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Abstract: Accurate identification of rice diseases is crucial for controlling
diseases and improving rice yield. To improve the classification accuracy of
rice diseases, this paper proposed a classification and identification method
based on an improved ShuffleNet V2 (GE-ShuffleNet) model. Firstly, the
Ghost module is used to replace the 1 × 1 convolution in the two basic unit
modules of ShuffleNet V2, and the unimportant 1 × 1 convolution is deleted
from the two basic unit modules of ShuffleNet V2. The Hardswish activation
function is applied to replace the ReLU activation function to improve the
identification accuracy of the model. Secondly, an effective channel attention
(ECA) module is added to the network to avoid dimension reduction, and the
correlation between channels is effectively extracted through 1D convolution.
Besides, L2 regularization is introduced to fine-tune the training parameters
during training to prevent overfitting. Finally, the considerable experimental
and numerical results proved the advantages of our proposed model in terms
of model size, floating-point operation per second (FLOPs), and parameters
(Params). Especially in the case of smaller model size (5.879 M), the identifi-
cation accuracy of GE-ShuffleNet (96.6%) is higher than that of ShuffleNet
V2 (94.4%), MobileNet V2 (93.7%), AlexNet (79.1%), Swim Transformer
(88.1%), EfficientNet V2 (89.7%), VGG16 (81.9%), GhostNet (89.3%) and
ResNet50 (92.5%).

Keywords: Deep learning; convolution neural network; rice diseases;
lightweight network

1 Introduction

In China, rice plays an important role in grain production. However, rice disease affects the
growth of rice, which is an obstacle to rice yield. At present, there are many kinds of rice diseases
[1–3]. Traditional identification methods rely on manual treatment to subjectively identify a variety of
rice diseases, which consumes a lot of manpower and time [4]. The traditional disease identification
methods have not met the production requirements of modern agriculture. It is urgent to develop a
fast and accurate rice disease identification system to guide farmers to use pesticides correctly, reduce
economic losses caused by diseases, and improve rice yield.
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Now, image processing and machine learning are the key technologies to realize the identification
and detection of plant diseases and pests [5–8]. Xiao et al. [9] realized the identification of common
vegetable pests using the word bag model and support vector machine (SVM), with an average
identification rate of 91.56%. Shi et al. [10] proposed a kernel discrimination method based on the
spectral vegetation index (SVIKDA) to detect winter wheat diseases. The experimental results showed
that the classification accuracy of mild, moderate, and severe winter wheat diseases could reach 82.9%,
89.2%, and 87.9%, respectively. Zhu et al. [11] proposed an automatic detection method of grape leaf
disease based on image analysis and a back propagation neural network (BPNN). They extracted
characteristic parameters such as perimeter, area, roundness, rectangle, and shape complexity by
segmenting grape leaf disease regions. Finally, the average identification rate of the BPNN method can
reach 91%. Besides, Singh et al. [12] applied the SVM to identify healthy and diseased rice plants, with
an accuracy of 82%. Although image processing and machine learning technology have promoted the
development of plant disease identification and detection technology, these methods not only require
manual participation, but also need to know a lot of professional knowledge to complete [13,14].
Especially in the natural environment, due to the poor ability of feature extraction, the identification
accuracy of these methods will further decrease. Therefore, how to solve the problem of low efficiency
of machine learning data processing, feature extraction and identification is an urgent work to promote
the application of plant disease identification technology in practice.

