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Abstract: A chest radiology scan can significantly aid the early diagnosis
and management of COVID-19 since the virus attacks the lungs. Chest X-
ray (CXR) gained much interest after the COVID-19 outbreak thanks to
its rapid imaging time, widespread availability, low cost, and portability. In
radiological investigations, computer-aided diagnostic tools are implemented
to reduce intra- and inter-observer variability. Using lately industrialized
Artificial Intelligence (AI) algorithms and radiological techniques to diagnose
and classify disease is advantageous. The current study develops an automatic
identification and classification model for CXR pictures using Gaussian Fil-
tering based Optimized Synergic Deep Learning using Remora Optimization
Algorithm (GF-OSDL-ROA). This method is inclusive of preprocessing and
classification based on optimization. The data is preprocessed using Gaussian
filtering (GF) to remove any extraneous noise from the image’s edges. Then,
the OSDL model is applied to classify the CXRs under different severity levels
based on CXR data. The learning rate of OSDL is optimized with the help
of ROA for COVID-19 diagnosis showing the novelty of the work. OSDL
model, applied in this study, was validated using the COVID-19 dataset. The
experiments were conducted upon the proposed OSDL model, which achieved
a classification accuracy of 99.83%, while the current Convolutional Neural
Network achieved less classification accuracy, i.e., 98.14%.
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1 Introduction

All human activities have been severely affected by the outbreak of COVID-19, a deadly disease
caused by the SARS-CoV-2 virus [1]. As of December 2019, 6.18 million people worldwide have been
diagnosed with the CoV-2 virus. Since its discovery, there have been an estimated 80 million cases
diagnosed across the globe, including 35 million in the Americas, 26 million in Europe, and 1.8 million
verified deaths worldwide as of January 1, 2021 [2]. In this pandemic, people must avoid close contact
with those infected by the virus, as it has been categorized as a super-spreader globally [3]. Maintaining
social distance is the best method to prevent spreading this contagious virus. Patients affected with this
disease need immediate treatment to stop the further spread and ensure the patient’s survival. Hence,
it is critical to diagnose the patients at the earliest for their speedy recovery and containment of the
virus. Although COVID-19 [4] can be detected in multiple ways like rapid antigen tests, qRT-PCR,
etc., the detection methods have a few disadvantages associated with it [5–9].

Deep learning systems have significantly enhanced the diagnostic accuracy of medical imaging. In
recent years, diagnostic accuracy has become essential in emerging AI technology [10–13]. Nowadays,
these intelligent systems can automatically detect many diseases, including COVID-19, allowing faster
progress in early diagnosis and treatment [14]. Many studies based on deep Convolutional Neural
Networks (CNN) have demonstrated promising results in light of these advantages. They are prompted
by the necessity for accurate and automated CXR image interpretation. If deep learning models have
to yield excellent performance, they should be trained using a considerable volume of valid training
data [15,16]. It is possible that the deep learning models cannot be generalized because the COVID-19
CXR dataset is minuscule in volume compared to other pneumonia disease datasets. Various factors
affect the picture segmentation process in biomedical engineering, such as lighting, contrast, noise,
and irregularity in the objects being segmented. An image can be segmented into separate segments
or regions by comparing similar qualities in the vicinity of each other. COVID-19 patients can be
diagnosed using chest radiography images with the help of Deep Learning structures, as demonstrated
by Minaee and colleagues [17]. DenseNet-121, ResNet 18, Squeezenet, and ResNet50 CNN were
used in this study to recognize COVID-19 in chest X-ray images. The study addressed the overfitting
problem by applying a learning dataset to a subset of 2,000 radiograms across all the networks.
Automated segmentation of the infested tissue in CT scan images was achieved by Fan et al. [18] using
the deep network (Inf-Net) model. This study used a decoder to aggregate and create a global map
of high-level features. This was followed by incorporating explicit and implicit edge-attention into the
model to segment the borders in a better manner.

