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Abstract: Achieving accurate classification of colorectal polyps during
colonoscopy can avoid unnecessary endoscopic biopsy or resection. This
study aimed to develop a deep learning model that can automatically classify
colorectal polyps histologically on white-light and narrow-band imaging
(NBI) colonoscopy images based on World Health Organization (WHO) and
Workgroup serrAted polypS and Polyposis (WASP) classification criteria for
colorectal polyps. White-light and NBI colonoscopy images of colorectal
polyps exhibiting pathological results were firstly collected and classified
into four categories: conventional adenoma, hyperplastic polyp, sessile
serrated adenoma/polyp (SSAP) and normal, among which conventional
adenoma could be further divided into three sub-categories of tubular
adenoma, villous adenoma and villioustublar adenoma, subsequently the
images were re-classified into six categories. In this paper, we proposed a
novel convolutional neural network termed Polyp-DedNet for the four- and
six-category classification tasks of colorectal polyps. Based on the existing
classification network ResNet50, Polyp-DedNet adopted dilated convolution
to retain more high-dimensional spatial information and an Efficient Channel
Attention (ECA) module to improve the classification performance further.
To eliminate gridding artifacts caused by dilated convolutions, traditional
convolutional layers were used instead of the max pooling layer, and two
convolutional layers with progressively decreasing dilation were added at the
end of the network. Due to the inevitable imbalance of medical image data,
a regularization method DropBlock and a Class-Balanced (CB) Loss were
performed to prevent network overfitting. Furthermore, the 5-fold cross-
validation was adopted to estimate the performance of Polyp-DedNet for the
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multi-classification task of colorectal polyps. Mean accuracies of the proposed
Polyp-DedNet for the four- and six-category classifications of colorectal
polyps were 89.91% ± 0.92% and 85.13% ± 1.10%, respectively. The metrics
of precision, recall and F1-score were also improved by 1%∼2% compared
to the baseline ResNet50. The proposed Polyp-DedNet presented state-of-
the-art performance for colorectal polyp classifying on white-light and NBI
colonoscopy images, highlighting its considerable potential as an AI-assistant
system for accurate colorectal polyp diagnosis in colonoscopy.

Keywords: Colorectal polyps; four- and six-category classifications;
convolutional neural network; dilated residual network

1 Introduction

Based on 2020 reports, Colorectal cancer (CRC) is a significant public health problem, the second
leading cause of cancer-related death worldwide and the fifth leading cause of cancer-related death in
China [1]. Colonoscopy is one of the most important and effective methods for the early detection and
resection of colorectal neoplasms, which has been adopted in many countries to improve the detection
rate of adenoma and reduce CRC mortality [2–4]. Studies have shown that about 85% of CRC is
derived from adenomas, and endoscopic resection of colorectal polyps (CP) can reduce the incidence of
CRC [5,6]. However, the results of colonoscopy tend to be affected by the doctor’s clinical experience,
fatigue and other subjective factors, which in turn, the diagnostic performance among clinicians is
inconsistent [7]. Moreover, a few neoplastic lesions remain challenging to diagnose accurately, even
for expert endoscopists [8].

To resolve these problems, researchers have been working to employ computerized methods.
Computer-aided diagnosis (CAD) nowadays plays a significant role in clinical research and practice
which began to develop in the mid-1980s and was first used for chest radiography and mammography
for cancer detection and diagnosis [9]. Machine learning (ML)-based CAD techniques are character-
ized by hand-crafted features which rely heavily on expert experience. Therefore, these classification
and detection methods illustrate poor performance in generalization. With the rapid development of
artificial intelligence technology, deep neural networks with end-to-end learning have been increasingly
exploited to design CAD systems for the automated diagnosis of medical diseases [10,11], including
the auxiliary diagnosis of colorectal polyps.

Colorectal polyps can be categorized into conventional adenoma, hyperplastic polyp, sessile
serrated adenoma/polyp (SSAP) based on the Workgroup serrAted polypS and Polyposis (WASP)
classification criteria [12,13]. However, according to the World Health Organization (WHO) clas-
sification criteria for colorectal polyps, conventional adenomas are divided into tubular adenoma,
villous adenoma, and villioustublar adenoma. Each type of polyps has a different chance of developing
into CRC [12]. For example, several studies have shown that conventional adenomas and SSAP have
different pathways to cancer but have a similar relatively high risk of developing CRC. On the contrary,
the hyperplastic polyp can hardly develop into CRC [12,14].

