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Abstract: Prediction of machine failure is challenging as the dataset is
often imbalanced with a low failure rate. The common approach to han-
dle classification involving imbalanced data is to balance the data using a
sampling approach such as random undersampling, random oversampling,
or Synthetic Minority Oversampling Technique (SMOTE) algorithms. This
paper compared the classification performance of three popular classifiers
(Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine)
in predicting machine failure in the Oil and Gas industry. The original
machine failure dataset consists of 20,473 hourly data and is imbalanced with
19945 (97%) ‘non-failure’ and 528 (3%) ‘failure data’. The three independent
variables to predict machine failure were pressure indicator, flow indicator,
and level indicator. The accuracy of the classifiers is very high and close to
100%, but the sensitivity of all classifiers using the original dataset was close to
zero. The performance of the three classifiers was then evaluated for data with
different imbalance rates (10% to 50%) generated from the original data using
SMOTE, SMOTE-Support Vector Machine (SMOTE-SVM) and SMOTE-
Edited Nearest Neighbour (SMOTE-ENN). The classifiers were evaluated
based on improvement in sensitivity and F-measure. Results showed that the
sensitivity of all classifiers increases as the imbalance rate increases. SVM
with radial basis function (RBF) kernel has the highest sensitivity when
data is balanced (50:50) using SMOTE (Sensitivitytest = 0.5686, Ftest = 0.6927)
compared to Naïve Bayes (Sensitivitytest = 0.4033, Ftest = 0.6218) and Logistic
Regression (Sensitivitytest = 0.4194, Ftest = 0.621). Overall, the Gaussian Naïve
Bayes model consistently improves sensitivity and F-measure as the imbalance
ratio increases, but the sensitivity is below 50%. The classifiers performed
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better when data was balanced using SMOTE-SVM compared to SMOTE
and SMOTE-ENN.

Keywords: Machine failure; machine learning; imbalanced data; SMOTE;
classification

1 Introduction

Predictive analytics have shown great potential in Oil and Gas activities such as process monitoring
of the machine, production, and gas quality. Proper data management and data analytics can identify
problems such as missing data, outliers, and anomalies. An efficient data analytics and data-driven
decision platform will empower engineers and senior management to make data-driven decisions and
solutions in a timely manner. Big data technology enables the collection of massive amounts of data
in real-time. Big data analytics using machine learning and deep learning can turn information from
data into meaningful insights for actionable solutions. Machine learning (ML) involves data science,
computational and algorithmic skills combined with statistical theory and reasoning. In recent years,
a novel approach to data exploration, data modelling methods, and machine learning algorithms has
emerged that focus on effective computing for insights from data rather than establishing theory. Even
though these machine learning methods for making predictive models can be useful and powerful, they
must be used with a thorough understanding of each method’s pros and cons, as well as an essential
understanding of bias and variance, overfitting and underfitting, outliers, missing values, types of data,
and imbalanced data.

Imbalanced data sets are often encountered in classification problems [1–4] in which the distribu-
tion of classes of the target variable varies greatly. In most cases, there are two classes: the majority (or
negatives) and the minority (or positives). Statistical and machine learning classification algorithms
normally require a balanced training set to have good prediction performance, and imbalanced
data will cause the model to be biased towards the majority (negative) class. Computer system and
hardware failure [5,6], auto-insurance claim [7], insurance fraud detection [8,9], cancer diagnosis
[10,11], customer churn prediction [12], face re-identification [13] and dengue outbreak prediction
[14] are some real-world applications where the data is imbalanced.

Machine learning classifiers such as logistic regression, decision trees, naïve bayes, support vector
machine (SVM), and artificial neural network (ANN) are not efficient when the data is imbalanced.
Since the event of interest is the prediction of the minority class, the classifier’s sensitivity will be very
low or close to zero, while its specificity will be close to one hundred percent when data is imbalanced.
The high specificity will result in high classification accuracy and thus is misleading in reflecting the
classifier’s performance as the model failed to predict the minority class accurately. The minority class
is frequently misclassified [1–3,15].

Machine failure in the industry often occurs without warning, with varying degrees of indirect
damage to health, safety, the environment, business, and reputation. According to experts in the oil
and gas fields, machine failure can occur between days and weeks, weeks and months, or months and
years [16]. Unanticipated machine failure in industrial processes results in high maintenance costs
and output delays. Therefore, understanding and predicting critical situations before they occur can
be a valuable way to avoid unexpected breakdowns and save costs associated with failure [17]. One
application of machine failure prediction is rescheduling the plan based on the forecast results. Many
research findings have been compiled on the topic of dynamic rescheduling strategy under mechanical
fault. The two-stage particle swarm optimization can be used to solve the machine failure prediction
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scheduling problem by considering possible machine breakdowns [18]. However, using prediction
methods to predict machine failure should be explored and encouraged for practical implementation
to avoid downtime and failure costs.

