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Abstract: Recently, human healthcare from body sensor data has gained
considerable interest from a wide variety of human-computer communi-
cation and pattern analysis research owing to their real-time applications
namely smart healthcare systems. Even though there are various forms of
utilizing distributed sensors to monitor the behavior of people and vital
signs, physical human action recognition (HAR) through body sensors gives
useful information about the lifestyle and functionality of an individual.
This article concentrates on the design of an Improved Transient Search
Optimization with Machine Learning based Behavior Recognition (ITSOML-
BR) technique using body sensor data. The presented ITSOML-BR technique
collects data from different body sensors namely electrocardiography (ECG),
accelerometer, and magnetometer. In addition, the ITSOML-BR technique
extract features like variance, mean, skewness, and standard deviation. More-
over, the presented ITSOML-BR technique executes a micro neural network
(MNN) which can be employed for long term healthcare monitoring and
classification. Furthermore, the parameters related to the MNN model are
optimally selected via the ITSO algorithm. The experimental result analysis
of the ITSOML-BR technique is tested on the MHEALTH dataset. The
comprehensive comparison study reported a higher result for the ITSOML-
BR approach over other existing approaches with maximum accuracy of
99.60%.

Keywords: Behavior recognition; transient search optimization; machine
learning; healthcare; sensors; wearables

1 Introduction

Recent advancements in sensing technologies have enabled the healthcare industry to enhance the
quality of its services [1]. Additionally, the design of lightweight and small smart sensors has enabled
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mechanisms to act as a vital part of advanced progress in unobtrusive and unsupervised methods
of home rehabilitation and the continual monitoring of patient’s health conditions. Nowadays, body
sensors are becoming very popular for several realistic applications like healthcare, entertainment,
security, and wellness [2]. One key benefit of utilizing body sensors in observing people is employed to
recognize the behavior and vital signs of people very precisely than the ambient sensors. Thus, body
sensors or personal computers were anticipated to take a disruptive effect on our life [3]. Therefore,
the sensor will be implemented for ensuring and improving a person’s sound living. Hence, the body
sensor is quite striking to aid in transforming our life like a personal computer. During the commercial
domains, a wearable sensor-related mechanism was utilized in the procedure of emergency buttons
for asking for emergency aid, and it is commercially successful so far [4]. Recently, human activity
recognition (HAR) in wearable body sensor network has gained popularity because of its immense
effectiveness in various application regions like smart homes, smart healthcare, transportation,
robotics, and security. HAR mechanism generally transforms particular body movements sensed by
several wearable body sensors for certain sensor signal paradigms and is categorized through machine
learning (ML) approaches [5]. For instance, many ML techniques were employed for identifying
complicated activity paradigms like relaxing and sitting, climbing stairs, lying down, walking, and
many more. Accordingly, recognition of day-to-day activities becomes essential for maintaining a
healthy lifestyle between old people for preventing and monitoring serious illnesses [6].

But recognizing human activity becomes a challenge in the Internet of Medical Things (IoMT)
field because of the current utility of batteryless or passive wearable body sensors for recognizing
activity [7]. Such sensors will be lightweight and tiny, thus, are easily entrenched into patients’ clothes
for unobtrusive activity monitoring. Furthermore, it is easily preserved as it does not employ any
battery. Such inactive wearable body sensors seize data through harvested power technologies that
denote such sensors should receive energy to function and sense data [8]. Conventional ML approaches
like support vector machine and hidden Markov models (HMM) could not be directly applied to
detecting action in passive sensor data since they are concentrated on single sensing modalities that
have a regular sampling rate of data [9]. Furthermore, such techniques encounter difficulty when
the features count were less, therefore offering the outcomes with minimal accuracy. Currently, deep
learning (DL) techniques were employed to recognize human action from body sensor information
in the IoMT platform. DL was a kind of neural network (NNs) that uses several non-linear data
processing layers to derive features and carry out classification [10].

