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Abstract: Prediction systems are an important aspect of intelligent deci-
sions. In engineering practice, the complex system structure and the external
environment cause many uncertain factors in the model, which influence the
modeling accuracy of the model. The belief rule base (BRB) can implement
nonlinear modeling and express a variety of uncertain information, including
fuzziness, ignorance, randomness, etc. However, the BRB system also has
two main problems: Firstly, modeling methods based on expert knowledge
make it difficult to guarantee the model’s accuracy. Secondly, interpretability
is not considered in the optimization process of current research, resulting
in the destruction of the interpretability of BRB. To balance the accuracy and
interpretability of the model, a self-growth belief rule base with interpretability
constraints (SBRB-I) is proposed. The reasoning process of the SBRB-I
model is based on the evidence reasoning (ER) approach. Moreover, the
self-growth learning strategy ensures effective cooperation between the data-
driven model and the expert system. A case study showed that the accuracy
and interpretability of the model could be guaranteed. The SBRB-I model has
good application prospects in prediction systems.

Keywords: Belief rule base; evidence reasoning; interpretability optimization;
prediction system

1 Introduction

As the premise of intelligent decision making, the prediction system can make predictions and
judgments about the future development trend and level of things. With the further development of
industrialization, a series of environmental pollution problems, such as hazy weather and sandstorms,
have caused harm to human physical and mental health. Air quality prediction can scientifically guide
people’s daily activities and behaviors and improve their quality of life, which is of great significance
to environmental monitoring and governance [1,2].

In the current research, the methods of prediction systems can be roughly divided into the
following three categories: physical knowledge methods [3], qualitative model methods [4], and
data-driven methods [5]. The method based on physical knowledge is established through system
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principles and some engineering laws. Li et al. proposed a simplified multi-particle model for the
remaining useful life prediction of lithium-ion batteries, which improves the computational efficiency
[6]. Chaibi et al. proposed a quasi-steady-state thermal model (QSTM) to predict solar photovoltaic
thermal performance and provided a physical modeling guideline for other researchers on solar
photovoltaic thermal systems [7]. However, as the complexity of the actual system increases, the
system will have nonlinearity and uncertainty, so the difficulty of accurately establishing a prediction
model increases. Qualitative-based methods are used through expert knowledge and observation data.
Tan et al. proposed a model of Mamdani-type fuzzy inference system to predict the tensile properties of
cast alloys, which has high accuracy and good stability [8]. However, now that expert knowledge can be
uncertain, the model’s accuracy will be affected. The data-driven model is built by training on a large
amount of data. Li et al. proposed a method combining a numerical algorithm and support vector
machine (SVM) to predict the friction torque of helical gears, and this method has a good prediction
effect [9]. Wang et al. proposed a model combining the chi-square test (CT) and long-term short-
term memory (LSTM) network to predict the air quality index, which has good accuracy compared
with other machine models [10]. Phruksahhiran et al. proposed an ensemble forecasting method for
geographically weighted predictors that incorporates additional predictor variables [11]. However, this
method belongs to the black-box model. Because of the invisible internal structure of the model, the
prediction results cannot be reasonably interpreted.

In a prediction system for practical engineering, there are two common problems. First, the
problem of uncertain information coexistence cannot be effectively handled, such as coexisting fuzzy
information and ignorance, reducing the model accuracy. Second, the data-driven model is built on a
large amount of data; because the modeling process is not transparent, the rationality of the output
results is difficult to convince. The belief rule base (BRB) can effectively solve the above problems
[12–14]. It uses a general rule-based reasoning method and has the ability of nonlinear modeling [15],
which can effectively address the problem of the coexistence of uncertain information. Moreover, BRB
has a transparent and reliable inference engine based on evidence reasoning (ER) algorithms. Thus,
BRB is suitable for many fields, such as medical decisions [16,17] and health-state assessments [18].