Many machine learning classifiers have been used to classify machine failure data using oversam-
pling techniques in an imbalanced dataset [19,20]. Recent studies also applied the synthetic minority
over-sampling (SMOTE) technique to cater to imbalanced datasets [21]. Since the SMOTE technique
has shown impressive performance, many innovations have been made to enhance the method, such
as borderline-SMOTE, SMOTE-Tomek, SMOTE-Edited Nearest Neighbour (SMOTE-ENN), and
SMOTE-Support Vector Machine (SMOTE-SVM). These variants of SMOTE have been applied and
tested in various fields to evaluate the performance of ML classifiers [22–26].

Big Data Analytics has demonstrated potential in the oil and gas industry, including downstream
(forecasting crude oil prices, predicting market volatility), midstream (predictive maintenance, ship-
ping performance, energy efficiency), and upstream (analyzing seismic data, drilling performance,
hazard events, and damage prediction) activities [27–29]. Predictive maintenance predicts failure and
allows early interventions and corrective actions. Therefore, it can lead to significant cost savings,
higher predictability, and efficient maintenance of the machine and systems. In addition, predictive
maintenance minimizes downtime and optimizes periodic maintenance operations. Predictive main-
tenance can be formulated using the classification approach to predict the possibility of failure or the
regression approach to estimate the time to the subsequent failure (or Remaining Useful Life).

In this paper, we focused on data related to the upstream stage of predictive maintenance of the Oil
and Gas pumping system using a classification approach. A clean time series data called the Produced
Water Re-injection (PWRI) dataset was obtained with permission from an Oil and Gas company
in Malaysia for research purposes. The aim is to evaluate machine failure prediction using machine
learning classifiers. Due to the presence of imbalanced data, we used the SMOTE techniques (SMOTE,
SMOTE-SVM, SMOTE-ENN) to create different imbalance ratios and compared the classification
performance of logistic regression, Gaussian Naïve Bayes, and SVM. This study aims to find out
which SMOTE techniques are better at improving the performance of machine learning classifiers for
predicting machine failure under different imbalance rates.

The paper is structured as follows. Section 2 presents a review of SMOTE techniques for balancing
the data and machine learning classifiers. Section 3 covers a description of the methodology and
evaluation of the classifiers. The results are presented in Section 4, and Section 5 concludes the paper
with recommendations for future work.

2 Literature Review
2.1 SMOTE Techniques

The three approaches for handling imbalanced data are resampling at the data level, algorithms,
and cost-sensitive methods. The most common way to deal with unbalanced data is to use resampling
methods, like random undersampling or oversampling, which try to rebalance the majority and
minority classes. This is because these methods are easy to use. In addition to simple random
oversampling of the minority class, new methods like SMOTE [30] were created.

Meanwhile, some common algorithms are the Bagging and Boosting (Gradient Boosting
(XGBoost) and Adaptive Boosting (AdaBoost)) algorithms. Also, algorithms for large and imbalanced
datasets include decision-tree-based ensemble machine learning classifiers like XGBoost [31],
XGBoost and AdaBoost by [32], and enhanced AdaBoost [33].
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Cost-sensitive methods combine algorithm and data approaches to incorporate different misclas-
sification costs for each class in the learning phase. AdaCost [34,35] and cost-sensitive boosting (CSB)
[36,37] are two extensions of AdaBoost that incorporate the misclassification cost of an instance in
order to provide more accurate classifications.

Random undersampling of majority cases causes loss of data samples while oversampling or
duplication of minority cases could lead to overfitting of minority classes [15,38]. Synthetic Minority
Oversampling Technique (SMOTE), which is a technique that increases synthetic data based on the
closest k-Nearest Neighbor (k-NN) of each instance of the minority class [30], overcomes the issue of
overfitting in oversampling [39]. However, although SMOTE is the standard in the learning framework
for imbalanced data [15], this technique is known to produce noise, thereby risking synthetic data
samples of the minority class from being recognized as part of the majority [40–42].

SMOTE oversampling technique only works for the dataset with all continuous features. SMOTE-
Nominal and Continuous (SMOTE-NC) can be used for a dataset with a mix of categorical and
continuous features. SMOTEBoost [43], SMOTE-Tomek, SMOTE-ENN [44], Borderline-SMOTE
[45], Adaptive Synthetic (ADASYN) [46], and SMOTE-SVM [47] are some variants of SMOTE. A
summary of some SMOTE techniques is given in Table 1.