This article concentrates on the design of an Improved Transient Search Optimization with
Machine Learning based Behavior Recognition (ITSOML-BR) technique using body sensor data. The
presented ITSOML-BR technique collects data from different body sensors namely magnetometer,
electrocardiography (ECG), and accelerometer. In addition, the ITSOML-BR technique extract
features like variance, mean, skewness, and standard deviation. Moreover, the presented ITSOML-
BR technique executes micro neural network (MNN) which can be employed for long term healthcare
monitoring and classification. Furthermore, the parameters related to the MNN model are optimally
selected via the ITSO algorithm. The experimental result analysis of the ITSOML-BR technique is
tested on the MHEALTH dataset.

The rest of the paper is organized as follows. Section 2 offers a brief related review of HAR models
and Section 3 introduces the proposed model. Later, Section 4 provides experimental validation and
Section 5 concludes the study.
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2 Related Works

The author in [11] developed the generic HAR architecture for cell phone sensor data dependent
upon long short term memory (LSTM) network for the time sequence domain. Four benchmark
LSTM networks are relatively analyzed to study the effect of utilizing various cell phone sensor
information. Furthermore, a hybrid LSTM network named 4-layer convolutional neural network
(CNN)-LSTM is intended for improving detection accuracy. Wang et al. [12] developed a deep learning
(DL) based system that finds the changes and certain actions amongst two dissimilar activities of
lower frequency and shorter duration for healthcare applications. In the presented technique, a deep
convolutional neural network (DCNN) is generated for extracting features from the information
gathered by the sensor. Afterward, the LTSM network is utilized for capturing long-term dependency
among 2 activities to moreover enhancing the HAR rate of detection. With the incorporation of LSTM
and CNN, a wearable sensor based method is developed which specifically identifies transition and
activity.

Nafea et al. [13] introduce a technique based on CNN with different kernel dimensional and
bidirectional LSTM (Bi-LSTM) for capturing feature at different resolutions. The advance of this
study lies in the efficiency selective of optimal video demonstration and in the efficient extraction
of spatial and temporal characteristics in sensor information utilizing Bi-LSTM and CNN. Ghate
[14] introduces different hybrid DL methodologies which integrate deep neural network (DNN) with
other modules such as gated recurrent unit (GRU) and LSTM Models for efficient classification of
engineered features from CNN. A modern framework which incorporates DCNN with random forest
(RF) Classifiers for adding randomness to the model. The authors in [15] developed the transformer
module, a DL-NN for the vision, and natural language processing (NLP) tasks are adopted for a
time-sequence examination of motion signal.

A novel DNN framework for HAR dependent upon multiple sensor information was developed
in [16]. Especially, the presented method encoder the time sequence of sensor information as images
(encode one time series as to 2-channel image) and leverages the changed image to preserve the essential
features of HAR. Especially, to permit heterogeneous sensor information that is cooperatively trained,
the authors adopt fusion residual networks by combining 2 networks and training heterogeneous
information with pixel-wise correspondence. Mondal et al. [17] introduced an end-to-end fast GNN
that captures the individual sample data and the relationships with another instance in the procedure
of undirected graph infrastructure. The time sequence information is converted into a structural
demonstration of graph for HAR utilizing sensor information.

3 The Proposed Model

In this article, a novel ITSOML-BR system was introduced for the recognition of behaviors on-
body sensor data. At the preliminary level, the presented ITSOML-BR technique performs the data
collection phase using various body sensors, namely ECG, accelerometer, and magnetometer. Followed
by the ITSOML-BR technique extracted the features, namely standard deviation, mean, skewness,
and variance. For behavior recognition, the presented ITSOML-BR technique executed the MNN
model for long-term healthcare monitoring and classification. Fig. 1 defines the overall process of the
ITSOML-BR system.
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Figure 1: Overall process of ITSOML-BR system

3.1 Data Collection Module

At the introductory level, the presented ITSOML-BR technique performs the data collection
phase using various body sensors namely ECG, accelerometer, and magnetometer. The place of
attaching sensor is the chest, left ankle, and right wrist [18]. There exists an ECG health care sensor
positioned on the chest that takes 2-lead ECG measurements of heart information. For example, the
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accelerometer provides magnetometer magnetic field orientation, body acceleration, and gyroscope
the rate of turn. The body sensor information is characterized by the following.