However, three problems that exist in the BRB model need to be solved. First, expert knowledge
can provide a roughly correct direction in the prediction system. However, in current research
[19–21], many methods do not fully utilize expert knowledge. Second, many BRB models were
optimized for higher accuracy, but interpretability was not considered. This leads to the breaking
of interpretable properties such as BRB rule consistency and transparent reasoning. For example,
Zhou et al. proposed that building an interpretable model was the future development direction of BRB
[22]. Rule-based modeling methods can extract rules from expert knowledge, which leads to models
with strong interpretability but low accuracy. Rule-based modeling methods can also learn rules from
observational data, which leads to models with good accuracy but poor interpretability. This shows
that models with high accuracy and interpretability are incompatible [14]. Hence, how to improve
accuracy while maintaining interpretability also needs handling. Third, BRB is a new intelligent expert
system, and it has the advantages of expert systems and data-driven models [22]. Thus, maximizing
the cooperation between the two characteristics is a problem. Thus, the self-growth BRB model
with interpretability constraints (SBRB-I) is proposed. The SBRB-I model flexibly converts expert
knowledge into parameters of belief rules and brings expert knowledge into the optimization process
of the model. The SBRB-I model adopts a self-growth learning strategy optimization method with
interpretability constraints that maintains the balance between the accuracy and interpretability of
the SBRB-I model. Moreover, the SBRB-I model can use expert knowledge to guide data mining, and
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the knowledge found in data mining becomes supplementary knowledge of the expert system, so the
advantages of BRB are brought into full play.

The contributions of this paper are as follows: 1) A new self-growth BRB model with interpretabil-
ity constraints is proposed. 2) To ensure the interpretability of the SBRB-I model, an optimization
algorithm with interpretability constraints is proposed.

The structure of the rest of the paper is as follows. In Section 2, the problems of the prediction
model are formulated, and a new prediction model SBRB-I is introduced. The interpretability of the
SBRB-I model, including inference interpretability and optimization interpretability, is introduced in
Section 3. In Section 4, the reasoning process and optimization process of the SBRB-I model are given.
Then, a case study is implemented to verify the effectiveness of the proposed model in Section 5. This
paper is concluded in Section 6.

2 Problem Description
2.1 Problems with the Prediction System

In prediction systems, model construction and optimization have a great impact on prediction
accuracy and interpretability. In this section, the problem of the prediction system is formulated.

Problem 1: In engineering practice, it is necessary to build a model that improves accuracy while
ensuring interpretability. The model should have the following characteristics: 1). It can deal with
uncertain factors in complex environments to ensure the model’s accuracy. The actual system is
affected by uncertain factors in a complex environment, and the accuracy of the model will be reduced.
2). Based on the data-driven black-box model, the operation mechanism of the model is not considered,
and the internal structure of the model is not visible. Thus, the first problem to be solved is how to
ensure the structural interpretability of the model.

y = f (x, w) (1)

where y is the output result of the model, w is the parameter set of the prediction model, and x is the
input of the model.

Problem 2: Build an interpretable optimization process. In prediction systems, the usual optimiza-
tion algorithms do not consider the interpretability of the BRB model. As any optimization algorithm
is random, the interpretability of the model has been destroyed. Thus, the second problem is how to
design efficient interpretability constraints to ensure the interpretability of the model.

w = g (y, x, O, X) (2)

where O is the interpretability constraint and X is the parameter of the optimization algorithm.

2.2 The SBRB-I Model

In a prediction model, the belief rule base is composed of a set of belief rules. The kth belief rule
is as follows:

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xTk
is Ak

Tk
,

THEN y is
{(

D1, β1,k

)
,
(
D2, β2,k

)
, . . . ,

(
DN, βN,k

)}
,
(

N∑
n=1

βn,k ≤ 1
)

,

with rule weight θk, k ∈ {1, 2, . . . , L}.
and attribute weight δ1, δ2, . . . , δi, i ∈ {1, 2, . . . , Tk}.

(3)
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where X1, X2, . . . , XTk
is the antecedent attribute of the kth rule, Ak

1, Ak
2, . . . , Ak

Tk
is the reference value

for the antecedent attribute X1, X2, . . . , XTk
. Tk is the number of attributes in the kth rule. βnk is the belief

of the result Dn. θk is the weight of the kth belief rule. δ1, δ2, . . . , δi is the weight of the ith attribute. L is
the number of rules. The overall structure of the new prediction system based on SBRB-I is shown in
Fig. 1.
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Figure 1: The overall structure of the prediction system

3 The Interpretability of SBRB-I

In Section 3.1, the interpretability of the reasoning process of the SBRB-I model is described.
Then, in Section 3.2, the optimized interpretability of the SBRB-I model is described.