Detection of COVID-19 from high volumes of CT scan images, using Wang’s 3D deep DeCoVNet,
was proposed in the study conducted earlier [19]. 3D lung masks were created using a pre-trained
UNet model. The three stages of the proposed DeCoVNet are outlined herewith. In the initial
stage, known as ‘network stem’, a simple 3D convolution was used. ResNet and AlexNet visual
info were preserved using batch normalization and pooling layers with kernel size 5 × 7 × 7 to
maintain local visual information. In the second phase, the study used two 3D residual blocks
(ResBlocks). Another tool employed in this study was ProClf, a progressive classifier proposed by
Barstugan et al. [20]. It allows early-phase detection of COVID-19 by employing five different feature
extraction techniques. Support Vector Machine (SVM) and 10-fold cross were used to classify the
extracted features in the organization course. COVID19’s robust screening model relies upon DL-
NN, according to Panwar et al. [21]. Toraman’s research [22] proposed a new artificial neural network
(ANN) technique to forecast COVID-19. Convolutional CapsNet and CXR pictures were used in the
proposed algorithm. This classification system includes both binary and multi-class choices. It also has
an extensive collection of images from normal pneumonia as well as COVID-19 patients. In this study,
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a 10-fold cross-validation method was used to appraise the presentation of the obtainable process.
For binary and multi-classification, the simulation results showed remarkable accuracy. Hardware
resources and computing time were the main constraints, highlighted by developers in this study.

Nour et al. [23] developed a COVID-19 tool to perform therapeutic activities. In-depth features
and Bayesian optimization were utilized in the development of this strategy. The CNN framework
is used when using k-nearest neighbor (kNN), SVM, and Decision Tree (DT) to extract the features
from data automatically. The dataset contained various sample images for COVID-19, normal, and
pneumonia patients. Data augmentation was done to upsurge the sum of instances of the COVID-
19 class. Both training and testing datasets were used to determine how well the new framework
performs its intended function. For optimum accuracy, the study recommended the usage of a freshly-
predicted CNN.

Mansour et al. [24] developed a novel unsupervised DL-based variational autoencoder (UDL-
VAE) model for COVID-19 detection and classification. To improve the image quality of the model
they included a preprocessing technique that was based on an adaptive Wiener filter (AFW). The
superior diagnostic performance of the UDL-VAE model was verified by a series of experiments for
which the effective result was observed. The obtained model values showed the UDL-VAE results
with the highest precision of 0.987 and 0.992 in the binary and multiple classes, respectively. This
model will diagnose COVID-19 using other imaging modalities like computed tomography (CT).
Using the data augmentation method, the researchers in Ahuja’s study [25] applied stationary wavelets
and related diverse transmission learning CNN constructions to increase the amount of training given
to the proposed method. In the dataset, the maximum number of COVID-19 images was used. In
order to maximize the number of instances for both classes, the researchers developed augmentation
approaches. At this point, the samples were trained, and the results were validated. As a part of the
approach, ResNet 18 approach was used to test the binary classifiers, and the models given showed
improved accuracy.

In-depth features and PF-BAT improved PF-FKNN classifiers were used by Kaur et al. [26] to
identify the novel coronavirus. FKNN training was used in the proposed method to extract the feature.
It is possible to fine-tune the hyperparameters of FKNN using the PF-BAT method. COVID-19 can
be diagnosed from chest X-ray images using an automated technique proposed by Singh et al. [27].
The study’s analysis of the chest X-ray image included an improved depth-wise CNN model. Mul-
tiresolution analytical results were integrated into the network using wavelet decompositions. Using
the frequency sub-bands of the input image, a neural network was able to determine the disease in this
study. The networks were designed to distinguish COVID-19 and pneumonia from the images used as
inputs. A deep uncertainty-aware TL construction method was reported by Shamsi et al. for COVID-
19 detection using healthcare images [28]. ResNet50 and DenseNet121 were utilized to extract the deep
features from CT and X-ray images at the beginning of this investigation. Later, to diagnose COVID-
19, different ML and statistical modeling approaches were used to extract the feature information. In
the method created by Wu et al. [29], fine-grained labeling of the opacification of the lung parenchyma,
i.e., better attenuation, was achieved by annotating 3,855 chest CT scans from 200 people.