CC = (Ax, Ay, Az). (1)

ECG sensor information in the chest is given by

G = g1||g2. (2)

The accelerometer sensor information in the left ankle is shown below

CLA = (Lx, Ly, Lz). (3)

The gyroscope sensor information in the left ankle is symbolized by

YLA = (Rx, Ry, Rz). (4)

The magnetometer sensor information in the left ankle is shown below

NLA = (Tx, Ty, Tz). (5)

The accelerometer sensor information in the right wrist is given by

ARW = (Ix, Iy, Iz). (6)

The gyroscope sensor information from the left wrist is characterized by

RLW = (Sx, Sy, Sz). (7)

The gyroscope sensor information from the right wrist is considered as

RRW = (Wx, Wy, Wz). (8)

The magnetometer information on the right wrist is given by

NRW = (Ex, Ey, Ez). (9)

Moreover, features like mean m, variance v, standard deviation s, and skewness w are extracted
from the information. Next, the feature attained in a signal of a certain period for the activity are
combined by increasing them horizontally as F .

3.2 Behavior Recognition Module

For behavior recognition, the presented ITSOML-BR technique executed the MNN model.
Assume that the recurrent neural network (RNN) has a memory function while processing medicinal
time sequence data and that its volume is small compared to the CNN [19]. Based on the shallow
RNN, this study primarily adopted the set of multi-level RNNs as the feature extractor.

Initially, it can be set RNN gathered with 2 levels. Then, the slice data is set afterwards pre-
processing as Si = {ν1, ν2, . . . , νr}, and split into slices that size is ω. Si generates n/ω slices, and
we utilized Ak to represent all the slices in the following:

β
[1]
k = RNN [1] (Ak) , k ∈

[
1,

n
ω

]
. (10)
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Now, RNN characterizes the RNN technique of the initial level, and β
[1]
k indicates the outcome

of the kth slice by RNN. Thus, we obtain the outcome
[
β

[1]
1 , β [1]

2 , . . . , β [1]
n/ω

]
afterward training of RNN

collection of the initial level.

Next, the outcome is fed to the RNN of the second level, and the outcome can be denoted as
follows:

β [2] = RNN [2]
(
β [1]

1 , β [1]
2 , . . . , β [1]

n
ω

)
, = F

(
β [2]

)
, (11)

Whereas RNN signifies the RNN model of the next level, F denotes the activation function, and
y represents the extracted feature. During the selective technique for MicroNN, a per-class classifier
algorithm is adopted. e module establishes a separate mini-classifier for all the classes. Each mini-
classifier is interconnected with the feature extractor. Furthermore, to enhance the classifier efficiency,
a loss function is employed named one-class:

loss = E
X∼P

classi
X

[− log (σ (fi (X)))] + η · E
X∼P

classi
X

∥∥∥∥∂fi (X)

∂X

∥∥∥∥
c

2

+ π ·
∥∥∥∥θi − μ∗

1:i−1

∥∥∥∥
2

2

, (12)

where X ∼ Pclassi
X denotes all classes’ data distribution, σ shows the activation function, η, c, and π

indicate each hyperparameter. The initial term in the loss function has a negative log probability. It
aims to maximize the score of classi in the trained. But if there exists no limitation to the negative
log probability, it leads to an unconstrained increment in the score. The architecture of the per-class

classifier is the multilayer perceptron (MLP) with 3 layers, as given below.