With the development of deep learning, it has been widely used in image identification technology
[15–17]. Convolutional neural network (CNN) in deep learning has developed into one of the best
classification methods in image identification tasks. Different from machine learning, CNN has more
powerful image feature learning and expression capabilities. CNN can automatically extract low-
level features of images and further learn high-level features [18,19]. In addition, CNN can also
learn the inherent rules of image samples to obtain the hidden feature information in the image.
Therefore, CNN has been widely used in image identification, classification, and segmentation instead
of machine learning [20–23]. Chen et al. [24] used deep transfer learning for image-based plant disease
identification. The results demonstrated the average identification accuracy can reach 92% under
complex background conditions. Rahman et al. [25] fine-tuned the advanced large-scale architecture
(VGG16 and Inception V3) and used it to identify rice diseases and pests. The final identification
accuracy can reach 93.3%. Wu et al. [26] adjusted the parameters of VGG16 and ResNet dual channel
convolution neural network, and the identification accuracy of maize leaf disease can reach 93.33%.
Suo et al. [27] developed a new network with CoAtNet as the backbone network to realize the
identification of grape leaf diseases, with an identification accuracy of 95.95%. Lv et al. [28] designed
a new neural network based on the backbone AlexNet architecture to identify maize diseases, with an
accuracy of 98.62%. Zeng et al. [29] proposed a SKPSNet-50 convolution neural network model for
maize disease identification. In natural scenes, the average identification accuracy of the model can
reach 92.9%. Although deep learning has promoted the development of plant disease identification
technology, the problems of excessive parameters, large model size, and low identification accuracy
still need to be further solved.

Therefore, we proposed an improved ShuffleNet V2 in the research of rice disease identification
based on Ghost Module and ECA. The improved ShuffleNet can name it GE-ShuffleNet. Firstly,
to train and verify the model, rice disease images are enhanced to expand the image data set and
diversify the complexity of the image background. Secondly, the Ghost Module is used to replace the
1 × 1 convolution of the two basic unit modules in ShuffleNet V2. The ReLU activation function is
replaced by the Hardswish activation function to improve the identification accuracy of the model.
In addition, the ECA module and L2 regularization are respectively used to extract the correlation
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between channels and prevent overfitting. Finally, the enhanced image is input into the improved
model for training and verification. A large number of experimental results show that the proposed
model is feasible and has more advantages (accuracy and model size) in comparison to other models.
As shown in Fig. 1, it is the process of rice disease identification based on GE-ShuffleNet.

Figure 1: The schematic diagram of rice disease identification based on GE-ShuffleNet. The red and
purple dotted line boxes are the process of data preprocessing and data set division; The blue dotted
box is the process of model construction and parameter optimization; The identification result output
of the model and the model comparison process are shown in the black dotted box at the bottom of
the schematic diagram

2 Image Data Set and Preprocessing
2.1 Original Data Set

In our work, the rice leaf disease data set used for the model experiment is derived from the
public data set of Rice Leaf Disease Image Samples [30], including four rice leaf diseases (Bacterial
blight, Blast, Tungro, and Brown spot). To ensure the robustness of the designed model in the natural
environment, we only selected 1068 images with complex backgrounds, including 293 Bacterial blight
images, 269 Blast images, 245 Tungro images, and 261 Brown spot images. As shown in Figs. 2, 2a–2d
are sample images of four rice diseases.

Figure 2: The sample images of four rice diseases. (a) Bacterial blight image; (b) Blast image; (c) Tungro
image; (d) Brown spot image
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2.2 Image Preprocessing

To ensure the diversity of the data set, these images are enhanced to make their backgrounds
more complex. The selected rice disease images are enhanced by adding random pixels, Gaussian
noise, salt and pepper noise, random occlusion, animation effects, random contrast, and Gaussian
blur, respectively. In addition, the brightness and blurriness of these images are adjusted to simulate
the natural environment. The total number of enhanced rice disease images was 5163, including 1416,
1311, 1303, and 1133 for Bacterial blight, Blast, Tungro, and Brown spot, respectively. The specific
image information is described in Table 1. Besides, the enhanced images of four diseases are shown in
Fig. 3.

Table 1: The image information statistics of the enhanced dataset

Rice disease species Original image Enhanced image

Bacterial blight 293 1416
Blast 269 1311
Tungro 245 1303
Brown spot 261 1133
Total 1068 5163

Figure 3: The enhanced sample images of four rice diseases. (a) Enhanced Bacterial blight image; (b)
Enhanced Blast image; (c) Enhanced Tungro image; (d) Enhanced Brown spot image

To facilitate model training and testing, we divided the 5163 images, and selected about 80% of
them (4132) as the training set, and the remaining 20% (1031) as the test set.