Quantum Seagull Optimization Algorithm (QSGOA-DL) was developed by Ragab et al. [30]
based on DL-based COVID-19 analysis. CXR pictures were used in the proposed QSGOA-DL
method to identify and categorize COVID-19. While the QSGOA technique is utilized for hyper-
parameter optimization, the QSGOA-DL method uses EfficientNet-B4 for feature extraction. Fur-
thermore, a multilayer extreme learning machine (MELM) model is also used to classify the data.
For hyper-parameter optimization, a new model was developed in this study called QSGOA based on
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EfficientNet-B4. The researchers conducted simulations on the CXR dataset and analyzed the findings
in several ways.

The current investigation is focused on the classification of CXR images. Preprocessing stage
removes any unwanted noise from the margins of the image. Next, CXR images are classified using
the Optimized Synergic Deep Learning (OSDL) model, which uses Remora Optimization Algorithm
(ROA) to optimize the SDL learning rate. The COVID-19 dataset was used in this study to support
the explanation for the OSDL model. Following is a summary of various contributions made by the
current study

• Proposed an automatic detection and classification model for CXR pictures using a deep
learning network.

• Preprocessing is done to remove any visible noise from the image’s edges.
• Using the OSDL-based classification model, COVID-19 stages are categorized.
• ROA is used to fine-tune the learning rate of the suggested deep learning model
• With the use of the COVID-19 dataset, many experiments were carried out, and the results were

measured under different parameters,

The introduction section presents an immediate opening about COVID-19, a problem statement,
and a solution for current research work. A brief explanation for the proposed procedure with the
dataset is depicted in Section 3. The experimental analysis conducted upon the proposed methodology
and a comparison with existing works are dealt with in Section 4. Finally, the scientific contributions
of the current research work are detailed in Section 5.

2 Proposed Methodology

In this study, preprocessing is carried out using the Gaussian Filtering (GF) technique to remove
the noise in the image. Then, Optimized Synergic Deep Learning (OSDL) model is also used for
final classification, whereas Remora Optimization Algorithm (ROA) is used for adjusting the learning
rate of the OSDL model; therefore, the proposed model is named after GF-OSDL-ROA. Finally,
CXR images are segregated into two classes such as COVID-19 and non-COVID-19. Fig. 1 shows
the workflow of the proposed methodology.

Figure 1: Workflow of the proposed model



CMC, 2023, vol.75, no.3 5259

2.1 Dataset Explanation

To test the proposed GF-OSDN-ROA model, the authors used a chest X-ray dataset. The dataset
contains 220 COVID-19 images, 27 normal shots, 11 SARS, and 15 Pneumocystis images [31].

2.2 GF-Based Preprocessing

Smoothing and noise reduction are typical applications of a 2D Gaussian filter. Although it
requires enormous computing power, it is an exciting research subject thanks to its efficiency in the
implementation process. Gaussian smoothing is suggested by convolution and is defined as a Gaussian
operator. This document includes a 1-D Gaussian operator [32].

G1D (x) = 1√
2πσ

e
−

(
x2

2σ2

)
. (1)

According to the published research, the most effective image smoothing filter is found by
performing localization [32]:

�x�ω ≥ 1
2

. (2)

The following equation provides the formula for the 2D Gaussian operator [32].

G2D (x, y) = 1√
2πσ 2

e
−

(
x2+y2

2σ2

)
. (3)

The SD of a Gaussian function is referred to as (Sigma). Image smoothing gets enhanced when
it is set at a maximum value. Cartesian coordinates (x,y) denote the window’s dimensions depicted in
this image. Then, the preprocessed images are fed into the classifier, which makes data predictions.

2.3 OSDL-Based Classification

The proposed OSDL model includes three primary mechanisms as the input layer, the k deep CNN
(DCNN) mechanism, and C k2 Synergic Network (SN) [33]. Fig. 2 depicts the whole SDL model.
With the help of appropriate labeling of incoming data, each DCNN element in the network structure
generates a self-governing learning representation. Synergic errors can be eliminated using a model of
fully-connected construction layers to check that the input layer falls under a similar class. Afterward,
the SDL model is divided into three submodules.