Table 1: Summary of oversampling technique for imbalanced data set

Author Year Method

[30] 2002 Synthetic minority oversampling techniques (SMOTE, SMOTE-N
(Nominal), SMOTE-NC (Nominal Continuous))

[43] 2003 SMOTEBoost
[44] 2004 SMOTE-tomek and SMOTE-ENN
[45] 2005 Borderline-SMOTE
[46] 2008 Adaptive synthetic sampling approach (ADASYN)
[47] 2009 SVM-SMOTE
[48] 2010 Cluster-ensemble-SMOTE (CE-SMOTE)
[49] 2010 Edge-detection-SMOTE
[50] 2011 Cluster based synthetic oversampling (CBSO)
[51] 2011 Synthetic minority oversampling based on sample density (SMOBD)
[52] 2011 Evolutionary SMOTE (ESMOTE)
[53] 2012 Density-based-SMOTE (DSMOTE)
[54] 2015 SMOTE particle swarm optimization (SMOTE-PSO)
[55] 2015 Restricted boltzmann machine SMOTE (RBM-SMOTE)
[56] 2016 Genetic algorithm SMOTE (GASMOTE)
[57] 2016 Automatic neighbourhood determination smote (ANDSMOTE)
[58] 2017 Clustering using representatives SMOTE (CURE-SMOTE)
[59] 2018 Adaptive multi-objective swarm crossover optimization (AMSCO)
[60] 2019 Geometric SMOTE (G-SMOTE)
[61] 2020 Limiting radius SMOTE (LR-SMOTE)
[62] 2021 SMOTE encoded nominal and continuous (SMOTE-ENC)
[63] 2022 Deep learning SMOTE (DeepSMOTE)
[64] 2022 Parameter free SMOTE (PF-SMOTE)
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Unlike the random oversampling (ROS) approach, the Synthetic Minority Oversampling Tech-
niques (SMOTE) and SMOTEBoost were developed to perform more intelligent oversampling or
improvised ROS. SMOTE, proposed by Chawla et al. [30], solved the limitation of ROS, an over-
fitting issue, by generating artificial instances in the minority class using the concept of interpolation
and the k-nearest neighbour technique, as shown in Fig. 1.

Figure 1: An illustration of how to generate artificial instances using SMOTE algorithm

A xi positive instance from the minority class is selected to generate new synthetic data points.
Then, based on a distance metric, several Nearest Neighbor (NN) of the same class (points xi1 to
xi4) are chosen from the training set. Finally, a randomized interpolation is carried out to obtain new
instances r1 to r4.

The flow of SMOTE algorithm starts with setting the total amount of oversampling N. Next, an
iterative process is carried out which is composed of several steps. First, a positive instance from a
minority class is selected at random from the training set. Then, its k-NN is obtained. Finally, N of
these k instances are randomly chosen to compute the new instances by interpolation. The difference
between the feature vector (sample) under consideration and each neighbour is taken. This difference
is multiplied by a random number drawn between 0 and 1, and then added to the previous feature
vector. SMOTE generates instances only within or between the available examples and never creates
instances outside the border. Therefore, SMOTE never creates new regions of minority instances. This
approach was found considerably effective in handling the issue of oversampling in an imbalanced
dataset using C4.5 as the classifier [43].

Despite the limitations, SMOTE overcomes random oversampling by generalizing the decision
region for the minority class as it does not necessarily cause over-fitting [30]. The success of SMOTE
has led to new variants, such as borderline-SMOTE, in which only instances close to the borderline
or decision boundary are chosen for oversampling [45]. This approach differs from the existing
oversampling, in which all minority examples or random subsets of the minority class are oversampled.

Batista et al. [44] presented another upscale method, hybridizations of undersampling and
oversampling, where SMOTE is a hybrid with the Tomek Link (TLink) approach. This method
works as follows: SMOTE was used to oversample the minority class. Then, the TLink approach
was used to detect and eliminate the redundant observations in the majority class. This approach
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has shown promising results in handling imbalanced datasets. Then, [44] proposed SMOTE-ENN,
which generated synthetic examples for the minority class and then used ENN (Edited Nearest
Neighbour) method to delete some observations that have different classes between the observation’s
class and its K-nearest neighbours majority class. The Edited-Nearest Neighbor (ENN) method first
finds the k-nearest neighbour of each observation and then checks whether the majority class from
the observation’s k-nearest neighbour is the same as the observation’s class or not. If the majority
class of the observation’s K-nearest neighbour and the observation’s class are different, then the
observation and its K-nearest neighbour are deleted from the dataset. By default, the number of nearest
neighbours used in ENN is k = 3. Thus, SMOTE-ENN combined the SMOTE ability to generate
synthetic examples for minority class and ENN ability to delete some observations, thus producing
better synthetic samples. Meanwhile, SVM-SMOTE [47] balances class distribution by generating new
minority class instances near borderlines with SVM. Here, the SVM algorithm was used instead of k-
NN to identify misclassified examples on the decision boundary.