3.1 The Interpretability of Reasoning

In the SBRB-I model, the ER algorithm is used as the inference engine; it is a reasoning calculation
process based on evidence fusion, and the interpretability is reflected in the causal relationship between
the processes. In building the model, the interpretability of the reasoning process refers to sufficient and
clear explanations when dealing with uncertain information [23]. The ER algorithm has many clear
and explicit semantics, which can fully describe and transform various uncertain information. In the
running of the model, the weighted belief distribution of evidence is calculated by the orthogonal sum
operator. Moreover, the ER algorithm ensures the traceability of the evidence combination process
through strict probabilistic reasoning, and the reasoning result ensures interpretability in the form
of a belief distribution [24]. Thus, the ER algorithm has received attention due to its interpretability
characteristics, such as transparency, reliability, and traceability of output results [25,26].

3.2 The Interpretability of Optimization

In the current study, Cao et al. established eight general interpretability criteria for the BRB in
Fig. 2 [14]. Therefore, this offers a theoretical foundation for constructing the SBRB-I model. The
interpretability constraints of optimization are as follows:
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General interpretability criterions for BRB

1.The reference value and matching 
interval of the rule are distinguishable.

2.The completeness of rule base.

3.The simplicity of the rule base.
4.Model parameters and structures 

have physical meaning.

6.The reasonable information 
transformation.

5.The matching degree 
standardization.

7.The transparent inference engine.
8.The optimized belief rules satisfy 

the actual system.

Figure 2: General interpretability BRB criteria

Criteria 8. The optimized belief rules satisfy the actual system.

Belief rules can give a clear input-output relationship of the prediction system, and it is the
main interpretable aspect of BRB [25]. Expert knowledge can be transformed into parameters and
incorporated into the model through belief rules, which allows the model to generate reasonable and
convincing predictions. However, because any optimization algorithm is random, the model produces
many incorrect rules. For example, the 28th rule of pipeline leak detection [27] is shown in Table 1.
When the “negative very small (NVS) AND positive large (PL)”condition is reached, the belief degrees
of “leakage size is zero” and “leakage size is very high” are 0.53 and 0.33, respectively. This belief
distribution is impractical and unreasonable. A reasonable belief distribution does not lead to a high
degree of confidence in contradictory results at the same time. Therefore, interpretability constraints
should be added to the model optimization process.

Rulek ∼ Ok (k = 1, 2, . . . , L) (4)

Ok ∈ {{β1 ≤ β2 ≤ · · · ≤ βn}
or {β1 ≥ β2 ≥ · · · ≥ βn}
or {β1 ≤ · · · ≤ max(β1, β2, . . . βn) ≥ · · · ≥ βn}} (5)

where Ok is the constraint on the belief distribution in the kth rule. In different prediction systems,
interpretability constraints should conform to the system mechanism and general knowledge.

Table 1: Trained BRB for pipeline leak detection

No. Rule weight FlowDiff AND PressureDiff LeakSize distribution

{zero, very small, medium, high, very high}
28 0.96 NVS AND PL {0.53, 0.02, 0, 0.12, 0.33}

In recent years, BRB has been widely used due to its interpretability [25,26]. However, BRB still
has two problems in practical prediction systems. Expert knowledge is an important source of BRB
interpretability. Moreover, expert knowledge is helpful to establish the model’s structure and to guide
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the direction of model optimization [20]. Thus, the first guideline is how to effectively use expert
knowledge.

Guidelines 1: Expert knowledge is used to determine the optimal feasible region.

For interpretable BRB models, the feasible region of optimization is a local judgment based on
experts [25]. Thus, the initial population in the optimization algorithm needs to be adjusted, as shown
in Fig. 3. In other words, the search domain of the optimization algorithm should be reduced to form
a solution space centered on expert knowledge. Thus, the interpretability constraints are as follows:

Xi → Ek(i = 1, 2, . . . , n) (6)

where Xi is the current solution vector, → is the operation of moving, Ek is the solution vector of
expert knowledge, and n is the number of solution vectors used for optimization. The adjusted initial
population can carry part of the available information from expert knowledge, making the optimized
results more convincing and interpretable.