Figure 2: Architecture of SDL
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2.3.1 xPair Input Layer

For the projected OSDLk model, a random subset of the training data is selected in contrast to the
sequential processing of the standard DCNN model. A Synergic network (SN) provides a synergistic
label for every pair of data sets with a class label of 200, which are then sent into DCNN components.
The photos are then downsized to 224 × 224 × 3 pixels using bicubic interpolation to maintain a
consistent size.

2.3.2 DCNN Component

It is possible to utilize ResNet-50 to initialize each DCNN as DCNN-a (a = 1, 2, 3, ..., n) because
of its inherent ability. In addition, any DCNN can be used as a DCNN component in the SDL model.
Using data sequences, these components are trained X = {x(1), x(2), ..., x(M)}, where the subsequent
class label series Y = {y(1), y(2), ..., y(M)}. This computes the collection of variables θ that lessen the
cross-entropy loss as given below [33].

log (θ) = 1
M

[∑M

a=1

∑K

b=1
1

{
y(1) = b

}
log

eZ(a)
b∑K

l=1 Z(a)

l

]
. (4)

where n designates the class total, and Z(a) = F(x(a), θ) signifies onward computing. The obtained
variable set for DCNN-a is characterized as θ , whereas the variables are communal amongst numerous
CNN mechanisms.

2.3.3 SDL Model

An SN that consists of an input layer, a concatenate layer, a learning layer, and an output layer is
used to supervise each DCNN component further using synergic labels for each data pair. Consider
(ZA, ZB) DCNNa and DCNNb as two DCNN components while each receives a data pair as input. As
shown below, DCNN can learn in-depth data features using forward computing based on the results
of the last fully-linked layer of DCNN.

fA = F(ZA, θ (a)). (5)

fB = F
(
ZB, θ (a)

)
. (6)

Then, the deep topographies from each data are combined using fA◦B, whereas the specific
consequence is the synergy for the data pair as given below.

ys (ZAZB) =
{

1 if yA = yB

0 if yA �= yB

. (7)

It is recommended that between 45 and 55 percent of batch data pairs are balanced in order to
avoid problems with imbalanced data. When another sigmoid layer is enclosed, it becomes easy to see
the synergic signal, whereas binary loss is shown below.

lS
(
θ S

) = ys log ŷs + (1 − ys) log (1 − ŷs) . (8)

Here θ S is the SN variable, and ŷs is the computation of SN in the future. A synergic error can only
be remedied if the input data pair is of a similar type, which was proved earlier.
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2.3.4 Training and Testing

DCNN and SN parameters can be adjusted [34,35] after completing the training phase.{
θ (a) (t + 1) = θ (a) (t) − η (t) .Δ(a)

θ S(a) (t + 1) = θ S(a) (t) − η (t) .ΔS(a,b).
(9)

where η (t) and S(a, b) signifies the learning rate and SN between DCNNa and DCNNb as shown
below.

�(a) = ∂I (a)(θ (a))

∂θ (a)
+ λ

∑n

b=1,b�=a

∂lS(a)(θ S(a,b))

∂θ S(a,b)
. (10)

ΔS(a) = ∂lS(a)
(
θ S(a,b)

)
∂θ S(a,b)

. (11)

Moreover, λ denotes the subversion of categorization and synergic error, which are shown to be
a trade-off. To summarize, enhancements have been made to the SDL2 training model. As a result
of using skilled personnel SDLk, it is ideal for categorizing the test data x. DCNN–I can be obtained
using a forecast vector p(a) = (p(a)

1 , p(a)

2 , . . . p(a)

k ). In the final, fully linked layer, activation is done as
shown below, while the class labels of the test data are predicted herewith.

y (Z) = argmax
j

{∑k

i=1
p(i)

1 , . . .
∑k

i=1
p(i)

j , . . . .
∑k

i=1
p(i)

K . (12)

In Eq. (9), the learning rate is optimized/attuned by ROA, which is clarified in the section given
below.