3 The Proposed GE-ShuffleNet
3.1 GE-ShuffleNet Model

In general, 1 × 1 Conv is used for two purposes before or after DWConv. On the one hand,
it fuses information between channels to make up for the lack of information fusion function of
DWConv between channels. On the other hand, it is used to reduce or increase dimensions, such
as the inverted residual module in MobileNet V2. However, two 1 × 1 Conv are used in the right
branch of shufflenet V2. In fact, only one is needed. Because 1 × 1 Conv is not required to play the
role of dimension increase and dimension reduction, it is only used to fuse the information between
channels of DWConv. First, the 1 × 1 Conv after DWConv in the right branch of ShuffleNet V2 is
deleted. Secondly, to solve the problem that the remaining 1 × 1 Conv in ShuffleNet V2 occupies
too much memory and causes the problem of computing load (FLOPs), the 1 × 1 Conv is replaced
by the lightweight module Ghost Module in the GhostNet network [31]. In addition, ECA is added
after the Ghost Module to effectively capture cross-channel interaction information under keeping
the network lightweight. Finally, to avoid the overfitting problem of the model, L2 regularization is
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added to the network training. The ReLU activation function is replaced by the Hardswish activation
function to further improve the identification accuracy of the model. The proposed structure diagram
of GE-ShuffleNet is shown in Fig. 4.

Figure 4: The structure diagram of GE-ShuffleNet. Conv1 and Conv5 are convolution 1 and 5,
respectively; MaxPool is the maximum pool layer; Stage2, stage3, and stage4 correspond to two basic
units in part (a); Hardswish is the activation function; GlobalPool is global pooling; FC represents the
full connection layer

3.2 ShuffleNet V2 Model

In addition to improving the accuracy of visual tasks, reducing the computational complexity
of network models is also an urgent problem to be solved. Especially the hardware environment of
the target platform is limited, so how to quickly identify the object with a very low delay. Due to
the current actual demand, the network is developing towards lightweight, and they maintain a good
balance between the running speed and accuracy of the model.

Ma et al. proposed ShuffleNet V2 based on ShuffleNet V1, and summarized four guidelines for
designing efficient and lightweight networks [32–34]. As follows:

(1) The input and output of the convolution layer keep the same number of channels, which can
minimize the memory access cost (Memory Access Cost (MAC));
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(2) Consider the cost of using group convolution (excessive group convolution will increase MAC);
(3) Reduce the number of branches and included units (the fewer branches in the model, the faster

the model);
(4) Reduce component-level operations (reduce time consumption).

As shown in Figs. 5, 5a and 5b are the basic units of ShuffleNet V1. However, the group
convolution (GConv) and add operations in the red dashed boxes violate guidelines (2) and (4),
respectively. In addition, the operations in the green box and the blue box in Fig. 5 violate guidelines
(1) and (3), respectively. Therefore, to achieve high model capacity and efficiency, the key to solving
the problem is to maintain a large number of channels with the same width, neither dense convolution
nor multiple packets. As shown in Fig. 6, it is the schematic diagram of the ShuffleNet V2 basic unit
module [35]. Observing Figs. 5 and 6, we can find that, different from ShuffleNet V1, ShuffleNet V2
(Fig. 6a) first splits the channel of the input characteristic matrix into two branches through a channel
split. Here, the left branch is a shortcut branch, and the right branch corresponds to the main branch,
thus meeting the guideline (3).