We propounded a new deep learning network, Polyp-DedNet, to achieve more accurate four-
and six-category classifications of colorectal polyps according to the WHO and WASP criteria during
white light and narrow-band imaging colonoscopy. The four-category task divided the images into
conventional adenoma, SSAP, hyperplastic polyp and normal. According to WHO criteria, our
proposed network can further predict a colonoscopy image into one of the six categories: SSAP,
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hyperplastic polyp, tubular adenoma, villous adenoma, villioustublar adenoma and normal. Polyp-
DedNet adopts the dilated residual network to retain more spatial information for improving image
classification accuracy, an attentional mechanism to focus on the lesion area in the image and the
regularization method named DropBlock [15] to prevent network overfitting. In the training process,
Polyp-DedNet was performed as the basic network of colorectal polyp classification, and the transfer
learning method was presented to improve the accuracy and rapidity of network training. Meanwhile,
the Class-Balanced (CB) Loss [16] was used to address problems in imbalanced data learning.

The major contributions of our work are as follows: (1) A novel framework was proposed for
WASP and WHO pathological classification under white light and narrow-band light, which increased
the diversity of classification categories compared to previous studies on colon polyp classification;
(2) We introduced the dilated convolution and the improved attention mechanism into the residual
block to obtain more feature information of small polyps. And the effect of data imbalance in our
collected datasets was alleviated by CB Loss; (3) The proposed Polyp-DedNet was efficient on four-
and six-category classification of colorectal polyps and significantly superior to other state-of-the-art
classification networks. A more diverse and accurate multi-classification network based on the WASP
and WHO classification criteria can assist doctors in colonoscopy, avoid unnecessary resection and
detect adenomatous polyps as early as possible.

2 Related Work

Machine learning (ML)-based CAD techniques have been widely used in colorectal classification
tasks. For example, Shin et al. [17] proposed a dictionary-based learning scheme, using support vector
machines (SVM) for the patch-level images and a simple threshold method for the whole image to
classify polyp and normal (no polyps) images. Tamaki et al. [18] presented a scale-invariant feature
transform (SIFT) algorithm to extract local features of colonoscopy images and implemented SVM
with radial basis function (RBF) kernel to classify hyperplastic polyp, tubular adenoma, and cancer
under narrow-band light, achieving an accuracy rate of 94.1%. However, the feature extraction process
of ML-based CAD is difficult due to the influence of limited illumination conditions, blurred fields
and variations in viewpoint [19].

Nowadays, unlike the manual feature extraction of traditional ML networks, deep convolutional
neural networks (DCNN) can automatically extract features to complete the task of classifying
colorectal polyps. Wang et al. [20] combined the global average pooling (GAP) and the classical
deep learning network ResNet to design a ResNet-GAP network to classify polyps and normal under
white light, with a test accuracy of 98%. Chen et al. [21] established a computer-aided system named
DNN-CAD based on NBI to classify adenomatous and hyperplastic polyps smaller than 5 mm with
a sensitivity of 96.3% and a shorter classification time than experts. Byrne et al. [22] designed a deep
learning model based on the Inception network to achieve the real-time classification of diminutive
adenomas and hyperplastic polyps based on NBI, and the model’s accuracy was 94%. Ozawa et al. [23]
adopted Single Shot Multi Box Detector (SSD) network to build an automatic multi-classification and
detection system for colorectal polyps under white light, achieving a classification accuracy of 83%. In
their study, the polyp types include adenoma, hyperplastic polyp, SSAP, cancer, the others and normal.
Wang et al. [24] used ResNet50 to classify the four conditions of polyps, inflammation, tumor and
normal under white light, obtaining an accuracy of 94.48%. Most studies have focused on improving
deep learning network structures for binary classification and detection of adenomas/non-adenomas,
or polyps/normal. However, very limited studies were done on the multi-classification of colorectal
polyps according to both WASP and WHO criteria [12]. Furthermore, most previous studies ignored
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the data imbalance in the colon polyp multi-classification datasets, which may lead to a falsely high
overall classification accuracy.