2.4 Remora Optimization Algorithm (ROA)

When Remora first sets off on a global journey, it is referred to as ‘Free travel’ in ROA [36].
The long-distance position of the sailfish is updated in this step which also includes a ‘large global’
movement associated with Remora adsorption on the sailfish. As a bonus, there is a ‘little global’
movement, an ‘Experiment attack’ on Remora. However, the outcome of the endeavor is an essential
consideration when deciding whether or not to switch hosts. Remora undergoes a partial renewal
during this exploration phase. At this point, Remora begins to focus on the goal of eating. This stage
is named ‘eat thoughtfully’. Remoras may follow a huge host to eat or feed on parasites living on the
host. Two typical examples include a specific ‘bubble net’ position inform mode of WOA and ‘Host
feeding’. A ‘Remora factor’ is generated in the ‘Host feeding’ module based on various placements
of the whale’s other components to expand the optimization accuracy. This section presents two
mathematical models, ‘Eat thoughtfully’ and ‘Free travel’.

2.4.1 Initialization

Remora is a candidate solution in the ROA algorithm, and its site ‘R’ in the search space is the
variable of the problem. A Remora’s position vector changes depending on how many dimensions
it swims (one, two, three, or more). The position is Ri = (Ri1, Ri2, . . . Rid), RBest = (R∗

1, R∗
2, . . . R∗

d)

the optimal algorithmic solution to the food problem (target). A fitness function should accompany
each possible solution in the algorithm. It is possible to say that f (Ri) = f (Ri1, Ri2, . . . Rid). f is the
consistent rule for calculating the fitness function. f (RBest) = f (R∗

1, R∗
2, . . . R∗

d) denotes the location of
the Remora with the best fitness value, and it should be saved. It is to be noted because Remora is
the most important aspect of finding a solution, spreading across the search area. Remora does not
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need help from other marine species or ships regarding location updates. These tools help Remora
to locate the best possible position in a specific area. However, there are two ways to determine the
ideal location, depending on whether or not the user takes the initiative to select alternative modes of
operation.

2.4.2 Free travel

• SFO Strategy

As soon as Remora is assigned to a swordfish, its location is understood as updated. The location
update formula of the algorithm is improved based on the idea of the following elite algorithm [36].

Rt+1
i = Rt

Best −
(

rand (0, 1) ∗
(

Rt
Best + Rt

rand

2

)
− Rt

rand

)
. (13)

There are currently t iterations in this example, and the total number of iterations that can be
finished is referred to as ‘T’. In this situation, R rand is the random position. An elite Remora is the
best place for improvement. Additional Remoras are placed to guarantee that the search area has been
thoroughly examined. As long as the fitness function value of the Remora is higher than the previous
generation’s, the Remora is chosen for different hosts. It is used in the calculation of the current fitness
function value.

• Knowledge attack

A tiny step is required around the host to regulate whether or not it is required to alter the host,
just like the acquisition of knowledge. The following formula is applied for the above concepts to be
translated into a mathematical form.

Ratt = Rt
i +

(
Rt

i − Rpre

) ∗ randn. (14)

where Rpre might be viewed as a type of experimentation, Ratt indicates a tentative step. A ‘little global’
movement can be considered when Remora takes an active step in which rand n is selected. Although
predictability should be considered, this method has been refined across a large development spectrum
to effectively jump out of local optima. After this, Remora must decide on whether or not to replace
the host. In this stage, comparing Rt

i and R att fitness function values can be used to express the
current evaluation. Despite the less fitness function value achieved by the attempted solution, it is still
considered a reasonable attempt to solve the minimum problem.

f
(
Rt

i

)
> f (Ratt) . (15)

Remora selects a distinct feeding strategy for local optimization, as shown in the following section.
To return to host selection, if the fitness function value of the attempted solution is higher than the
fitness function value of the existing solution, then the formula follows.

f
(
Rt

i

)
< f (Ratt) . (16)

2.4.3 Eat Thoughtfully

• WOA Strategy

The ‘location’ inform formula for the Remora devoted to the whale, is derived from the unique
WOA algorithm as given below.
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Ri+1 = D∗ea∗ cos (2πa) + Ri. (17)

a = rand (0, 1) ∗ (a − 1) + 1. (18)

a = −
(

1 + t
T

)
. (19)

D = |RBest − Ri| . (20)

when a Remora is attached to a whale, both locations can be treated as the same caused of the more
comprehensive solution space. D distance separates hunters and prey while a random value in the
range [−1, 1], and decreases linearly between [−2, −1].