Figure 5: The basic unit of ShuffleNet V1. Input is the characteristic diagram input; GConv represents
group convolution; DWConv represents depthwise convolution; AVGPool represents the average
pooling layer; Stride is the step size; Concat indicates splicing operation; Add indicates element level
addition operation; Output represents the output of the feature map; BN is batch normalization; ReLU
is the activation function

The three convolutions input and output channels in the right branch have the same number, and
the left and right branches are concatenated through the Concat module. In this way, the input and
output of the convolution layer can maintain the same number of channels to reduce MAC (meeting
the guideline (1)). We can also find that ShuffleNet V2 uses 1 × 1 convolution to replace the two
GConvs in ShuffleNet V1. Since the use of group convolution is reduced, the MAC is also decreased.
To increase information flow and realize feature mixing, in ShuffleNet V2, the channel Shuffle is
connected after the Concat. Different from ShuffleNet V1, ReLU is placed on the right branch of
ShuffleNet V2, which will reduce the number of processing elements by half. Besides, the ShuffleNet
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V2 uses a 3 × 3 depthwise convolution (DWConv) and a 1 × 1 convolution (Conv) instead of 3 × 3
average pooling (AVGPool) for feature mixing.

Figure 6: The basic unit of ShuffleNet V2

3.3 Ghost Module

Ghost Module is a model compression method. Compared with traditional convolution, Ghost
Module can improve network speed by reducing network parameters and computation under ensuring
network accuracy.

As the conventional convolution and Ghost Module are shown in Fig. 7. Observing Figs. 7a and
7b, we can find that the Ghost Module is divided into three steps to obtain the same number of feature
maps as the conventional convolutions. Firstly, a small number of intrinsic feature maps are generated
through traditional 1 × 1 convolution. Secondly, linear operations are used to expand features and
increase the number of channels. These linear operations can generate more feature maps with fewer
parameters. Without changing the size of the output feature map, the total number of parameters
required in the Ghost Module and the computational complexity are lower than those of conventional
CNN [36]. Finally, the output feature map after two convolutions is superimposed on the channel
dimension to obtain the same output as the traditional convolution. Besides, Ghost Module can realize
parallel identification and linear change, and reduce the computing cost of the general convolution
layer while maintaining approximate identification performance.
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Figure 7: The conventional convolution and Ghost Module. (a) Conventional convolution; (b) Ghost
module. Identity refers to identity transformation; Φn represents a linear operation

3.4 ECA Attention Mechanism

The attention mechanisms can focus on important information with high weight. It can not
only ignore irrelevant information with low weight, but also constantly adjust the weight to adapt
to the selection of important information in different conditions. However, the current attention
mechanism focuses more on the performance of selecting information that is more critical to the
current task goal from a large amount of information, without considering the complexity of the
model. The performance of the model is improved, but the complexity has also increased. To solve
the contradiction between performance and complexity, Wang et al. [37] proposed an ECA module.
The advantage of the ECA module is that it not only involves fewer parameters, but also has obvious
performance gain.

As the schematic diagram of ECA attention mechanism is described in the Fig. 8. First, the input
H×W ×C feature map x is compressed by global average pooling (GAP) to obtain the 1×1×C feature
map. Secondly, channel feature learning is carried out on the characteristic graph of 1 × 1 × C, and
local cross channel information interaction between each channel and adjacent K channels is realized
by performing fast 1D convolution with the number of K. It should be noted that the value of K is
adaptively determined and proportional to the mapping of channel coefficient C. Then 1 × 1 Conv is
used to learn the interaction information between different channels. At this time, the dimension of
the output feature map is still 1 × 1 × C. Finally, the feature map 1 × 1 × C of channel attention and
the original H×W×C input feature map x are multiplied channel by channel through the ⊗ operator
to obtain x1. x1 is a feature map with channel attention.

3.5 Hardswish Activation Function

In our work, we use the Hardswish activation function to replace the ReLU activation function of
Conv1 and Conv5 in ShuffleNet V2 (as shown in Fig. 4). The ReLU activation function is shown in
Eq. (1). Based on Eq. (1), the relationship between ReLU input x and output f(x) is shown in Fig. 9a.
ReLU has the advantage that when x > 0, its derivative is always 1, so there is no problem of gradient
disappearance. In addition, ReLU is very fast in calculating derivatives. It only needs to judge whether
x > 0 or x < 0. The disadvantage of ReLU is that some neurons may never be activated, resulting
in the corresponding parameters never being updated. Because when x ≤ 0, the output is always 0. If



CMC, 2023, vol.75, no.2 4509

the output of a neuron is less than or equal to 0, it cannot enter the calculation. This phenomenon is
called neuronal necrosis.

