimization with DL Aided Sym-
metric Human Activity Recognition (MWHODL-SHAR) model. The major
intention of the MWHODL-SHAR model lies in recognition of symmetric
activities, namely jogging, walking, standing, sitting, etc. In the presented
MWHODL-SHAR technique, the human activities data is pre-processed in
various stages to make it compatible for further processing. A convolution
neural network with an attention-based long short-term memory (CNN-
ALSTM) model is applied for activity recognition. The MWHO algorithm
is utilized as a hyperparameter tuning strategy to improve the detection
rate of the CNN-ALSTM algorithm. The experimental validation of the
MWHODL-SHAR technique is simulated using a benchmark dataset. An
extensive comparison study revealed the betterment of the MWHODL-SHAR
technique over other recent approaches.

Keywords: Human activity recognition; symmetry; deep learning; machine
learning; pattern recognition; time series classification

1 Introduction

Human activity recognition (HAR) is a process of finding human activity correctly (standing,
working, walking, and eating) by examining sensor information accumulated by the Internet of Things
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(IoT) gadgets. It helps to understand the human behavioural paradigms in an IoT platform [1]. This
study had the main focus on HAR in indoor atmospheres. The indoor HAR systems gain more
significance in numerous fields, like body motion analysis in sports, assisted living, and healthcare,
monitoring safety (injuries, collisions, and falls) in the IoT environments, biometric user identification
for security, assessing employee performances in smart factories for Industry 4.0, and wellbeing in
smart homes [2]. Activity recognition was an important indicator of lifestyle, participation, and quality
of life.

Different symmetric and asymmetric activities are shown in Fig. 1. Symmetric activities are
activities which utilizes both sides of the body in a mirror-like way. For example, standing, sitting,
walking, jogging, cycling, etc. Asymmetric activities, on the other hand, involve the use of one side of
the body more than the other. For example, punching, kicking, pushing, reading, etc. Both symmetrical
and asymmetrical activities are important for human development and can offer a range of health
benefits. Symmetrical activities can enhance balance and coordination, while asymmetrical activities
can increase strength and endurance in specific muscle groups.

Figure 1: Different symmetric and asymmetric activities

Human actions carry more data relating to the context (a person’s mental state, identity, and
personality) and assist mechanisms in reaching context awareness [3]. In the same way, therapists
and rehabilitation specialists can benefit remotely from data on patient activities outside of a medical
centre. To reply to the queries of when and where users perform which kinds of actions, a wide range
of analyses (activities by day of the week, age group, gender, etc.) can be executed. It could assist
in finding the abnormality in surveillance systems, thereby thwarting undesirable consequences [4].
By utilizing wearable sensors, HAR applications find the user’s action to offer intelligent personal
recommendations and assistance. In the border security force, it was significant to detect the armed
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forces’ activities to offer feedback to the managers that helps them practically. Thus, HAR serves a
significant role [5] in numerous effective computational mechanisms.

There were several difficulties in HAR. For instance, biometric user recognition uses HAR tech-
niques to capture the individual behaviour of persons [6], like motion capture signs, as biometrics was
a science where the potential for identifying a person depends on their characteristics for preventing
device accessibility without authorization, was learned [7]. Currently, the basis of biometric detection
mostly includes the person’s physiological properties. But, strong concerns about HAR and privacy
were posed by such physiological features, which can be regarded as a possible substitute, working only
as a system for behavioural biometrics [8]. The time sequence classifier tasks were the main difficulties
in utilizing HAR, which is if individual movements were estimated using sensory information. This
normally includes precisely engineering features from the basic information through signal processing
methods and deep domain expertise for fitting one of the methods of machine learning (ML) [9].
Recently, deep learning (DL) approaches, which include LSTM and CNN, automatically derive useful
features from the raw sensor information and get an advanced outcome [10].

This study develops a Modified Wild Horse Optimization with Deep Learning Enabled Symmetric
Human Activity Recognition (MWHODL-SHAR) model. The major intention of the MWHODL-
SHAR model lies in identifying symmetric activities, namely jogging, walking, standing, sitting,
etc. In the presented MWHODL-SHAR technique, the human activities data is pre-processed in
various stages to make it compatible for further processing. A convolutional neural network with an
attention-based long short-term memory (CNN-ALSTM) method is applied for activity recognition.
The MWHO model is utilized as a hyperparameter tuning strategy to improve the detection rate of
the CNN-ALSTM algorithm. The experimental validation of the MWHODL-SHAR technique is
simulated utilizing benchmark datasets.