• Host feeding

The exploitation process is further broken down into host feeding. Solution space can be abridged
to the physical position of the host at this point. Small steps, which can be mathematically described,
can be used to move around the host:

Rt
i = Rt

i + A. (21)

A = B∗ (
Rt

i − C∗RBest

)
. (22)

B = 2∗V ∗rand (0, 1) − V . (23)

V = 2∗
(

1 − t
Maxiter

)
. (24)

In order to denote the modest step of drive, concerning the host space capacity, the letter A is
utilized here. The Remora factor C is employed to limit the position of Remora in solution space so
that the host can be distinguished. Furthermore, it is scientifically understood to have the best potential
to eat and evade predators.

Consequently, host feeding can be fine-tuned further. So, B should be leveraged to create a
random-volume environment for the host. When Remora is attached to a host, the search area shrinks
over a while.

3 Result and Discussion

The experimental validation of the proposed model is provided in detail. The proposed model is
simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD,
and 1 TB HDD. The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch
size: 5, epoch count: 50, and activation: ReLU.

Table 1 provides the results achieved by the GF-OSDL-ROA model under various measures and
sums of folds. Fig. 3 is a graphical representation of sensitivity and specificity values achieved by the
proposed model, whereas Fig. 4 shows the results achieved in terms of precision and accuracy. Finally,
the F-score and Kappa’s graphical analysis results are shown in Fig. 5.
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Table 1: Results of the proposed GF-OSDL-ROA model under diverse measures and number of folds
(values are in %)

No. of folds Accuracy Specificity Sensitivity Precision F-score Kappa

Fold 1 99.92 99.77 99.89 99.48 99.30 99.41
Fold 2 99.72 99.19 93.56 99.86 99.37 99.58
Fold 3 99.38 94.75 99.87 99.67 99.48 99.30
Fold 4 93.08 99.97 92.90 94.76 92.48 92.46
Fold 5 93.57 94.74 99.88 94.90 94.68 93.75
Fold 6 99.20 99.84 94.76 99.47 99.23 99.55
Fold 7 99.12 95.44 99.74 99.57 99.15 99.51
Fold 8 93.51 99.47 93.80 95.97 93.57 94.37
Fold 9 99.95 99.54 99.62 99.98 99.26 99.45
Fold 10 93.39 99.89 99.10 95.80 94.49 93.58
Average 99.83 99.84 99.81 99.84 99.82 99.50

Figure 3: Sensitivity and specificity results achieved by the proposed model under different folds

The proposed GF-OSDL-ROA model achieved peak sensitivity and specificity values such as
99.89% and 99.77%, respectively, under fold 1. Additionally, under fold 2, the GF-OSDL-ROA model
yielded a 93.56% sensitivity and 99.19% specificity score. Further, the proposed GF-OSDL-ROA
approach accomplished the highest sensitivity and specificity values, such as 99.87% and 94.75%,
respectively, under fold 3. Furthermore, under fold 4, the GF-OSDL-ROA approach achieved a
high specificity of 92.90% and high sensitivity of 99.97%. GF-OSDL-ROA showed 99.88% sensitivity
and 94.74% specificity under fold 5, and the values are considered the best ones. Thus, under fold
6, the proposed GF-OSDL-ROA approach yielded 94.76% sensitivity and 99.84% specificity. High
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sensitivity and specificity (99.74% and 95.44%, respectively) were achieved using the newly-designed
GF-OSDL-ROA technique under fold 7. In addition, when the GF-OSDL-ROA approach was used
under fold 8, the best specificity of 93.80% and sensitivity of 99.47% were achieved. Further, under fold
9, using the GF-OSDL-ROA approach, the authors accomplished a superior sensitivity of 99.52% and
a specificity of 99.554%. At the same time, the proposed GF-OSDL-ROA model attained a sensitivity
of 99.10% and a specificity of 99.89% under fold 10.