Due to imbalanced data, failure prediction has evolved to hybrid methods, such as combining
sampling techniques with machine learning classifiers. It is important to understand the type of data
(nominal or continuous) that can be used for SMOTE and variants of SMOTE techniques.

2.2 Logistic Regression

Logistic Regression (LR) is one statistical model for classifying a binary (0, 1) dependent variable.
The event of interest is Y = 1 and 0 otherwise, such as Y = 1(failure) and Y = 0 (non-failure). The
independent variables can be a mixture of nominal, ordinal, or continuous variables. In simple
mathematical form, the logistic regression model [65] with k independent variable is written as:

log
[

p
1 − p

]
= β0 + β1X1 + β2X2 + · · · + βkXk (1)

where p = P (Y = 1) is the probability of the event occurring, β0 is the intercept, βj is the coefficient for
Xj, j = 1, 2, 3, . . . , k. Xj which are the predictor or independent variables. The predicted class of a case
(or customer) is 1 if p (Y = 1) > 0.5, otherwise the predicted class is 0. The odds-ratio (eβ̂j ) provides
information on the effect of Xj on the event Y = 1. If the odds-ratio for a continuous independent
variable is greater than 1 then the likelihood of event Y = 1 increases as X increases. The odds ratio

for a binary categorical independent variable (A, B) is the ratio of two odds:

p
1−p

q

1−q
or

p (1 − q)

q (1 − p)
. If the

odds-ratio is greater than, the odd of failure is higher for pump A, and if the odds-ratio is less than
1, the odds of failure is higher for pump B. If the odds-ratio is equal to 1, then the odd of failure is
equally likely for both pumps. p is the proportion of failure for pump A while q is the proportion of
failure for pump B.

The simulation study by [4] showed that the imbalanced data affected the parameter estimate of the
logistic regression model. The severity of imbalance on parameter estimates of the logistic regression
model depends on sample size and imbalance ratio (IR). The estimates are biased for IR less than 30%,
20%, and 10% when the sample size is 100, 500, and 1000 respectively. While for larger samples, the
estimates are biased when IR is 5% and below. Machine learning techniques such as logistic regression,
decision trees, naïve bayes, and support vector machines have low sensitivity when imbalanced data
[14].
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2.3 Naïve Bayes and Gaussian Naïve Bayes

Naïve Bayes is a classification technique based on Bayes Theorem with an assumption of
independence among predictors. Naïve Bayes involves the calculation of the posterior probability P
(Y|X) from P(Y), P(X|Y), and P(X) [66,67]. The Y is the dependent or target variable, and X is the
independent variable. The Y and X must be categorical variables. Thus, the algorithm will convert the
continuous variable into categorical variables.

The posterior probability of Y given X is then calculated as follows [67]:

P (Y |X) = P (X |Y) · P (Y)

P (X)
(2)

where:

Y = Target variable or class for which the case i belongs

P (Y |X) = Probability of Y given information on X

P (Y) = Prior probability for Y

P (X |Y) = Probability X given information on Y

P (X) = Probability of X

For k covariates, the posterior probability is obtained as follows:

P (Y |X1X2 . . . Xk) = P(X1X2 . . . Xk|Y)P (Y)

P (X1X2 . . . Xk)

However, Gaussian Naïve Bayes (GNB) is used when the independent variables are continuous,
and we do not wish to convert them into categories. GNB assumes that X follows a Gaussian or normal
distribution and requires the mean and variance of X for class c of Y.

For a given feature value X, the probability density assuming that X is in a category C is

P (X |C) ∼ N
(
μc, σ 2

c

)
, where P (X |Y = c) ∼ 1√

2πσ 2
e

−(x−μc)2

2σ2 . The estimate of probability for

observation (x1, x2, . . . , xn) as the product of the densities P
(
(x1, x2, . . . , xn) |cj

) ∼ N
(
x1, μ1c, σ 2

1c, . . . , xn,
μnc, σ 2

nc

)
. Then the Bayes formula to invert the conditional probabilities is P

(
cj| (x1, x2, . . . , xn)

) =
P

(
(x1, x2, . . . , xn) |cj

)
P

(
cj

)
P (x1, x2, . . . , xn)

. However, the denominator does not depend on the category cj, thus

P
(
cj| (x1, x2, . . . , xn)

) ∼ P
(
(x1, x2, . . . , xn) |cj

)
P

(
cj

)
. Then the highest value is selected from this

equation [67].

2.4 Support Vector Machine

Cortes et al. [68] introduced the Support Vector Machine (SVM) for classification problems.
Support vector machines (SVM) are based on statistical learning theory and belong to the class
of kernel-based methods. It can handle the classification of linear and non-linear separation. SVM
algorithm attempts to find a linear separator (or hyperplane) between the data points of two classes
in multidimensional space. Such a hyperplane is called the optimal hyperplane. A set of instances
closest to the optimal hyperplane is called a support vector. Finding the optimal hyperplane provides
a linear classifier. SVMs are well suited for dealing with interactions among features and redundant
features [69]. There are a few kernels in SVM types, including linear, polynomial, sigmoid and radial
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basis function (RBF). Table 2 lists the kernel functions commonly used in SVM applications for
classification problems [67].