3 Methods

ResNet is an effective convolutional neural network that solves the degradation problem and
reduces the difficulty of deep network training [25]. As shown in Fig. 1a, ResNet50 mainly consists
of two residual modules: Conv Block and ID Block. To obtain a large receptive field, images and
feature maps are down-sampled by the pooling layer (Max pool) of stage 1 and each convolutional
layer with large strides in Conv Blocks of stages 2 to 5. However, the resolution of the image or feature
map is reduced after down-sampling, leaving only less spatial information, which will result in the
information loss of some small adenomas in colorectal images and performance decrease in polyp
classification and localization. In this paper, we build an improved Polyp-DedNet based on ResNet50,
which is shown in Fig. 1b. In Polyp-DedNet, dilated convolutions with the dilated factors of 2 and 4
are respectively applied in IDE block and Conv Block of stages 4 and 5 to keep the spatial resolution
for deep neural network without costing too much time and memory, reduce the down-sampling factor
and obtain an effective large receptive field. Efficient Channel Attention (ECA) modules are also used
in IDE blocks and Conv Blocks of stages 2 to 5 to further improve the classification performance
of the network. Furthermore, to eliminate gridding artifacts caused by dilated convolutions, two
traditional convolutional layers are applied in stage 1 rather than the max pooling layer, and two
dilated convolutional layers (ConvE-layer) with progressively decreasing dilation are added at the end
of stage 5. Due to the inevitable imbalance of medical image data, a regularization method named
DropBlock and the CB loss are performed to prevent network overfitting.

Figure 1: The architecture of (a) ResNet50 and (b) Polyp-DedNet. Here, d represents the dilation factor
with the value of 4, 2 or 1

3.1 Dilated Residual Networks

The detail description of ResNet50 is formed from five stages of convolutional layers presented in
the left three columns of Table 1. The first layer in each stage performs a down-sampling process by
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striding. We define Sj
i to denote the ith layer in stage j, where j =1, . . . ,5. The output of Sj

i of the stage
in ResNet50 network is formulated as(

Sj
i ∗ f j

i

)
(p) =

∑
a+b=p

Sj
i (a) f j

i (b) (1)

where f j
i represents the filter combined with layer Sj

i and the domain of p denotes the feature map
in Sj

i .

To increase the resolution of output feature maps without reducing the receptive field of each
output unit, dilated convolution is adopted in the final two stages, S4 and S5, in ResNet50 to construct
the dilated residual network, which is shown in the right two columns of Table 1.

Table 1: Detail description of ResNet50 and the proposed dilated residual network used in our study

Layer ResNet50 Output size Proposed dilated residual
network

Output size

Conv1 7 × 7, 64, stride 2 112 × 112 7 × 7, 16, stride 1 112 × 112
3 × 3 max pooling
stride 2

3 × 3, 16, stride 1
3 × 3, 32, stride 2

Conv2_x
⎛
⎝1 × 1, 64

3 × 3, 64
1 × 1, 256

⎞
⎠ × 3

56 × 56
⎛
⎝1 × 1, 64

3 × 3, 64
1 × 1, 256

⎞
⎠ × 3

56 × 56

Conv3_x

⎛
⎝1 × 1, 128

3 × 3, 128
1 × 1, 512

⎞
⎠ × 4 28 × 28

⎛
⎝1 × 1, 128

3 × 3, 128
1 × 1, 512

⎞
⎠ × 4 28 × 28

Conv4_x

⎛
⎝1 × 1, 256

3 × 3, 256
1 × 1, 1024

⎞
⎠ × 6 14 × 14

⎛
⎝1 × 1, 256

3 × 3, 256 dilation 2
1 × 1, 1024

⎞
⎠×6 28 × 28

Conv5_x

⎛
⎝1 × 1, 512

3 × 3, 512
1 × 1, 2048

⎞
⎠ × 3 7 × 7

⎛
⎝1 × 1, 512

3 × 3, 512 dilation 4
1 × 1, 2048

⎞
⎠×3

3 × 3, 512, dilation 2
3 × 3, 512, dilation 1

28 × 28

FC AvgPool, number of classes fc, softmax

For S4, we remove the striding in S4
1 and substitute the convolution operators with dilated

convolutions with a dilated factor of 2, which is represented as:(
S4

i ∗2 f 4
i

)
(p) =

∑
a+2b=p

S4
i (a) f 4

i (b) (2)

where all i ≥ 1. For the layer of S5, the striding in S5
1 is also removed. And the dilated convolutions

with a dilated factor of 4 are applied to compensating for the reduction in the receptive field due to
removing subsampling, which can be formulated as(

S5
i ∗4 f 5

i

)
(p) =

∑
a+4b=p

S5
i (a) f 5

i (b) (3)
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where all i ≥ 1.