Figure 3: Adjustment of the initial population

BRB is a new intelligent expert system that combines an expert system and a data-driven model.
However, because of the complexity of the prediction system, experts face difficulties in developing
a deep understanding of the system. Moreover, BRB is typically optimized as a data-driven model,
ignoring the characteristics of expert systems [22]. Thus, the second guideline is how to exploit the
individual capabilities of BRB’s expert system and data-driven model.

Guidelines 2: A new self-growth learning strategy.

As shown in Fig. 4, a self-growth learning strategy is used that combines any available expert
knowledge about the optimal solution, which enables the algorithm to quickly jump to the optimal
position [19,21]. Moreover, expert knowledge can guide the direction of population optimization
during the optimization process, which helps quickly improve the convergence of the objective function
[20]. There are two types of expert knowledge: 1. Expert knowledge accumulated through the analysis
of practical systems by domain experts. 2. Expert knowledge optimized by correlation functions
[20]. Thus, expert knowledge and knowledge discovered by data mining can cooperate to maximize
their individual capabilities: the knowledge obtained through data-driven analysis is used as the
supplementary source of the expert system, and expert knowledge of the expert system can guide
the optimization direction of the model [28,29]. Moreover, expert knowledge is an important source
of interpretable BRBs [14]. Any optimization algorithm has randomness, and the self-growth learning
strategy effectively utilizes expert knowledge for optimization, which makes the model optimization
process more convincing and interpretable.
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Figure 4: Self-growth learning strategy

In this strategy, adding constraints can effectively prevent the parameters from being overopti-
mized.

T1 ≤ c1 or T2 ≥ c2 or · · · or Tn ≥ cn (7)

where T1, T2, . . . , Tn is a series of requirements to stop self-growth, and c1, c2, . . . cn is the threshold
given by the actual system.

The interpretability of the SBRB-I model is as follows [12,13]: 1. By using the method of modeling
based on IF-THEN rules, the structure and expression of the model are clear and understandable. 2.
Have a transparent and reliable reasoning process. The logic and understanding of the ER algorithm
are in line with the human thinking process, so it can be more accepted by humans. 3. The model can
be integrated into the system mechanism or expert knowledge of the actual system, which will help
humans better understand the model. 4. Optimization with interpretability constraints ensures that
interpretability is not destroyed during the optimization process. 5. A self-growth process guided by
expert knowledge can make the optimized solution more trustworthy.

4 The Prediction System Model Based on SBRB-I
4.1 The Reasoning Process of the Model

In the SBRB-I prediction model, the ER algorithm is used as the inference engine. As shown in
Fig. 5, the reasoning process mainly consists of the following four steps:

Step 1: Input transformation. Quantitative and qualitative information can be transformed into
belief distributions [20] as follows:

S(xi) = {(Ai,j, ai,j), i = 1, . . . , M; j = 1, . . . , Ji} (8)

where Ai,j is the jth parameter value corresponding to the ith input and ai,j is the matching degree of
Ai,j.

Step 2: The weights are activated, and the activation weight of the rule is as follows:

wk = θk

T∏
i=1

(
ak

i

)
δi/

(
L∑

l=1

θl

T∏
i=1

(
ak

i

)
δi

)
, δi = δi/

(
max

i=1,...,Tk

{δi}
)

(9)

where θk ∈ [0, 1]. δi is the normalized ith previous attribute weight. δi is the normalized ith antecedent
attribute weight.
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Figure 5: The reasoning process of the BRB

Step 3: The final belief is generated by analyzing ER as follows:

βj =
[∏L

k=1

(
ωkβj,k + λk

j,i

) − ∏L

k=1

(
λk

j,i

)]
[∑N

j=1

∏L

k=1

(
ωkβj,k + λk

j,i

) − (N − 1)
∏L

k=1

(
λk

j,i

)] − [∏L

k=1 (1 − ωk)
]′ (10)

λk
j,i = 1 − ωk

N∑
i=1

βi,k (11)

Step 4: Finally, all beliefs were updated. The final belief distribution is as follows:

S(A∗) = {(Dj, βj); j = 1, . . . , N} (12)

where A∗ is the input vector. The utility of the output can be expressed as follows:

u (S (A∗)) =
N∑

j=1

u
(
Dj

)
βj (13)

where u(Dj) is the utility of the result.