Figure 4: Precision and accuracy results achieved by the proposed model under different folds

Figure 5: F-score and Kappa results accomplished by the proposed model under different folds
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Precision and accuracy values improved to 99.48% and 99.92%, respectively, when using the pro-
posed GF-OSDL-ROA technique under fold 1. GF-OSDL-ROA also achieved the highest precision of
99.86% and an accuracy of 99.72%, respectively, under fold 2. It was found that the GF-OSDL-ROA
technique attained a 99.67% precision and 99.38% accuracy when using fold 3. Further, the proposed
GF-OSDL ROA model yielded a superior precision of 94.76% and an accuracy of 93% under fold
4. Fold 5 yielded a high precision (94.90%) and accuracy (93.57%) for the created GF-OSDL-ROA
model. In addition, the suggested GF-OSDL–ROA model achieved a precision of 99.47% and an
accuracy of 99.20% at fold 6. GF-OSDL-ROA’s precision and accuracy values were 99.57% percent
and 99.12%, respectively, when tested under fold 7. GF-OSDL-ROA projected a precision of 95.97%
and an accuracy of 93.51%, which were higher in fold 8. In addition, the proposed GF-OSDL-ROA
technique achieved an extreme precision of 99.98% and an accuracy of 99.95% under fold 9. Finally, the
proposed GF-OSDL-ROA model achieved 95.80% precision and 93.39% accuracy, correspondingly,
when using fold 10.

With an F-score of 99.30% and a kappa of 99.41%, the proposed the GF-OSDL-ROA method
was found to have performed well under fold 1. Under fold 2, GF-OSDL-ROA technique achieved a
high F-score of 99.37% and a kappa of 99.58%. F-score and kappa values were 99.48% and 99.30%,
respectively, when using the GF-OSDL-ROA framework under fold 3. As a result, under fold 4, the
proposed GF-OSDL-ROA scheme achieved a high F-score of 92.48% and a high Kappa value of
92.46%; A perfect F-score of 94.68% was found under fold 5, in addition to an excellent kappa value
of 93.75% by the proposed method. The proposed GF-OSDL-ROA model achieved optimal F-score
and kappa scores such as 99.23% and 99.55% under fold 6. The best F-score (99.15%) and kappa
values (99.51%) were achieved by the proposed GF-OSDL-ROA model under fold 7. At 93% and
94% F-score and Kappa values, the proposed GF-OSDL-ROA showed superior under fold 8. When
applied under fold 9, the proposed GF-OSDL-ROA technique generated an F-score of 99.26% and
a kappa value of 99.45%. GF-OSDL-ROA technique attained a high F-score 94.49% and a kappa of
93.58%, correspondingly, under fold 10. Based on these values listed in Table 2, it can be concluded
that the proposed GF-OSDL-ROA model achieved the maximum average sensitivity and specificity
value, i.e., 99.81% and 99.84%, average precision (99.84%), average accuracy (99.83%) with an average
F-score of 99.82% and an average kappa-value of 99.51%.

Table 2: Overall results of GF-OSDL-ROA model on different training/testing datasets

Measures Precision Sensitivity Specificity Accuracy F-score Kappa

Training/testing (80:20) 0.9984 0.9981 0.9984 0.9983 0.9983 0.9966
Training/testing (70:30) 0.9972 0.9969 0.9972 0.9971 0.9971 0.9941
Training/testing (60:40) 0.9963 0.9953 0.9963 0.9958 0.9958 0.9916
Average 0.9973 0.9968 0.9973 0.9971 0.9971 0.9941