The rest of the paper is organized as follows. Section 2 offers the literature review, and Section 3
presents the proposed model. Next, Section 4 provides performance validation and Section 5 concludes
the work.

2 Literature Review

Basset et al. [11] introduced a supervised dual-channel method with LSTM, followed by an
attention system for temporal fusion of inertial sensor data synchronized with residual convolu-
tion networks. The author even presents an adaptive channel-squeezing function for fine-tuning
CNN feature-extracting ability by exploiting multi-channel dependency. The authors in [12] devise a
Lightweight DL method for HAR demanding minimum computational power, making it appropriate
for deployment on edge devices. The efficiency of the presented method was tested on the 6 day-to-day
activities data of the participants.

Khan et al. [13] proposed a hybrid technique integrating LSTM and CNN for activity recognition.
CNN was employed for extracting spatial features, and LSTM was used to learn temporal data.
Nafea et al. [14] present an innovative technique using CNN with changeable kernel dimensions and
bi-directional LSTM (BiLSTM) for capturing features at several resolutions. This study efficiently
extracts spatial and temporal features from sensor data using conventional BiLSTM and CNN and
the optimal selection of video representations.

In [15], a new HAR method that uses the potential of wearable gadgets with the skills of DL
approaches was offered for identifying an individual’s day-to-day activities at home. The sensor will
be integrated with a CNN designed to make inferences with the minimal possible resources to keep
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open the way of its application on embedded devices or low-cost. Gumaei et al. [16] devise an effective
multi-sensors-oriented structure for HAR utilizing a hybrid DL technique, which integrates the simple
recurrent unit (SRU) with the GRU of NNs. In [17], an intellectual auto-labeling method related to
deep Q-network (DQN) was formulated with a new distance-related reward rule which could enhance
learning performance in IoT platforms. A multi-sensor-related data fusion system was formulated
to seamlessly compile the on-body, personal profile, and context sensor datasets. An LSTM-oriented
classifier technique was modelled to find a finely-grained paradigm per the higher-level feature derived
from the sequential motion information.

3 The Proposed Model

In this study, we have introduced an automated symmetric activity recognition model named
MWHODL-SHAR technique. The MWHODL-SHAR model aims to detect and classify symmetric
activities such as jogging, walking, standing, and sitting. In the presented MWHODL-SHAR model,
three stages of operations were involved, namely pre-processing, activity recognition, and parameter
tuning. Fig. 2 shows the workflow of the MWHODL-SHAR model.

Figure 2: Working process of the MWHODL-SHAR model

3.1 Pre-processing

Initially, the data recorded by the wearable sensor is cleaned and normalized to obtain appropriate
and consistent data to train a detection module.

• Missing values of the sensor dataset are fixed by the imputation method with the linear
interpolation model;

• Noises are eliminated with the median filter and a 3rd order low-pass Butterworth filter with a
20 Hz cut-off frequency.

• A normalization technique transforms every sensor information with standard derivation and
means [18]. The input for model training and feature extraction are normalized and cleaned.

3.2 Symmetric Activity Recognition Model

This study employs the CNN-ALSTM model for accurate symmetric activity recognition [19].
The CNN method is a highly useful NN technique from the human neural system and exhibits
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remarkable efficacy in numerous applications. The feature of CNN comprises shared weight and sparse
connectivity. The CNN is a hierarchical module that successively implements 2 computational layers
(convolution and pooling or sub-sampling layers) and the last classification through the FC layer.
The convolution layer extracts feature from the input via the sliding window that realizes the feature
map that expresses the temporal arrangement features of the time sequence dataset. The last FC layer
produces the CNN output. Fig. 3 demonstrates the architecture of the LSTM method.

Figure 3: Flowchart of WHO algorithm

LSTM, a distinct type of RNN that learns long-term dependency, is intended to resolve problems
via short-term memory. LSTM can process long sequence datasets without gradient disappearing;
currently, it is extensively applied to resolve series dataset problems, namely speech recognition, NLP,
and automated annotation of images. LSTM has a complicated recurrent module in an individual cell
that is successively interconnected to time. The LSTM has 2 most important characteristics, the cell
state C (z), which enables the preservation of memory in the long term and the hidden state H (z),
which adapts with time. The LSTM might remove or add information from the cell state [19]. The
O (z) output gate determines the exit according to the C (z) cell state.