Figure 8: The schematic diagram of the ECA attention mechanism. GAP represents global average
pooling; refers to the generation of channel weights using the Sigmoid activation function; ⊗
represents the element-by-element product operator

Figure 9: Activation function

The Hardswish activation function is proposed in MobileNet V3 [38]. The Hardswish activation
function is an improvement of the swish activation function. The swish activation function is shown
in Eq. (2). Based on Eq. (2), the relationship between swish input x and output f(x) is shown in
Fig. 9b. Although compared with the ReLU activation function, swish can improve the accuracy of the
neural networks to a certain extent, the derivation is more complex and quantization speed is slower.
Therefore, from the perspective of actual embedded mobile devices, it does not meet the requirements
of practical deployment. Hardswish has the same accuracy as swish, and can solve the problem of
ReLU activation function neuron necrosis. Hardswish not only has the advantages of good numerical
stability and fast computing speed, but also can be implemented as a segmentation function to reduce
the number of memory accesses.

Therefore, Hardswish has significant advantages in deploying on practical embedded mobile
devices. Eq. (3) is the Hardswish activation function. Fig. 9c shows the relationship between input
x and output f(x) of Hardswish.

fReLU (x) = max {0, x} =
{

x, if x > 0
0, otherwise (1)

fswish (x) = x · σ (x) (2)
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fHardswish (x) = x · ReLU6 (x + 3)

6
=

⎧⎨
⎩

0, x ≤ −3
x, x ≥ 3
x · (x+3)

6
, otherwise

(3)

4 Experimental Results and Analysis
4.1 Experimental Environment and Hyperparameters Setting

To implement our model training and validation, the experimental environment is python 3.8,
PyTorch 1.9.1, and torch-vision 0.10.1. The server is configured with Intel Xeon E5-2680 v4 CPU,
Samsung SSD 860 512 G hard disk, Kingston DDR4 64 GB memory, NVIDIA TITAN Xp graphics
card, and 12 GB video memory. In the experiment, the stochastic gradient descent (SGD) optimizer is
used to select the hyperparameters (learning rate, batch size, iterations, L2 regularization coefficient)
of the model through a series of tests and comparative analysis. As shown in Table 2, the identification
accuracy comparison of the GE-ShuffleNet model under the different parameters. Observing Table 2,
we can find that the best highest accuracy (96.6%) can reach under learning rate (0.01), batch size (16),
epoch (45), and L2 (0.001). Therefore, we set the learning rate, batch size, and L2 to 0.01, 16, and 0.001
to train our model under 45 epochs.

Table 2: The comparison of identification accuracy under different parameters

Learning rate Batch-size Epoch L2 Optimizer Accuracy

0.01 16 25 \ SGD 87.1%
0.001 16 25 \ SGD 76.2%
0.0001 16 25 \ SGD 47.5%
0.01 32 25 \ SGD 84.2%
0.01 64 25 \ SGD 81.8%
0.01 16 45 \ SGD 94.6%
0.01 16 45 0.01 SGD 69.5%
0.01 16 45 0.001 SGD 96.6%
0.01 16 45 0.0001 SGD 86.5%
0.01 16 60 0.001 SGD 95.63%

4.2 Analysis of Identification Results

The value stored in each element (i, j) represents the number of types (i) recognized by the classifier
as type (j) when the actual category is type (i). Further, the model can calculate the identification
accuracy and recall rate of each category. As shown in Figs. 10a and 10b correspond to the confusion
matrix and normalized confusion matrix of the GE -ShuffleNet, respectively. From the normalized
confusion matrix (Fig. 10b), we can see that the classification accuracy of our models for the four
diseases is higher than 95%. In addition, we can see from the confusion matrix that the error rates of
identification of Bacterial blight are 1.946%, 0.457%, and 0.755%, which are confused with Blast,
Brown spot, and Tungro disease, respectively; The error rates of Blast were 4.828%, 0.457%, and
0.755%, which were mixed with Bacterial blight, Brown spot, and Tungro disease, respectively; The
error rates of Brown spot were 0.345%, 2.335%, and 0.755%, which were confused with Bacterial
blight, Blast, and Tungro disease, respectively; The error rate of Tungro disease was 0.389%, which
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was confused with Blast; The error classification of four rice diseases in the proposed model is mainly
caused by the redundancy and complexity of image background.