E
X∼P

classi
X

∥∥∥∥∂fi (X)

∂X

∥∥∥∥
c

2

= E
X∼P

classi
X

∥∥∥∥∂W3 · [σ (W2 · σ (W1 · X))]
∂X

∥∥∥∥
c

2

(13)

Note that the derivative outcome of H-reg in the training procedure is associated with the weight
(W1, W2 and W3).

Consequently, H-reg restricts the phenomenon of the unrestrained increase of weighted that the
negative log probability brings.

For making the parameter of classifiers among distinct classes in a similar variable space, the
technique uses the parameter from 1 to i − 1 mini-classifier for initializing the parameter of ith

mini-classifier. Considering the presence of similar features among distinct classes, the DL model
has complex differentiating classes during training. In the testing phase, a technique based on KL-
divergence is utilized for reducing shared knowledge among the classes, as defined in the third term
of loss functions. Assume that a T mini-classifier exists in MicroNN, the computation of shared
knowledge amongst T mini-classifiers.

ρ∗
1:T = argmin

∑T

i=1
φiKL (Pi‖P1:T) , (14)

φi denotes the mixing ratio with
∑T

i=1φi = 1, and Pi signifies the posterior variable distribution of
ith mini-classifiers. e parameter of ith mini classifiers are upgraded as follows.

θ ∗
i = θi − τ · ρ∗

1:T , (15)

whereas τ denotes the hyperparameter.
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3.3 Parameter Adjustment Module

In this work, the parameters related to the MNN model are optimally selected via the ITSO
algorithm. The TSOA is an alternative model based on electrical phenomena that incorporate two
energy-saving mechanisms [20]. This can be inspired by the transient response (TR) of a switched
electrical circuit (SEC). This component is a capacitor, resistor, and inductor. Therefore, the response-
based voltage based on the capacitor in the circuit of R-C and R-L-C can be determined in the
following:

v1 (t) = v1 (∞) + (v1 (0) − v1 (∞)) e
−t

R1C1 (16)

v2 (t) = e
−R2t

2L (β1 cos (2πfdt) + β2 sin (2πfdt)) + ν2(∞); if
(

R2

2L

)2

<
1

LC2

(17)

R, L, and C represent resistance, inductor and capacitors; correspondingly, v1 (t) and v2 (t) denote
the response of R-C and R-L-C circuits. Also, fd indicates the damping frequency, and Bl and B2
indicate the constant number. Hence, the voltage response of the abovementioned circuit in Eqs. (16)
and (17) are employed to model the TSOA. In this work, R, L, and C(R1, R2, C1, C2 and L) in V (t)
and v (t) are transformed into arbitrary numbers as U and α. These random characteristics are desired
for the optimized method.

The decision variable in TSOA is regarded as searching agent XIT +1 and XIT , that is corresponding
to v (t) and v (0) parameters. Similarly, the X ba represents the parameter presented as the better agent
and corresponds to (∞). Furthermore, in the equation of v2 (t), β1 = β2 = ∣∣XIT − WX ba

IT∗
∣∣ is determined

whereby U random integer is determined as U = k × rm2 × a + 1 that k represents the actual number
and rm2 shows the random number within [0, 1]. The r1 is employed to balance the exploration and
exploitation stages with rm1 ≥ 0.5 and rm1 < 0.5, correspondingly in the TSOA.

XIT+1 =
{

X ∗ba
IT + (

XIT − U × X ∗ba
IT

)
e−α; rm1 < 0.5

X ∗ba
IT + e−α [cos (2πα) + sin (2πα)]

∣∣XIT − U × X ∗ba
IT

∣∣ ; rm1 ≥ 0.5
(18)

A = 2 × a × rm3 − a, and rm3 represent the real random number amongst [0, 1].