F (z) = σ
(
Wf [H (z − 1) , X (z)] + Bf

)
, (1)

I (z) = σ (Wi [H (z − 1) , X (z)] + Bi) , (2)

O (z) = σ (Wo [H (z − 1) , X (z)] + Bo) , (3)

I (z) = tanh (Wi [H (z − 1) , X (z)] + Bi) , (4)

C (z) = F (z) · C (z − 1) + I (z) · I (z) , (5)

H (z) = O (z) · tanh (C (z)) , (6)
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From the expression, B and W correspondingly denote the vector of bias and weight matrices;
tanh (·) denotes the hyperbolic tangent function, and σ (·) indicates the sigmoid function. Note that
the accurate control of the input dataset and internal state, viz., reflected in the cell state from the
LSTM feature, is proceeded with: the fixed length data and variable are treated at the exit and entrance.
This benefit is predominant in the case of utilizing LSTM incorporated into distinct types of DL
models than applying LSTM. The attention module is a brain signal-processing method peculiar
to human vision. Human vision rapidly scans the global images to attain the target region, which
requires attention and ignores other regions of irrelevant data. The attention module was implemented
and employed to model training and other related fields. The presented method employs the LSTM
hidden layer output vector H = {h1, h2, . . . , ht} as the input of the attention module, and they find
the attention weight αi of hi, which is evaluated by

ei = tanh (Whhi + bh) (7)

αi = exp (ei)∑t

i=1exp (ei)
(8)

In Eq. (8), Wh denotes the weight matrices of hj, and bh represents the bias.

3.3 MWHO-Based Hyperparameter Optimization Model

The MWHO algorithm is utilized as a hyperparameter tuning strategy to optimize the detection
rate of the CNN-ALSTM algorithm [20,21]. The WHO approach was based on the characteristics of
the social living of wild horses. They live mainly in herds with stallions and numerous mares and foals
[20]. They have demonstrated different properties, such as commanding, mating, grazing, pursuing,
and dominating. The key procedure included in the WHO is described as follows. Initially, the first
population is subdivided into various groups. All the groups hold a leader (stallion), and the remaining
population (mares and Foals) are equally dispersed. The grazing nature is determined by:

X j
i,G = 2Z cos (2πRZ) × (

Stallionj − X j
i,G

) + Stallionj (9)

In the expression, X j
i, G denotes the existing foal’s location, R specifies a uniform stochastic number,

and Z shows the adaptive process defined below:

P = →
R1 < TDR; IDX = (P == 0);

Z = R2�IDX + →
R3� (∼ IDX) (10)

Now P signifies a vector encompassing 0 to 1,
→
R1 and

→
R3 specify arbitrary values within [0, 1],

and R2 shows the arbitrary integer ranges from zero and one:

TDR = 1 − it ×
(

1
maxit

)
(11)

Now maxit shows the maximum iteration count. For developing the mating features of the horse,
the foal drives from i swarm to the impermanent group, while a foal comes from the j swarm to a
momentary group:

X P
G,K = Crossover

(
X q

G,i, X Z
G,j

)
i �= j �= k, p = q = end,

Crossover = Mean (12)
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In this work, the Stallion leads the swarm to the water hole, and they compete with each other for
the water hole. The dominant swarm uses the water hole mainly, and the remaining group utilizes the
water hole:

StallionGi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Z cos (2πRZ) × (
WH − StallionGi

)
+WH if R3 > 0.5
2Z cos (2πRZ) × (

WVH − StallionGi

)
−WH if R3 ≤ 0.5

(13)

StallionGi denotes the leader’s next location, and WH denotes the water hole’s location. Next, the
leader is chosen according to the fitness values in the subsequent phases as follows:

StallionGi =
{

XG,i if cos t
(
XG,i

)
< cos t

(
StallionGi

)
StallionGi if cos t

(
XG,i

)
> cos t

(
StallionGi

) (14)

Fig. 3 shows the flowchart of the WHO algorithm. The MWHO algorithm is derived using
the oppositional-based learning (OBL) concept. The OBL method constitutes a unique opposition
solution to the current solution [22] and even attempts to define the superior solution that leads to
increasing convergence speed. The opposite