Table 2: Kernels in SVM classifier

Function Kernels parameters source

Linear K
(
xi, xj

) = (x.xi)
1 [70,71]

Polynomial K
(
xi, xj

) = (x.xi)
d d

Gaussian/radial basis K
(
xi, xj

) = e
−||x−xi ||2

2σ2 σ

The linear kernel is usually one-dimensional and useful when there are many features. The linear
kernel is mostly preferred for text-classification problems as most classification problems can be
linearly separated.

For a binary classification problem shown in Fig. 2, the decision boundary of a linear classifier is
written as: w.x + b = 0, where w and b are the model’s parameters.

Figure 2: SVM hyperplane for binary classification

The case z is classified as follows:

y = f (x) =
{

1, if w.z + b > 0
−1, if w.z + b < 0

where z = x + b. Furthermore, the SVM can be formulated as an optimization which maxw = 2
||2||

subject to wTxi + b

{
≥ 1 if yi = +1
≤ −1 if yi = −1
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This is a quadratic optimization problem subject to linear constraints and is known as a convex
optimization problem and can be solved using the Lagrange multiplier method [67].

The radial basis is the most preferred and used kernel functions in SVM. It is usually chosen for
non-linear data. It helps to make proper separation when there is no prior knowledge of data.

In general, given a training set of N data points {yk,xk}N
k=1, where xk ∈ Rn is the kth input pattern and

yk ∈ R is the kth output pattern, the support vector method approach aims at constructing a classifier
of the form:

y (x) = sign

[
N∑

k=1

akyk� (x, xk) + b

]
(3)

where ak are positive real constants and b is a real constant. The kernel for SVM are: � (x, xk) = xT
k x

(linear SVM); � (x, xk) = (
xT

k x + 1
)d

(polynomial SVM of degree d); � (x, xk) = exp
{− ‖ x −

xk ‖2
2/σ

2
}

(RBF SVM); � (x, xk) = tanh
[
KxT

k x + θ
]

(two layer neural SVM), where σ , K and θ are
constants [67,72].

The classifier is constructed as follows. One assumes that

{wTϕ (xk) + b ≥ 1, wTϕ (xk) + b ≤ −1,

{
if yk = +1
if yk = −1

(4)

which is equivalent to

yk

[
wTϕ (xk) + b

] ≥ 1 = 1, . . . , N (5)

where ϕ (·) is a nonlinear function which maps the input space into a higher dimensional space [67].

3 Methodology

In this paper, we use a cleaned sample of time series data called the Produced Water Re-injection
(PWRI) dataset, which was obtained with permission from a local Oil and Gas company in Malaysia
for research purposes. The aim is to develop a predictive model for machine failure prediction. The
minority class (failure) only made up 3% of the total sample data, resulting in a severely imbalanced
dataset. When data is imbalanced, the machine learning algorithm usually ignores the proportion
of the negative classes and predicts 97% accuracy, but only based on “non-failure.” Hence, machine
learning will have very low or zero sensitivity as it will fail to classify the minority samples. The
methodology flowchart is presented in Fig. 3.

3.1 Description of Variables

The dataset consists of three continuous independent variables which are Pressure Indicator (PI),
Flow Indicator (FI), and Level Indicator (LI) and one dependent variable which is failure status
(Failure/Non-Failure). The data are hourly data collected from the pump system as in Table 3.

The original dataset consists of 20,473 which is made up of 19,945 ‘non-failure’ data and 528
‘failure data’. The data was highly imbalanced, with a ratio of 97:3 in terms of percentage.
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Figure 3: Flowchart of research process

Table 3: Metadata table

Parameter Parameter description Unit Frequency

PI Pressure indicator kg/cm2 Hourly
FI-PV Flow indicator (Process value) m3/hr Hourly
LI-PV Level indicator (Process value) m Hourly

3.2 Creating Data Sets Using SMOTE, SMOTE-SVM and SMOTE-ENN

Using the original imbalance date, we used the SMOTE technique to create “synthetic” examples
of the minority samples. The minority class is over-sampled by taking each minority class sample
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and introducing synthetic examples along the line segments joining any or all of the k-minority class
nearest neighbours. From the original imbalanced dataset, using SMOTE, we create different sets of
imbalanced data with 10%, 20%, 30%, 40%, and 50% failure class proportions. This process of creating
datasets with different imbalance ratios was repeated using SMOTE-SVM and then SMOTE-ENN.
The proportion of failure and non-failure samples for the five different datasets generated is shown in
Table 4.