Figure 10: The GE-ShuffleNet confusion matrix. (a) Confusion matrix; (b) Normalized confusion
matrix. The main diagonal (blue part) of the confusion matrix represents the correct prediction result,
and the rest is the wrong identification

In addition, Precision, Recall, F1 score, and Accuracy are common evaluation indicators in
classification tasks and will be used for further evaluation of our model performance. The Precision
is shown in Eq. (4). As follows,

Precision = TP
TP + FP

(4)

Precision represents the probability that all the predicted positive samples are positive samples.
TP (True Positive) represents the number of positive samples predicted to be positive, and FP (False
Positive) indicates the number of negative samples predicted to be positive. Besides, (TP + FP) is the
number of all predicted positive samples.

Recall refers to the probability that the actual positive samples are predicted to be positive samples.
Therefore,

Recall = TP
TP + FN

(5)

where, False Negative (FN) represents the number of positive samples actually predicted to be negative,
and (TP+FN) indicates the number of all actual positive samples. The F1-score takes into account the
Precision and Recall at the same time, so that both can reach the highest. As follows,

F1 − score = 2 · Precision · Recall
Precision + Recall

(6)
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Accuracy is an indicator widely used to evaluate models in deep learning. The higher the value,
the better the performance of the model. Here,

Accuracy = TP + TN
TP + TN + FP + FN

(7)

As shown in Table 3, the identification accuracy, recall rate, and F1-score of the proposed model
for different diseases are recorded. We found that the classification precision of the four diseases was
no less than 95%. Besides, the Precision and Recall of Brown spot and Tungro could reach 99.1% and
99.6%, respectively.

Table 3: The Precision, Recall, and F1-score of our model for different disease identification

class Precision (%) Recall (%) F1 (%)

Bacterial blight 95.00 97.20 96.10
Blast 95.30 94.00 95.00
Brown spot 99.10 96.00 97.53
Tungro 98.00 99.60 98.79

4.3 Performance Comparison of Different Models
4.3.1 Ablation Test Results of the GE-ShuffleNet Model

To explore how to improve the performance of the ShuffleNet V2 model by using the Ghost
module, Hardswish activation function, deleting 1×1 convolution of ShuffleNet V2 right branch and
ECA attention mechanism, the ablation test was conducted and the results are described in Table 4. It
can be seen from Table 4 that when the 1 × 1 convolution in the two basic units of ShuffleNet V2
is replaced by the Ghost module, the accuracy of the model decreases by 1.68%, but the Params
and FLOP of the model decrease by 0.416 and 38.87 M, respectively. The Hardswish activation
function is used to replace the ReLU activation function. When the model Params is unchanged,
the FLOPs decrease slightly, and the accuracy of the model also increases slightly. The unimportant
1 × 1 convolution is deleted from the two basic unit modules of ShuffleNet V2. When the accuracy
of the model increases, the model Params and FLOPs decrease by 0.34 and 43.43 M, respectively.
The ECA attention mechanism structure is introduced into the two basic units of ShuffleNet V2, and
the model accuracy is improved by 0.7% while keeping the model Params and FLOPs unchanged. By
integrating the Ghost Module, Hardswish activation function, deleting the 1 × 1 convolution of the
right branch of ShuffleNet V2, and improving ECA attention mechanism, the performance of the
model has been greatly improved, the accuracy has been improved by 2.2%, Params reduced by 0.757
M, and the FLOPs has been reduced by 82.65 M. To more intuitively demonstrate the effectiveness
of the GE-ShuffleNet model proposed in this study, the GE-ShuffleNet model will be compared with
other different network models.
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Table 4: Ablation experiment of GE-ShuffleNet model