4.2 Optimization Process of the Model

In the current research, BRB is optimized by many algorithms, including the projection covariance
matrix adaptation evolution strategy (P-CMA-ES) [14,23] and the particle swarm optimization algo-
rithm (PSO) [12,22]. The BRB is optimized by the Whale Optimization Algorithm (WOA) algorithm
in this paper [30]. The WOA is a new natural heuristic metaheuristic optimization algorithm, and
this algorithm has the following advantages: 1) Fewer parameters and is easy to understand. 2) Fast
optimization speed. 3) Local optima can be avoided. 4) It can be widely used in various fields.

To obtain higher accuracy, a self-growth learning strategy is proposed. At the same time,
interpreted constraints are designed. Fig. 6 shows the model optimization process. Modifications to
the original algorithm are marked in green, and the specific steps are as follows:
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Figure 6: The modified WOA optimization algorithm

Step 1: (Initial operation): Initialize the population size of whales N, the number of iterations t,
and the search space is d dimension.

Step 2: (Sampling operation): Each whale was randomly sprinkled. The position of the ith whale
is as follows:

Xi = rand · (ub − lb) + lb (14)

The value range of Xi is [lb, ub], rand is a random number of [0, 1]. lb is the minimum value of the
parameter boundary, ub is the maximum value of the parameter boundary.

To exploit the individual capabilities of BRB expert systems and data-driven models, expert knowl-
edge is integrated into the initial population of algorithms, which increases the convergence speed of
the algorithm [19,20]. The optimized knowledge is continuously put into the initial population, which
is the process of self-growth as follows:{

Ek = −−−→
expert if i = 1

Xn = Pi if i 
= 1
(15)

where n ∈ [1, N], Ek is the solution vector of expert knowledge.
−−−→
expert is expert knowledge. Xn is the

nth whale that has undergone the ith self-growth. Pi is the expert knowledge after the ith self-growth
optimization.

Then, to make the initial population carry more expert knowledge information, whales move
closer to whales with expert knowledge, forming a solution space centered on expert knowledge.

Xi → Ek(i = 1, 2, . . . , n) (16)
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Specific operation: Turn off the random searchability of the WOA algorithm. Only spiral
contraction and contraction surrounding mechanisms are retained. The formulas are Eqs. (19)–(22)
and (25).

Remark: After the limit operation, all vector parameters of the WOA algorithm are restored to
the original value.

Step 3: (Calculate fitness value): The mean square error (MSE) is used as the fitness function.

min{ψ(θ , δ, β)}
s.t. 0 ≤ θ ≤ 1, 0 ≤ δ ≤ 1, 0 ≤ β ≤ 1,

N∑
n=1

βn,k ≤ 1 (17)

where ψ(θ , δ, β) is the error value between the real value and outputs.

Step 4: (Constraint operation): Adjust the belief distribution of the ith solution vector, which
cannot meet the interpreted belief distribution.

Rulek ∼ Ok(k = 1, 2, . . . , L) (18)

Step 5: (Move operation):

When p < 0.5 and |A| < 1, whales can find their prey and surround it. Through the best search
agent, centered on the optimal whale individual, all whales surround it as follows:
→
X (t + 1) = →

X ∗ (t) − →
A ·

∣∣∣→
C · →

X ∗ (t) − →
X (t)

∣∣∣ (19)
→
A = 2

→
a · →

r 1 − →
a (20)

→
C = 2 · →

r 2 (21)
→
a = 2 − 2t/tmax (22)

where
→
r 1,

→
r 2, p is a random number of [0, 1].

→
X (t) is the current solution vector,

→
X ∗ (t) is the location

of the prey,
→
A ·

∣∣∣→
C · →

X ∗ (t) − →
X (t)

∣∣∣ is the enclosing step,
→
a is the convergence factor, which decreases

linearly from 2 to 0 with the increase of the number of iterations.
→
A,

→
C is the coefficient vector. t is the

current number of iterations, and tmax is the maximum number of iterations.