Table 4: Imbalance ratios and sample for train and test samples

Imbalance
ratio

10% 20% 30% 40% 50%

Status F NF F NF F NF F NF F NF

TRAIN 1535 13955 3488 13955 6000 13955 9349 13955 13955 13955
TEST 658 5990 1497 5990 2575 5990 4013 5990 5990 5990
Note: F-Failure; NF-Non-Failure.

Each of the five datasets with different imbalanced ratios generated was partitioned randomly
into 70% training and 30% testing samples, and the sample size details are shown in Table 4.

In the model development and evaluation stage, the three classifiers (logistic regression, Gaussian
Naïve Bayes, and Support Vector Machine using RBF kernel) were developed using the training
sample and validated using the testing sample. The classifiers were then evaluated based on accuracy,
sensitivity, specificity, precision, and F-Measure.

3.3 Classification Performance Measures

The classifiers were evaluated based on accuracy, sensitivity, specificity, precision, and F-measure.
The confusion matrix in Table 5 was used to obtain the accuracy, sensitivity, specificity, precision, and
F-Measure.

Table 5: Confusion matrix

Actual Y Predicted Y

Y = 1 (Positive) Y = 0 (Negative)

Y = 1 (Positive) True positive (TP) False negative (FN)
Y = 0 (Negative) False positive (FP) True negative (TN)

The true positive indicates positive cases predicted correctly, while the false positive indicates
negative cases predicted incorrectly. Similarly, the true negative is the negative case predicted correctly,
while the false negative is the positive case predicted incorrectly. In summary,

Accuracy (proportion of cases which are accurately predicted) = TP + TN
TP + FP + TN + FN

Sensitivity (proportion of positive cases that are correctly predicted) = TP
TP + FN
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Specificity (proportion of negative cases that are correctly predicted) = TN
TN + FP

Precision (proportion of predicted positive cases that are actual positives) = TP
TP + FP

F − measure = 2 ∗ (Precision ∗ Recall)
Precision ∗ Recall

4 Results and Discussion

The section presents the results and findings of the study. The logistic regression results (Table 6)
for the original data show that all variables are significant predictors of machine failure. Machine
failure is more likely to occur when pressure indicator (PI) (b1 = −0.0149) and Level Indicator
(b3 = −0.0897) decreases, and when Flow Indicator increases (b2 = 0.0401). The odds-ratios using
exp (b) are 0.9852, 1.0409 and 0.9142 respectively. Similar findings were obtained when logistic
regression models were developed using the data which was balanced using SMOTE, SMOTE-SVM,
and SMOTE-ENN. The results in Table 6 confirmed that the imbalanced ratio of logistic regression
affects the coefficients and odds ratio. The odds-ratio value changes when the imbalance rate changes.
The odds-ratio was obtained using the exponentiation of the coefficients [4].

Table 6: Odds-ratio (logistic regression)

Variable/IR 10% 20% 30% 40% 50%

SMOTE PI 0.9851 0.9878 0.9924 0.9949 0.9967
FI-PV 1.0417 1.0359 1.0285 1.0241 1.0206
LI-PV 0.9482 0.966 0.9773 0.9861 0.9941

SMOTE-SVM PI 0.9801 0.9817 0.9854 0.9895 0.9926
FI-PV 1.0564 1.0555 1.0496 1.0424 1.0368
LI-PV 0.9488 0.9655 0.9754 0.9829 0.9896

SMOTE-ENN PI 0.982 0.9868 0.9919 0.9951 0.9977
FI-PV 1.0513 1.0412 1.0321 1.026 1.0209
LI-PV 0.9325 0.9642 0.9755 0.9854 0.9943

We then compared the performance of the three models (Model 1: Gaussian Naïve Bayes, Model
2: Logistic Regression and Model 3: SVM). The classifier performance results using SMOTE are
shown in Table 7. The Receiver Operating Characteristic (ROC) curves in Fig. 4 illustrate the classifier
performance under SMOTE. The green curve for model 3 (SVM) is higher than the blue curve (Model
2: logistic regression) and orange curve (Model 1: GNB). SVM (RBF) has higher sensitivity for IR
30% and above. Under SMOTE, Naïve Bayes has higher sensitivity when data IR is 10% and 20%,
while SVM has higher sensitivity than NB and logistic regression when IR is 30% and above. Next, we
compared the performance of the classifiers under different SMOTE techniques.
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Table 7: Classifier performance results (SMOTE)

Failure rate Sample

Model Accuracy Precision Sensitivity Specificity F-measure

NB Original 3% Training 0.9568 0.0963 0.0771 0.9805 0.0857
Testing 0.9606 0.1121 0.0855 0.9828 0.0970