In the presented ITSO method, the OLS is employed to improve the balance of the exploitation
and exploration and convergence efficiency of the TSOA. This algorithm might be trapped in local
optima. This method is also time-consuming because of the variance between the optimal and initial
solutions. Although this algorithm reaches the global optima, it may not have a better accuracy
and convergence speed. Subsequently, the convergence speed rises. Assume X is in [η, λ]. Then, the
opposite points are X̄ = η + λ − X .X = (X1, X2, . . . , Xd), refer to a point in the searching region
with d dimension, whereas X1, X2, . . . , Xd ∈ R and Xj ∈ [ηi, λj]; ∀i ∈ {1, 2, . . . , d}. The opposite
point dependent upon the component is given below:

X = ηi + λi − Xi, X = (
X , X , . . . , X

)
(19)

Hence, the early population can be produced utilizing OLS.

The non-linearly decreasing strategy (NDS) is also employed for improving the TSOA efficiency
in global and local explorations and accomplishing the desired balance between convergent efficiency
and global convergence. Search efficiency is enhanced by the variations in the coefficient of ∂Ns.Ee∂NDS

non-linearly reduced from ∂NDS
max to ∂NDS

min . The greater value of ∂NDS assists the best global search ability.
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In addition, the small ∂NDS improves global search ability in the exploration stage.

∂NSD = ∂NDS
max − IT × (

∂NDS
max − ∂NDS

min

)
IT max

× sin
(

IT × π

2 × IT max

)
(20)

whereas, ∂NDS
max and ∂NDS

min represent the upper and lower limits of coefficient ∂NDS, correspondingly

Hence Eq. (20) can be modified by

XIT+1 =
{

∂NSDX ∗ba
IT + (

XIT − UX ∗ba
IT

)
e−α; rm1 < 0.5

∂NSDX ∗ba
IT + ∣∣XIT − UX ∗ba

IT

∣∣ e−α (cos (2πα) + sin (2πα)); rm1 ≥ 0.5
(21)

The ITSOA could have a higher global search ability in pre-search, and its convergence speed can
be faster. Fig. 2 demonstrates the flowchart of ITSOA.

Figure 2: Flowchart of ITSO technique

The ITSO approach derives a fitness function from having better classification accuracy. It
describes a positive integer to characterize the improved performance of the candidate solutions.
During this study, the minimization of the classification error rate can be treated as the fitness function,
as shown below.

fitness (xi) = Classifier Error Rate (xi)

= number of misclassified samples
Total number of samples

∗ 100 (22)

4 Results and Discussion

The proposed model is simulated using Python 3.6.5 tool. The proposed model is experimented
on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter
settings are given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.
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In this section, the behavior recognition of the ITSOML-BR approach is tested using the
MHEALTH database [21], which is gathered from a set of 10 persons by the use of body motion
and vital sign recordings of the SHIMMER2 wearable sensor. Table 1 defines the detailed description
of the dataset.

Table 1: Details of the dataset

Label Classes Repetitions/durations No. of samples

L1 Standing still 1 min 1000
L2 Sitting and relaxing 1 min 1000
L3 Lying down 1 min 1000
L4 Walking 1 min 1000
LS Climbing stairs 1 min 1000
L6 Waist bends forward 20× 1000
L7 Frontal elevation of arms 20× 1000
L8 Knees bending (crouching) 20× 1000
L9 Cycling 1 min 1000
LI0 Jogging 1 min 1000
L11 Running 1 min 1000
L12 Jump front & back 20× 1000

Total number of instances 12000

The confusion matrices of the ITSOML-BR model are examined under several sizes of training
(TR) and testing (TS) database, as shown in Fig. 3. The presented ITSOML-BR model has effectually
categorized the data under 12 class labels.

Figure 3: (Continued)
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Figure 3: Confusion matrices of ITSOML-BR system (a–b) TR and TS database of 70:30 and (c–d)
TR and TS database of 80:20

Table 2 and Fig. 4 exhibit an overall recognition performance of the ITSOML-BR model on 70%
of the TR database. The simulation outcomes indicated that the ITSOML-BR approach has achieved
effectual recognition under all class labels. The results inferred that the ITSOML-BR model has gained
an average accuy of 99.54%, sensy of 97.22%, specy of 99.75%, Fscore of 97.21%, and Mathew Correlation
Coefficient (MCC) of 96.96%.