(
X 0

)
of the real number (X ∈ [U , L]) was assessed by:

X 0 = U + L − X (15)

Opposite point: Assume that X = [X1, X2, . . . , XDim] indicates the point in a Dim-dimension
search space, and X1, X2, . . . , XDim ∈ R and Xj

[
Uj, Lj

]
. Thus, the opposite point

(
X 0

)
of X is as follows:

X 0
j = UBj + Lj − Xj, where j = 1 . . . .D (16)

As per the values of the fitness function, the most useful two points (X 0 and X ) were selected, and
the other was ignored. For minimizing the issue, if (X) ≤ f

(
X 0

)
, X was sustained; oppositely, X 0 was

sustained.

4 Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB,
16 GB RAM, 250 GB SSD, and 1 TB HDD. In this section, the symmetric activity recognition of the
MWHODL-SHAR model is tested using two datasets (https://www.kaggle.com/competitions/uci-har/
data?select=UCI+HAR+Dataset+for+Kaggle; https://sipi.usc.edu/had/): the UCI HAR dataset and
USC HAD dataset. The details relevant to these datasets are given in Table 1.

Table 1: Dataset used

Activity Abbreviation No. of samples
UCI HAR USC HAD

Walking WF 1722 8476
Walking upstairs WU 1544 4709
Walking downstairs WD 1406 4382
Sitting Si 1777 5810
Standing St 1906 5240

(Continued)

https://www.kaggle.com/competitions/uci-har/data?select=UCI+HAR+Dataset+for+Kaggle
https://www.kaggle.com/competitions/uci-har/data?select=UCI+HAR+Dataset+for+Kaggle
https://sipi.usc.edu/had/
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Table 1: Continued
Activity Abbreviation No. of samples

UCI HAR USC HAD

Laying/Sleeping Sl 1944 8331
Total number of samples 10299 36948

The confusion matrices of the MWHODL-SHAR model on the UCI HAR dataset are reported in
Fig. 4. The outcomes demonstrated that the MWHODL-SHAR method had identified all the different
types of symmetric human activities.

Figure 4: Confusion matrices of the MWHODL-SHAR model on the UCI HAR dataset (a) 60% of
TR data, (b) 40% of TS data, (c) 70% of TR data, and (d) 30% of TS data
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Table 2 offers an overall activity recognition performance of the MWHODL-SHAR method on
the UCI HAR dataset. The MWHODL-SHAR model has proficiently recognized all the activities. For
instance, on 60% of TR data, the MWHODL-SHAR model has attained an average accuy of 99.29%,
precn of 97.80%, recal of 97.81%, Fscore of 97.80%, and AUCscore of 98.69%. Concurrently, on 40% of
TS data, the MWHODL-SHAR technique has achieved an average accuy of 99.35%, precn of 98.05%,
recal of 97.98%, and Fscore of 98.01%, and AUCscore of 98.79%. Simultaneously, on 70% of TR data,
the MWHODL-SHAR approach has achieved an average accuy of 99.38%, precn of 98.16%, recal of
98.07%, and Fscore of 98.11%, and AUCscore of 98.85%. Finally, on 30% of TS data, the MWHODL-
SHAR method has reached an average accuy of 99.39%, precn of 98.08%, recal of 98.14%, Fscore of
98.11%, and AUCscore of 98.89%.

Table 2: Symmetric activity recognition results of the MWHODL-SHAR model on the UCI HAR
dataset

Labels Accuracy Precision Recall F-score AUC score

Training phase (60%)

WF 99.42 98.58 98.02 98.30 98.87
WU 99.16 96.25 98.14 97.19 98.74
WD 99.16 97.31 96.37 96.84 97.98
Si 99.34 98.21 97.94 98.08 98.78
St 99.17 98.42 97.15 97.78 98.39
Sl 99.48 98.02 99.22 98.62 99.38

Average 99.29 97.80 97.81 97.80 98.69

Testing phase (40%)

WF 99.39 97.60 98.63 98.11 99.09
WU 99.47 97.64 98.89 98.26 99.23
WD 99.08 98.22 95.17 96.67 97.44
Si 99.34 98.17 98.03 98.10 98.82
St 99.47 98.79 98.26 98.53 99.00
Sl 99.37 97.88 98.87 98.37 99.18

Average 99.35 98.05 97.98 98.01 98.79

Training phase (70%)