When p < 0.5 and |A| ≥ 1, whales can look for prey at random by randomly searching for agents
as follows:
→
X (t + 1) = →

X rand − →
A · →

D (23)
→
D =

∣∣∣→
C · →

X rand − →
X (t)

∣∣∣ (24)

where
→
X rand is the randomly selected whale position vector.

When p ≥ 0.5, using the bubble net predation of whales, whale prey in a spiral contraction as
follows:
→
X (t + 1) = →

D′ · ebl · cos (2π l) + →
X ∗ (t) (25)
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→
D′ =

∣∣∣ →
X ∗ (t) − →

X (t)
∣∣∣ is the distance between the whale and prey. b is the constant of the number

helix shape. l is a random number of [0, 1].

Step 6: (Meet the requirements): Until the mth self-growth meets one of the requirements, the
self-growth stops as follows:

Fm = Hm − Hm−1 (26)

(Fm ≤ e) or (Q ≥ Qmax) (27)

where Fm is the training error between the mth self-growth and the m−1th self-growth, e is the threshold
for stopping self-growth, Q is the current total number of self-growth iterations, and Qmax is the largest
self-growth iteration.

5 Case Study

An example of predicting the air quality index (AQI) is given to demonstrate the effectiveness of
the proposed model. The experimental data set is from China’s air quality online monitoring and
analysis platform from January 2020 to October 2020 in Beijing. Serious air pollution endangers
people’s physical and mental health and has become a common threat to the world. Predicting
air quality in an interpretable way can help guide future environmental governance. Therefore, the
establishment of an accurate and reliable air quality prediction system is of great significance. Thus,
SBRB-I is a good choice for predicting air quality.

5.1 Establishment of the Initial SBRB-I Model
5.1.1 Input Grouping

In the actual air quality prediction system, the AQI is based on air quality standards and the
impact of various pollution factors on the ecological environment, which comprehensively reflects
the pollution degree of PM2.5, NO2, CO, O3, SO2, PM10. To build the initial SBRB-I model, first, these
attributes are divided into groups as follows: PM2.5, PM10 is the particle size index of particulate
matter. The comprehensive reaction affects the atmospheric transparency and the degree of injury to
the human respiratory tract. SO2, NO2 can form acid rain and damage the environment, affecting the
hair coloring rate of respiratory tract infection. O3, CO are toxic gases. It comprehensively reflects the
toxic content in the air. The initial establishment model is shown in Fig. 7.
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Figure 7: The initial establishment model
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5.1.2 Select Reference Point

Second, these three groups are put into the sub-BRB model. Expert knowledge can be obtained
through mechanism analysis of actual systems and long-term practice accumulation [14]. Therefore,
the initial model constructed by expert knowledge has strong interpretability and is easily understood
by users [17]. Moreover, the selection of the model reference value is determined by analyzing the
actual system and using the method of statistical analysis of data. Thus, in the actual air quality
prediction system, each attribute is described by four semantic values, that is, “excellent” (E), “good”
(G), “medium” (M), and “poor” (P). The reference values are given in Table 2. In life, four reference
points are used to describe the degree of air pollution, that is, “high” (represented by H), “medium”
(represented by M), “low” (represented by L) and “very low” (represented by VL). The referential
values are given in Table 3, the sub-BRB model is optimized by a self-growth learning strategy, so
Y1, Y2, Y3 are generated, and then Y1, Y2, Y3 are normalized.

Table 2: Attribute reference points of the three sub-BRB models

Attribute δi P M G E

PM2.5 1 207 100 50 3
PM10 1 222 100 50 8
SO2 1 13 8 4 2
NO2 1 77 50 30 5
CO 1 2.4 1 0.5 0
O3 1 283 200 100 12

Table 3: Output reference points of the three sub-BRB models

Model H M L VL

Sub-BRB model 1 257 100 50 8
Sub-BRB model 2 97 60 40 7
Sub-BRB model 3 204 150 50 18.0

Third, Y1, Y2, Y3 is taken as input to SBRB-I. In Table 4, the reference values of the attributes are
demonstrated. Moreover, five reference values are used to express the quality of the air quality index,
that is, “Serious” (S), “Bad” (B), “Medium” (M), “Good” (G), and “Excellent” (E). The referential
values are shown in Table 5.