When using 80% of training data and 20% of testing data, the proposed GF-OSDL-ROA achieved
the same accuracy and F-score value, i.e., 99.83%. 99.84% same value specificity and precision, 99.81%
sensitivity, and 99.66% Kappa. The performance of the proposed model showed a few variations when
experimented with using 70% of training data and 30% of testing data. For instance, the proposed GF-
OSDL-ROA achieved 99.72% precision, 99.69% sensitivity, 99.72% specificity, 99.41% kappa, and
99.71% same accuracy with F-score values. In the experimental analysis, the proposed model achieved
99.16% Kappa, 99.53% sensitivity, 99.63% same specificity and precision values, and 99.58% same
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accuracy and F-score values when using 60% of training data and 40% of testing data. Finally, the
proposed model achieved the average precision and specificity of 99.73%, 99.71% accuracy, F-score
values, 99.68% sensitivity, and 99.41% of Kappa. Table 3 and Fig. 6 show the validated analysis results
achieved by GF-OSDL-ROA and other existing deep learning classifiers when using 80% of training
data and 20% of testing data.

Table 3: Comparative analysis results of GF-OSDL-ROA model and other existing deep learning
approaches (values in %)

Models Sensitivity Specificity Precision Accuracy F-score

LSTM 93.61 94.56 94.85 94.08 93.20
Auto-encoder 99.00 98.00 98.00 98.53 98.00
RNN 99.00 97.00 97.00 98.29 98.00
GAN 98.00 98.00 98.00 98.14 98.00
DNN 97.00 97.00 97.00 97.21 97.00
CNN 98.00 98.00 98.00 98.14 98.00
GF-OSDL-ROA 99.81 99.84 99.84 99.83 99.83

Figure 6: Comparative analysis results of the proposed model and other existing deep learning
classifiers

In the accuracy analysis, LSTM achieved 94.08%, auto-encoder achieved 98.53%, RNN achieved
98.29%, GAN achieved 98.14%, DNN achieved 97.21%, CNN achieved 98.14%, and the proposed
GF-OSDL-ROA achieved the highest accuracy, i.e., 99.83%. While the experiments were carried out
in terms of sensitivity too, LSTM achieved 93.61%, auto-encoder achieved 99%, RNN achieved
99%, GAN achieved 98%, DNN achieved 97%, CNN achieved 98%, and the proposed GF-OSDL-
ROA achieved the maximum sensitivity of 99.81%. In specificity validation analysis, LSTM achieved
94.56%, auto-encoder achieved 98%, RNN achieved 97%, GAN achieved 98%, DNN achieved 97%,
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CNN achieved 98%, and the proposed GF-OSDL-ROA achieved a superior specificity of 99.84%. In
F-score analysis, auto-encoder, RNN, GAN, and CNN achieved 98%, DNN achieved 97%, LSTM
achieved 93.20%, and the proposed GF-OSDL-ROA achieved the highest F-score of 99.83%. While
all the techniques were tested for precision, auto-encoder, GAN, and CNN achieved 98%, RNN and
DNN achieved 97%, LSTM achieved 94.85%, and the proposed model achieved a superior precision
of 99.84%. For more experimental analysis, the proposed model was tested against pre-trained models
in terms of accuracy. Various DN models such as 201, 169, and 121 achieved 92.90%, 91.20%, and
88.90% accuracy values, Xception model achieved 88.50%, Inception V3 achieved 89.40%, RN-101
model achieved 96.25%, and the proposed GF-OSDL-ROA model achieved a supreme accuracy of
99.83%.

4 Conclusion

CXR images can be used for the detection of classification of COVID-19 using the OSDL-
based deep learning model suggested in this study. Using CXR pictures with the highest detection
rate, this study aims at identifying various stages of COVID-19. Preprocessing includes the utilizing
the GF model to remove any unwanted noise from the edges. SDL model is used to categorize
CXR images under several stages, while ROA is used to alter the learning rate of SDL. With this
dataset, the proposed OSDL model was validated for COVID-19 identification. The proposed model’s
classification accuracy was found to be 99.993%, sensitivity 99.81%, and specificity 99.94%. Thus, the
proposed method proved its superiority in all the measures compared to other existing algorithms.
In the future, filtering algorithms can be added to this model to enhance the quality of images
captured before processing. Highly advanced optimization and hybrid strategies can also be involved
by fine-tuning the hyper-parameters such as epoch/dropout/number/motion function to achieve highly
optimized performance.
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