WF 99.45 98.81 97.81 98.31 98.79
WU 99.40 98.01 98.10 98.06 98.87
WD 99.36 98.30 96.86 97.58 98.30
Si 99.29 97.85 98.09 97.97 98.82
St 99.36 98.33 98.18 98.25 98.90
Sl 99.42 97.66 99.35 98.50 99.39

Average 99.38 98.16 98.07 98.11 98.85

Testing phase (30%)

WF 99.55 98.69 98.69 98.69 99.21

(Continued)
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Table 2: Continued
Labels Accuracy Precision Recall F-score AUC score

WU 99.32 97.49 97.71 97.60 98.65
WD 99.32 96.73 98.67 97.69 99.05
Si 99.09 98.05 96.55 97.30 98.08
St 99.55 99.14 98.47 98.81 99.13
Sl 99.48 98.39 98.75 98.57 99.20

Average 99.39 98.08 98.14 98.11 98.89

The TACC and VACC of the MWHODL-SHAR method are investigated on the UCI HAR
dataset in Fig. 5. The figure exhibits the MWHODL-SHAR approach has displayed enhanced
performance with increased values of TACC and VACC. It is visible that the MWHODL-SHAR
algorithm has attained maximum TACC outcomes.

Figure 5: TACC and VACC of MWHODL-SHAR model on the UCI HAR dataset

The TLS and VLS of the MWHODL-SHAR method were tested on the UCI HAR dataset in
Fig. 6. The figure exhibited that the MWHODL-SHAR approach has revealed superior performance
with minimal values of TLS and VLS. It is visible that the MWHODL-SHAR technique has resulted
in reduced VLS outcomes.

The confusion matrices of the MWHODL-SHAR model on the USC HAD dataset are reported in
Fig. 7. The outcomes demonstrated that the MWHODL-SHAR method had identified all the different
types of symmetric human activities.
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Table 3 presents the overall activity recognition performance of the MWHODL-SHAR method
on the USC HAD dataset. The MWHODL-SHAR approach has proficiently recognized all the
activities. For example, on 60% of TR data, the MWHODL-SHAR technique has achieved an
average accuy of 99.51%, precn of 98.44%, recal of 98.47%, Fscore of 98.45%, and AUCscore of 99.08%.
Concurrently, on 40% of TS data, the MWHODL-SHAR method has achieved an average accuy of
99.35%, precn of 98.05%, recal of 97.98%, and Fscore of 98.01%, and AUCscore of 98.79%. In parallel, on
70% of TR data, the MWHODL-SHAR technique has reached an average accuy of 99.53%, precn of
98.56%, recal of 98.52%, Fscore of 98.54%, and AUCscore of 99.12%. Eventually, on 30% of TS data, the
MWHODL-SHAR method has achieved an average accuy of 99.52%, precn of 98.46%, recal of 98.47%,
Fscore of 98.46%, and AUCscore of 99.09%.

Figure 6: TLS and VLS of MWHODL-SHAR model on the UCI HAR dataset

The TACC and VACC of the MWHODL-SHAR method are inspected on the USC HAD dataset
in Fig. 8. The figure implied that the MWHODL-SHAR method had shown improved performance
with increased values of TACC and VACC. It is visible that the MWHODL-SHAR model has reached
maximum TACC outcomes.

A comparative symmetric activity recognition result of the MWHODL-SHAR model on the
UCI HAR dataset is in Table 4. The experimental values demonstrated that the Residual network,
Human Activity Recognition on Signal Images (HARSI), and deep CNN models had shown poor
recognition performance. Next, the CNN-RF model has depicted certainly improved performance,
while the LSTM and convolutional autoencoder (CAE) models have obtained reasonable outcomes.
But the MWHODL-SHAR model has attained maximum performance with accuy of 99.39%, precn of
98.08%, recal of 98.14%, and Fscore of 98.11%.

Finally, a comparative symmetric activity recognition result of the MWHODL-SHAR model is
made on USC HAD Dataset in Table 5. The simulation values established that the Residual network,
HARSI, and deep CNN approaches had exhibited poor recognition performance. Next, the CNN-RF
model has improved performance, while the LSTM and CAE approaches have attained reasonable
outcomes. But the MWHODL-SHAR technique has achieved maximum performance with accuy
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of 99.53%, precn of 98.56%, recal of 98.52%, and Fscore of 98.54%. These results show the better
performance of the MWHODL-SHAR model over other models.