Model Ghost
module

Hardswish Delete 1 × 1
convolution

ECA Params (M) FLOPs (M) accuracy
(%)

× × × × 2.278 150.6 94.4√ × × × 1.862 111.73 92.72
ShuffleNet V2 × √ × × 2.278 150.25 94.47

× × √ × 1.938 107.17 94.47
× × × √ 2.278 150.6 95.1

GE-ShuffleNet √ √ √ √ 1.521 67.95 96.6

Note: “×” means not to use the improvement factor, “√” means to use the improvement factor.

4.3.2 Performance Comparison between GE-ShuffleNet and Other Models

In this study, eight classical network models have selected for comparison to better highlight the
advantages of the improved network in terms of precision and model parameters. As shown in (a)
and (b) in Fig. 11, it is the comparison of the identification accuracy of GE-ShuffleNet, ShuffleNet
V2, AlexNet, EfficienetNet V2 [39], MobileNet V2, ResNet50, Swim Transformer [40], GhostNet
and VGG16 under different epochs. Figs. 11a and 11b correspond to the comparison of training
and validation identification accuracy, respectively. By observing Fig. 11, the identification accuracy
of different models increases with the increase of epochs. It should be noted that the identification
accuracy of our model under different epochs is higher than that of other models. The results shown
in Fig. 11 preliminarily confirm the performance of the proposed method. To further prove the
advantages of the proposed model, Table 5 describes the accuracy, FLOPs, Params, and Model Size
of different models.
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Figure 11: The identification accuracy curve fitting results of different models under various epochs. (a)
The comparison of training accuracy of different models; (b) The comparison of validation accuracy
of different models
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It can be seen from Table 5 that ShuffleNet V2 has higher accuracy (94.4%) than other models
(MobileNet V2, GhostNet, AlexNet, Swim Transformer, EfficientNet V2, VGG16, and ResNet50).
In addition, compared with these models, ShuffleNet V2 has obvious advantages in Params and
Model Size. Then, compared with ShuffleNet V2, our model can not only improve the identification
accuracy, but also reduce Params and model size. Especially, on the premise of reducing the model size
to 2.875 MB, the identification accuracy of the proposed model is 2.2% higher than that of ShuffleNet
V2. These quantitative comparison results highlight the advantages of the proposed model in disease
identification and actual deployment.

Table 5: The performance comparison of different models

Model Accuracy (%) Params (M) Model size (MB) FLOPs (M)

GE-ShuffleNet 96.6 1.521 5.879 67.95
ShuffleNet V2 94.4 2.278 8.754 150.6
GhostNet 89.3 5.183 19.866 150.67
AlexNet 79.1 16.630 63.440 312.11
ResNet50 92.5 25.557 97.695 4.12 × 103

MobileNet V2 93.7 3.504 13.501 320.24
VGG16 81.9 138.357 527.792 15.5 × 103

EfficientNet V2 89.7 21.458 82.445 2.87 × 103

Swim Transformer 88.1 55.674 108.131 154.459 × 103

5 Conclusion

In conclusion, this paper has proved the performance of GE-ShuffleNet through lots of experi-
mental results. In our work, we first theoretically analyze the performance of ShuffleNet V2. A novel
deep learning model is after that proposed to reduce the model size and improve accuracy for rice
identification. The experimental results show that the identification accuracy with GE-ShuffleNet is
more than ShuffleNet V2, MobileNet V2, GhostNet, AlexNet, Swim Transformer, EfficientNet V2,
VGG16, and ResNet50. Moreover, compared with other models, GE-ShuffleNet is easier to deploy
with fewer Params and smaller model sizes. This research provides an alternative method for intelligent
spraying systems, intelligent disease diagnosis, and other equipment. In the future, we will further
enrich the rice disease data set by collecting data from the experimental field to ensure the accuracy of
the proposed model in practice.
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