10% Training 0.7958 0.2103 0.3850 0.8410 0.2720
Testing 0.7966 0.2089 0.3784 0.8426 0.2692

20% Training 0.7480 0.3719 0.3776 0.8406 0.3747
Testing 0.7500 0.3764 0.3814 0.8421 0.3789

30% Training 0.7015 0.5048 0.3787 0.8403 0.4327
Testing 0.7069 0.5166 0.3934 0.8417 0.4466

40% Training 0.6650 0.6281 0.4046 0.8395 0.4922
Testing 0.6645 0.6282 0.4012 0.8409 0.4897

50% Training 0.6243 0.7178 0.4096 0.8390 0.5216
Testing 0.6218 0.7163 0.4033 0.8402 0.5161

Model Accuracy Precision Sensitivity Specificity F-measure

LogReg Original 3% Training 0.9738 0.0000 0.0000 1.0000 0.0000
Testing 0.9753 0.0000 0.0000 1.0000 0.0000

10% Training 0.9008 0.0000 0.0000 0.9999 0.0000
Testing 0.9010 0.0000 0.0000 1.0000 0.0000

20% Training 0.8003 0.5758 0.0054 0.9990 0.0107
Testing 0.7998 0.2500 0.0007 0.9995 0.0013

30% Training 0.7259 0.5862 0.3003 0.9088 0.3971
Testing 0.7104 0.5420 0.2381 0.9135 0.3308

40% Training 0.6674 0.6319 0.4098 0.8401 0.4971
Testing 0.6702 0.6366 0.4147 0.8414 0.5022

50% Training 0.6177 0.6991 0.4134 0.8221 0.5196
Testing 0.6210 0.7029 0.4194 0.8227 0.5253

Model Accuracy Precision Sensitivity Specificity F-measure

SVM Original 3% Training 0.9738 0.0000 0.0000 1.0000 0.0000
Testing 0.9753 0.0000 0.0000 1.0000 0.0000

10% Training 0.9042 0.8148 0.0430 0.9989 0.0817
Testing 0.9013 0.5556 0.0152 0.9987 0.0296

20% Training 0.8175 0.8861 0.1003 0.9968 0.1802
Testing 0.8125 0.8661 0.0735 0.9972 0.1355

30% Training 0.7469 0.6104 0.4377 0.8799 0.5098
Testing 0.7433 0.6092 0.4074 0.8876 0.4882

40% Training 0.7085 0.6794 0.5175 0.8364 0.5875
Testing 0.7197 0.6916 0.5437 0.8376 0.6088

50% Training 0.6715 0.7421 0.5256 0.8173 0.6154
Testing 0.6927 0.7562 0.5686 0.8167 0.6491

The spider chart in Fig. 5 and bar chart in Figs. 6–8 show the machine learning performance for
three types of SMOTE. The spider chart in Fig. 5 and bar chart in Fig. 6 show that NB consistently
has higher sensitivity and F-measure under SMOTE-SVM. The sensitivity and F-measure for logistic



4834 CMC, 2023, vol.75, no.3

regression (Fig. 7) and SVM (Fig. 8) are higher under SMOTE-SVM except when IR is 30% where
the performance is higher under SMOTE-ENN.

Figure 4: (Continued)
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Figure 4: ROC curves for different imbalance ratios using SMOTE

Figure 5: Classifier performance for different SMOTE techniques
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Figure 6: GNB performance using SMOTE, SMOTE-SVM and SMOTE-ENN

Figure 7: Logistic regression performance using SMOTE, SMOTE-SVM and SMOTE-ENN
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Figure 8: SVM performance using SMOTE, SMOTE-SVM and SMOTE-ENN

Overall, SVM (RBF) under SMOTE-SVM has higher performance than GNB and LogReg when
IR is 30% and above. Results of this study support that SMOTE techniques especially can improve
classifiers’ performance for imbalanced data [9–10,73,74]. There is also no overfitting issue It is
important to note that SMOTE tends to oversample uninformative samples or noisy samples [73]
while SMOTE-ENN could delete noisy samples [44,74]. The advantage of SMOTE-SVM [47] is that
it focuses on generating new minority class instances near borderlines with SVM and thus produces
better synthetic samples when balancing the data.