Table 2: Result analysis of ITSOML-BR system with varying class labels under 70% of the TR database

Training phase (70%)

Labels Accuy Sensy Specy Fscore MCC

L1 99.55 96.79 99.80 97.33 97.09
L2 99.52 95.86 99.86 97.11 96.86
L3 99.52 96.50 99.80 97.18 96.93
L4 99.45 98.64 99.52 96.60 96.33
LS 99.56 96.67 99.81 97.19 96.95
L6 99.52 96.49 99.80 97.17 96.91
L7 99.54 95.62 99.90 97.20 96.96
L8 99.39 97.75 99.54 96.46 96.14
L9 99.61 99.58 99.61 97.71 97.52
LI0 99.71 98.30 99.84 98.30 98.14
L11 99.74 98.87 99.82 98.46 98.31
L12 99.31 95.53 99.65 95.80 95.43

Average 99.54 97.22 99.75 97.21 96.96
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Figure 4: Average analysis of ITSOML-BR system under 70% of TR database

Table 3 and Fig. 5 demonstrate an overall recognition performance of the ITSOML-BR method
on 30% of the TS database. The figure indicates that the ITSOML-BR system has achieved effectual
recognition outcomes in all class labels. The outcomes revealed that the ITSOML-BR approach has
attained an average accuy of 99.60%, sensy of 97.60%, specy of 99.78%, Fscore of 97.61%, and MCC of
97.40%.

Table 3: Result analysis of ITSOML-BR system with varying class labels on 30% of the TS database

Testing phase (30%)

Labels Accuy Sensy Specy Fscore MCC

L1 99.56 97.54 99.73 97.19 96.95
L2 99.64 97.32 99.85 97.82 97.62
L3 99.78 98.60 99.88 98.60 98.48
L4 99.64 99.70 99.63 98.10 97.92
LS 99.53 97.05 99.79 97.48 97.22
L6 99.53 95.83 99.85 97.01 96.76
L7 99.72 96.92 99.97 98.26 98.12
L8 99.33 97.58 99.49 95.92 95.57
L9 99.64 99.66 99.64 97.82 97.65
LI0 99.75 98.31 99.88 98.48 98.34
L11 99.53 96.56 99.79 97.06 96.81
L12 99.58 96.09 99.91 97.52 97.31

Average 99.60 97.60 99.78 97.61 97.40
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Figure 5: Average analysis of ITSOML-BR system under 30% of TS database

Table 4 and Fig. 6 showcase an overall recognition performance of the ITSOML-BR approach on
80% of the TR database. The simulation outcomes referred that the ITSOML-BR methodology has
obtained effectual recognition results under all class labels. The results stated that the ITSOML-BR
system had achieved an average accuy of 99.50%, sensy of 96.98%, specy of 99.73%, Fscore of 96.99%, and
MCC of 96.73%.

Table 4: Result analysis of ITSOML-BR system with varying class labels on 80% of the TR database

Training phase (80%)

Labels Accuy Sensy Specy Fscore MCC

L1 99.38 96.66 99.61 96.16 95.82
L2 99.64 96.31 99.92 97.66 97.47
L3 99.54 96.89 99.78 97.26 97.01
L4 99.58 96.03 99.92 97.56 97.34
LS 99.27 96.68 99.51 95.74 95.34
L6 99.42 96.88 99.65 96.52 96.20
L7 99.59 99.13 99.64 97.61 97.41
L8 99.60 98.51 99.70 97.66 97.45
L9 99.46 96.53 99.73 96.77 96.47
LI0 99.45 98.15 99.57 96.78 96.49
L11 99.57 95.94 99.90 97.36 97.14
L12 99.48 96.11 99.78 96.84 96.56

Average 99.50 96.98 99.73 96.99 96.73
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Figure 6: Average analysis of ITSOML-BR system on 80% of TR database

Table 5 and Fig. 7 depict an overall recognition performance of the ITSOML-BR algorithm on
20% of the TS database. The simulation outcomes revealed that the ITSOML-BR approach has
achieved effective recognition under all class labels. The outcomes indicated that the ITSOML-BR
technique has reached an average accuy of 99.49%, sensy of 97.02%, specy of 99.72%, Fscore of 96.94%,
and MCC of 96.67%.