Table 4: Attribute reference points of BRB-1 with expert knowledge

Attribute δi H M L

Y1 1 1 0.5 0
Y2 1 1 0.5 0
Y3 1 1 0.5 0
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Table 5: Output reference points of BRB-1 with expert knowledge

Reference points S B M G E

Reference value 1 0.6 0.4 0.2 0

5.2 Analysis of Experimental Results

The initial parameters of the WOA are as follows: population size N is 20, the number of iterations
t for each self-growth is 50, 25 is used to limit the solution space, and 25 is used for optimization. The
search space d is 165-dimensional. The maximum number of self-growth iterations Qmax is 3000. The
threshold e for self-growth to be stopped is 1−6.

As shown in Fig. 8, the MSE decreases with the increase in the number of self-growths. When
reaching the 42nd layer, point A is the best point for self-growth, and the MSE value is 0.0046.
However, the MSE of the initial SBRB-I model constructed with expert knowledge was 0.0117.
According to the experimental results, the accuracy of the model is improved by 60.68%. The
comparison between the prediction results of the SBRB-I model and the real value is shown in Fig. 9.
To prove whether the selection of the threshold is effective, self-growth is continued. As seen from part
C, the MSE value gradually increases, and overfitting occurs at the position after self-growth stops.
The effective selection of threshold e can prevent the overoptimization of parameters and fitting.

Figure 8: Optimization process of the SBRB-I(42) model
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Figure 9: Output result comparison

The Euclidean distance shows the similarity between two vectors, as shown in Fig. 10 [28].
Euclidean distance represents the linear distance between two points, which can well describe the
similarity between two vectors, while other distance measurement methods cannot measure the linear
distance well [31]. It can be concluded that the optimization process of the SBRB-I(42) model is an
optimization process close to expert knowledge. This further realizes that the interpretability SBRB-
I(42) model of the optimization process is a feasible region based on the local judgment of expert
knowledge [14]. However, the WOA-BRB model does not have such capability. Moreover, this proves
that the SBRB-I(42) model can utilize expert knowledge to guide the optimization direction of the
data-driven model. The optimized solution vector maintains a high similarity with expert knowledge,
which can retain more characteristics of expert knowledge information, making the optimized model
more interpretable.

Figure 10: Euclidean distance variation
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As shown in Fig. 11, the SBRB-I(42) model has a better fit with expert knowledge, and it can
better retain the characteristics of expert knowledge information. For example, in Rules 4, 7, 10, 11 and
15, the SBRB-I model can better represent the behavior of the actual system. Because the optimized
knowledge is highly similar to the initial expert knowledge, SBRB-I(41) realizes that the knowledge of
data-driven model mining can be a supplementary source for expert systems. That is, the SBRB-I(42)
model realizes cooperation between the BRB expert system and the data-driven model. However, the
WOA-BRB model generates many belief rules that are inconsistent with common sense.

Figure 11: The belief distribution of SBRB-I(42) models

5.3 Comparison of Different Models

In Table 6, under the condition of 2100 iterations, the optimization process is repeated 20 times
for different BRB models. SBRB(1) has a lower standard deviation compared with WOA-BRB, which
shows that the self-growth learning strategy makes the SBRB model more robust. The convergence
speed of the WOA-BRB and SBRB(1) is shown in Fig. 12. SBRB(1) is represented by a red curve,
and WOA-BRB is represented by a blue curve. As seen from part D, due to SBRB(1) integrating
expert knowledge into the optimization process, SBRB(1) is a better starting point for optimization
than WOA-BRB. Part E shows that SBRB(1) converges faster than the WOA-BRB. This shows that
expert knowledge introduced into the initial population of the algorithm can effectively accelerate
the convergence rate and improve the optimization process [20,21]. Thus, this demonstrates the
effectiveness of the self-growth learning strategy proposed in this paper.