5 Conclusion

This paper investigates the performance of logistic regression Gaussian Naïve Bayes and Support
Vector Machine using the SMOTE technique to balance data imbalance for machine failure predic-
tion. Results showed that Gaussian Naïve Bayes consistently improves sensitivity and precision as
the imbalance ratio increases from 10% to 50% under SMOTE. However, the sensitivity of Gaussian
Naïve Bayes is still below 50% when data is balanced. Logistic regression and SVM have close to zero
sensitivity when IR is 10% and 20%. The sensitivity and F-measure for SVM are higher than GNB and
Logistic regression when IR is 30% to 50%. Regarding evaluation of SMOTE techniques, the sensitivity
and F-measure for the logistic regression model and SVM are higher under SMOTE-SVM except when
the imbalance rate is 30%, where performance is higher using SMOTE-ENN. The SVM sensitivity
and F-measure are the highest for SMOTE-SVM and lowest under SMOTE, while for Gaussian
Naïve Bayes, the sensitivity and F-measure are consistently higher under SMOTE-SVM. This study
has shown that SMOTE-SVM is a good oversampling technique to improve classifier performance
for imbalanced data with continuous features. The advantage of SMOTE-SVM is that it focuses on
generating new minority class instances near borderlines with SVM and thus produces better synthetic
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samples. Future work will involve simulation studies to verify these findings and investigate SMOTE
techniques for the dataset with categorical and continuous features.
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[55] M. Zięba, J. M. Tomczak, and A. Gonczarek, “RBM-SMOTE: Restricted boltzmann machines for
synthetic minority oversampling technique,” in Intelligent Information and Database Systems, Lecture Notes
in Computer Science, 7th Asian Conf. (ACIIDS 2015), Bali, Indonesia, vol. 9011, pp. 377–386, 2015.

[56] K. Jiang, J. Lu and K. Xia, “A novel algorithm for imbalance data classification based on genetic algorithm
improved SMOTE,” Arabian Journal for Science and Engineering, vol. 41, no. 8, pp. 3255–3266, 2016.

[57] J. Yun, J. Ha and J. S. Lee, “Automatic determination of neighborhood size in SMOTE,” in Proc. of the
10th Int. Conf. on Ubiquitous Information Management and Communications, Danang, Vietnam, pp. 1–8,
2016.

[58] L. Ma and S. Fan, “CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter
optimization based on random forests,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–18, 2017.

[59] J. Li, S. Fong, R. K. Wong and V. W. Chu, “Adaptive multi-objective swarm fusion for imbalanced data
classification,” Information Fusion, vol. 39, pp. 1–24, 2018.

[60] G. Douzas and F. Bacao, “Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE,”
Information Sciences, vol. 501, pp. 118–135, 2019.

[61] X. W. Liang, A. P. Jiang, T. Li, Y. Y. Xue and G. T. Wang, “LR-SMOTE–an improved unbalanced data set
oversampling based on K-means and SVM,” Knowledge-Based System, vol. 196, pp. 1–10, 2020.

[62] M. Mukherjee and M. Khushi, “Smote-ENC: A novel SMOTE-based method to generate synthetic data
for nominal and continuous features,” Applied System Innovation, vol. 4, no. 1, pp. 1–12, 2021.

[63] D. Dablain, B. Krawczyk and N. V. Chawla, “DeepSMOTE: Fusing deep learning and SMOTE for
imbalanced data,” IEEE Transactions on Neural Networks and Learning Systems (Early Access), pp. 1–15,
2022.

[64] Q. Chen, Z. Zhang, W. Huang, J. Wu and X. Luo, “PF-SMOTE: A novel parameter-free SMOTE for
imbalanced datasets,” Neurocomputing, vol. 498, pp. 75–88, 2022.

[65] D. W. Hosmer Jr, S. Lemeshow and R. X. Sturdivant, Applied Logistic Regression. New York, USA: John
Wiley & Sons, Inc., 2013.

[66] H. Kang, S. J. Yoo and D. Han, “Senti-lexicon and improved naive Bayes algorithms for sentiment analysis
of restaurant reviews,” Expert Systems with Applications, vol. 39, no. 5, pp. 6000–6010, 2012.

[67] P. N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining. New Delhi, India: Pearson Education,
2016.

[68] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
[69] J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, the Morgan Kaufmann Series in Data

Management Systems. Waltham MA, USA: Elsevier Inc, 2011.
[70] G. F. Smits and E. M. Jordaan, “Improved SVM regression using mixtures of kernels,” in Proc. of the 2002

Int. Joint Conf. on Neural Networks, Honolulu, USA, vol. 3, pp. 2785–2790, 2002.
[71] B. Schölkopf, K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi et al., “Comparing support vector machines

with Gaussian kernels to radial basis function classifiers,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2758–2765, 1997.

[72] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, USA: Springer, 2013.
[73] Z. Jiang, T. Pan, C. Zhang and J. Yang, “A new oversampling method based on the classification

contribution degree,” Symmetry, vol. 13, no. 2,194, pp. 1–13, 2021.
[74] A. Puri, M. K. Gupta, “Improved hybrid Bag-boost ensemble with K-means-SMOTE–ENN technique for

handling noisy class imbalanced data,” The Computer Journal, vol. 65, no. 1, pp. 124–138, 2022.


	Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced Data: Improving Machine Failure Prediction
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results and Discussion
	5 Conclusion
	References