Table 5: Result analysis of ITSOML-BR system with varying class labels under 20% of the TS database

Testing phase (20%)

Labels Accuy Sensy Specy Fscore MCC

L1 99.08 93.69 99.63 94.98 94.48
L2 99.25 93.39 99.91 96.17 95.81
L3 99.75 97.95 99.91 98.45 98.32
L4 99.50 95.27 99.82 96.41 96.15
LS 99.21 97.33 99.37 95.04 94.64
L6 99.62 98.48 99.73 97.74 97.54
L7 99.67 98.97 99.73 97.97 97.79
L8 99.50 99.49 99.50 97.01 96.78
L9 99.75 97.93 99.91 98.44 98.30
LI0 99.50 99.47 99.50 96.89 96.66
L11 99.54 96.23 99.86 97.37 97.13
L12 99.46 96.06 99.77 96.77 96.48

Average 99.49 97.02 99.72 96.94 96.67
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Figure 7: Average analysis of ITSOML-BR system under 20% of TS database

The training accuracy (TRacc) and validation accuracy (VLacc) gained by the ITSOML-BR
algorithm under the test database is exposed in Fig. 8. The simulation result pointed out the ITSOML-
BR algorithm has gained increased values of TRacc and VLacc. In certain, the VLacc looked that better
than TRacc.

Figure 8: TRacc and VLacc analysis of ITSOML-BR system
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The training loss (TRloss) and validation loss (VLloss) realized by the ITSOML-BR system under
test database are exhibited in Fig. 9. The simulation result represented that the ITSOML-BR approach
has obtained lower values of TRloss and VLloss. In particular, the VLloss is lesser than TRloss.

Figure 9: TRloss and VLloss analysis of ITSOML-BR system

To depict the improved performance of the ITSOML-BR approach, a detailed comparison study
is made in Table 6 and Fig. 10. The simulation values indicated that the ITSOML-BR method has
shown enhanced performance over other models with a maximum accuy of 99.60%.

At the same time, the Deep simple recurrent unit (SRU) approach has demonstrated lower
classification performance. Although the other existing techniques have attained closer performance,
the ITSOML-BR model has reached maximum classification performance.

Table 6: Comparative analysis of ITSOML-BR system with other algorithms

Methods Accuracy Sensitivity Specificity F-Score

ITSOML-BR 99.60 97.60 99.78 97.61
Deep SRU 94.20 96.50 98.13 96.46
Deep SRU-GRU 99.32 96.34 98.70 96.52
ELM 98.17 96.53 98.13 96.03
KELM 96.04 96.11 96.60 96.36
DNN 96.01 96.59 96.11 95.85
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Figure 10: Comparative analysis of ITSOML-BR system with other approaches

5 Conclusion

This article introduced a novel ITSOML-BR system to recognise behaviors on-body sensor
data. At the preliminary level, the presented ITSOML-BR technique performs the data collection
phase using various body sensors, namely ECG, accelerometer, and magnetometer. Followed by the
ITSOML-BR technique extracted the features like variance, mean, skewness, and standard deviation.
For behavior recognition, the presented ITSOML-BR technique executed the MNN model for long-
term healthcare monitoring and classification. At last, the parameters related to the MNN model
are optimally selected via the ITSO algorithm. The experimental result analysis of the ITSOML-BR
technique is tested on the MHEALTH dataset. The comprehensive comparison study reported the
improved outcome of the ITSOML-BR methodology over other existing approaches with maximum
accuracy of 99.60%. In future, the performance of the proposed model can be improved by hybrid DL
classifiers.
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