The projection covariance matrix adaptation evolution strategy (P-CMA-ES), gray wolf opti-
mization algorithm (GWO), differential evolution algorithm (DE), backpropagation neural network
(BPNN), radial basis function (RBF), deep belief networks (DBN), long short-term memory (LSTM)
and decision tree are used for experimental comparison. In Table 7, while other models have close
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to the same accuracy as SBRB-I, SBRB-I is more interpretable than the ones. Compared with P-
CMA-ES-BRB, DE-BRB and GWO-BRB, the interpretability of SBRB-I can be seen in the following
aspects: 1. The belief distribution of SBRB-I conforms to the actual system, while the other models
do not have such interpretability. 2. The SBRB-I model is optimized in the solution space of the
local judgment of experts. The optimized solution can retain the characteristics of expert knowledge
information and is more interpretable.

Table 6: Analysis of different BRB models

Models WOA-BRB SBRB(1) SBRB-I(42)

Minimum MSE 0.0032 0.0030 0.0044
Maximum MSE 0.0186 0.0050 0.0058
Average MSE 0.0094 0.0038 0.0050
The standard deviation of
MSE

0.0059 5.51e−04 3.59e−04

Figure 12: The convergence speed of different BRB models

Table 7: Experimental comparison

Model MSE Model MSE

WOA-BRB 0.0032 DBN 0.0043
P-CMA-ES-BRB 0.0033 LSTM 0.0038

Part 1 DE-BRB 0.0060 Part 2 Decision
tree

0.0039

GWO-BRB 0.0037 BPNN 0.0036
SBRB-I 0.0046 SBRB-I 0.0046
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Compared with the BPNN, RBF, DBN, LSTM prediction models, the interpretation of SBRB-
I can be described as follows: 1. The SBRB-I model is a modeling method based on IF-THEN
rules, and its output can be traced back. However, the prediction models of BPNN and RBF are
essentially black-box models with few parameter meanings, and their input–output relationships are
difficult to interpret. 2. SBRB-I has a clear and transparent reasoning calculation process, while the
internal structure of prediction models such as BPNN is invisible. 3. The expert knowledge and system
mechanism can be integrated into the SBRB-I model, so the SBRB-I model is much more easily
understood by users.

5.4 The Interpretability of SBRB-I Model is Introduced

The SBRB-I model is an interpretable model, and it can provide guidance on air quality
governance through its analysis [32]. The effect of the Sub-BRB model on the air quality index is
shown in Fig. 13. Model 1 has the greatest impact on the AQI, which is consistent with the judgment
of the expert model. Through the analysis in Section 5.1, Model 1 represents the particle size index
of particles in the air. Thus, one of the measures to improve the air quality in Beijing is to reduce the
content of PM 2.5 and PM 10 in the air.

Figure 13: Sensitivity analysis of the SBRB-I model

6 Conclusion

Interpretability and accuracy are important requirements to achieve reliable and accurate predic-
tion systems. However, in the current study, three problems need to be solved for interpretability of
BRBs: expert knowledge is not used effectively, how to improve model accuracy while maintaining
interpretability and how to make expert systems and data-driven models cooperate effectively.

There are two innovations in this paper. For the first problem, one interpretability guideline is
designed. Expert knowledge is used to form a local optimization space based on expert judgment.
Moreover, expert knowledge is also integrated into the optimization process, which improves the
convergence speed when optimizing and enhances the model’s interpretability. For the second and
third problems, a new prediction system based on a self-growth BRB with interpretability constraints
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(SBRB-I) is proposed. The SBRB-I model uses any available knowledge to guide the optimization
direction, including domain expert knowledge and knowledge optimized by correlation functions.
The SBRB-I model realizes cooperation between BRB’s expert system and the data-driven model.
Moreover, the optimization process guided by experts and the limitation of interpretability constraints
makes the knowledge after model optimization highly similar to the expert knowledge. Therefore,
the knowledge optimized by the data-driven model can be used as a supplementary source of expert
systems. Finally, a case study of the prediction system of the air quality index is conducted to verify
the effectiveness of the proposed model. SBRB-I can improve prediction accuracy while maintaining
interpretability.

SBRB-I proposed in this paper is an exploration. More interpretability constraints have been
added to this model, which enhances its interpretability. At the same time, after limiting the constraint
space, it is necessary to improve the local search ability of the algorithm, which will obtain better
prediction results. Finally, the number of iterations of each self-growth needs to be further studied.
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