Figure 7: Confusion matrices of the MWHODL-SHAR model on the USC HAD dataset (a) 60% of
TR data, (b) 40% of TS data, (c) 70% of TR data, and (d) 30% of TS data
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Table 3: Symmetric activity recognition results of the MWHODL-SHAR model on the USC HAD
dataset

Labels Accuracy Precision Recall F-score AUC score

Training phase (60%)

WF 99.38 98.78 98.51 98.65 99.08
WU 99.63 98.49 98.66 98.57 99.22
WD 99.55 97.88 98.37 98.12 99.04
Si 99.52 98.40 98.57 98.48 99.13
St 99.41 98.20 97.64 97.92 98.67
Sl 99.54 98.90 99.05 98.98 99.37

Average 99.51 98.44 98.47 98.45 99.08

Testing phase (40%)

WF 99.49 98.99 98.75 98.87 99.23
WU 99.59 98.14 98.61 98.38 99.17
WD 99.50 97.83 97.95 97.89 98.83
Si 99.57 98.29 98.97 98.63 99.32
St 99.47 98.15 98.11 98.13 98.90
Sl 99.50 99.16 98.63 98.90 99.19

Average 99.35 98.05 97.98 98.01 98.79

Training phase (70%)

WF 99.39 98.52 98.83 98.67 99.19
WU 99.61 98.50 98.44 98.47 99.11
WD 99.59 98.58 97.96 98.27 98.89
Si 99.58 98.83 98.54 98.69 99.16
St 99.52 98.00 98.55 98.27 99.11
Sl 99.49 98.93 98.82 98.87 99.25

Average 99.53 98.56 98.52 98.54 99.12

Testing phase (30%)

WF 99.51 98.84 99.00 98.92 99.33
WU 99.50 97.71 98.46 98.08 99.06
WD 99.51 98.27 97.68 97.98 98.72
Si 99.57 98.30 98.88 98.59 99.29
St 99.48 98.49 98.01 98.25 98.87
Sl 99.54 99.14 98.78 98.96 99.27

Average 99.52 98.46 98.47 98.46 99.09
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Figure 8: TACC and VACC of MWHODL-SHAR model on the USC HAD dataset

Table 4: Comparative symmetric activity recognition results of the MWHODL-SHAR model on the
UCI HAR dataset

Values (%); UCI HAR dataset

Methods Accuracy Precision Recall F-score

MWHODL-SHAR 99.39 98.08 98.14 98.11
CNN-RF 96.27 95.85 95.94 97.36
Residual network 95.45 96.59 95.21 95.11
Deep CNN 94.20 97.63 96.45 94.13
CAE 97.94 95.08 96.77 97.19
HARSI 95.86 97.03 95.34 94.10
LSTM 97.38 95.63 94.31 94.94

Table 5: Comparative symmetric activity recognition results of the MWHODL-SHAR model on the
USC HAD dataset

Values (%); USC HAD dataset

Methods Accuracy Precision Recall F-score

MWHODL-SHAR 99.53 98.56 98.52 98.54
CNN-RF 97.84 96.91 95.87 97.85
Residual network 95.86 95.03 96.61 94.86
Deep CNN 94.06 96.52 97.06 96.63

(Continued)
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Table 5: Continued
Values (%); USC HAD dataset

Methods Accuracy Precision Recall F-score

CAE 94.73 98.00 96.33 96.36
HARSI 95.76 94.11 95.08 96.45
LSTM 96.74 94.98 96.58 94.46

5 Conclusion

In this study, we have introduced an automated symmetric activity recognition model named
MWHODL-SHAR technique. The MWHODL-SHAR model’s goal is to detect and classify sym-
metric activities such as jogging, walking, standing, and sitting. In the presented MWHODL-SHAR
technique, the human activities data is pre-processed in various stages to make it compatible for further
processing. Next, the CNN-ALSTM method is employed for accurate symmetric activity recognition.
The MWHO algorithm is utilized as a hyperparameter tuning strategy to optimize the detection rate
of the CNN-ALSTM algorithm. The experimental validation of the MWHODL-SHAR technique is
simulated using a benchmark dataset. An extensive comparison study revealed the betterment of the
MWHODL-SHAR technique over other recent approaches.
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