However, employing dilated convolution may cause gridding artifacts, especially when a feature
map has higher-frequency content than the sampling rate of the dilated convolution. Additionally, the
max pooling layer after the initial 7 × 7 convolution, which leads to high-amplitude high-frequency
activations, will also eventually aggravate gridding artifacts. In this case, we further modify the dilated
residual network and replace the maximum pooling with convolution layers. In addition, we add two
convolution layers with progressively decreasing dilation to the final group of the network, adopting
filters of appropriate frequency, so that gridding artifacts are better eliminated. Compared to ResNet50
which has an output resolution of 7 × 7, the proposed dilated residual network with an output size of
28 × 28 can obtain more spatial information and identify small polyps without wasting unnecessary
computational power to improve the classification performance of the network.

3.2 Attention Mechanism

With the attention mechanism, the deep learning network can divert attention to the most
important areas of an image while ignoring irrelevant parts, which can be treated as a dynamic
weight adjustment process according to the features of the input image. To bring performance gain
further for our proposed network and avoid high model complexity, we apply ECA [26], a lightweight
channel attention module, to all the residual blocks of IDE and ConvE in our network. The residual
block structures of IDE Block and ConvE Block with the incorporation of the ECA module are
shown in Figs. 2a and 2b, respectively. As an improved attention mechanism based on Squeeze-and-
Excitation Networks (SE) [27], ECA can effectively capture cross-channel interaction information
without dimensionality reduction. The structure of the ECA module is presented in Fig. 2c.

Figure 2: The architectures of ECA and the residual blocks with ECA module in the proposed Polyp-
DedNet. (a) ConvE block with the incorporation of ECA. (b) IDE block with the incorporation of
ECA. (c) The structure of the ECA module

As illustrated in Fig. 2c, after adopting channel-level GAP to aggregate features without dimen-
sionality reduction, a 1D convolution is implemented to capture local cross-channel interactions
between each channel and the corresponding k neighbors. Additionally, the 1D convolution with the
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kernel size of k can be selected adaptively, determining coverage of local cross-channel interaction.
The parameter k is determined as

k = ψ (C) =
∣∣∣∣ log2(C)

γ
+ b

γ

∣∣∣∣
odd

(4)

where γ and b are hyperparameters, C is the channel dimension, and |x|odd represents the nearest odd
number of x.

3.3 DropBlock

In this study, the collected polyp datasets are unbalanced, and the amount of image data in some
categories is relatively small, which is prone to over-fitting in the training process of the proposed
network. Therefore, we adopt a regularization method DropBlock after convolution layers (ConvE-
layer) and residual modules (IDE block) in stages 4 and 5 of the proposed network to improve
generalization ability and reduce overfitting, which is shown in Fig. 1b.

DropBlock has two hyperparameters, γ and m, with the former controlling denoting the numbers
of features to be dropped and the latter representing the size of the contiguous area to be dropped.
During network training, the block size m is fixed as 7, and γ is calculated by the following formula:

γ = (1 − keep_prob) × n2

m2 × (n − m + 1)2
(5)

where keep_prob denotes the probability of keeping an activation unit in traditional dropout, n
represents the size of a feature map, and (n−m+1)2 denotes the size of the valid seed region. However,
DropBlock with a fixed keep_prob has been found to be ineffective [15]. In this paper, a linear reduction
of keep_prob parameter is adopted, that is, with the increase of training steps, keep_prob gradually
decreases from 1 to 0.9.

4 Experiment
4.1 Dataset

Colonoscopy images and pathological information were collected retrospectively from the Affili-
ated Hospital of Hebei University, from June 1, 2016 to June 1, 2019. All the specimens were examined
by certified pathologists and histologically confirmed. Patients who had been histologically confirmed
with conventional adenoma (tubular, villioustublar, villous), sessile serrated polyp/adenoma (SSAP),
hyperplastic polyp and normal (no polyps), were included in this study. Only the unamplified images
observed in conventional white-light or NBI mode were selected. In this study, insufficiently insufflated
colorectal images and unclear images with stool residue, halation, or bleeding were excluded. Finally,
we collected 2132 images from 436 patients that contain six types of endoscopic colorectal disease
images, which are shown in Table 2.

Table 2: The information of the collected datasets included in this study

Colorectal polyp type Image number

Hyperplastic polyp 234
Sessile serrated polyp/adenoma (SSAP) 122
Tubular adenoma 651

(Continued)
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Table 2: Continued
Colorectal polyp type Image number

Villioustublar adenoma 618
Villous adenoma 51
Normal 456
Total 2132

In order to build the classification models, the above datasets were classified by patients and
randomly divided into the training set and test set in a ratio of 4:1. To develop our deep learning
network more effectively, the training set was increased by a factor of 4 with data augmentation
methods of horizontal flip, vertical flip, noise, and rotation to 6823 images. Considering that the
collected colonoscopy images ranged from 424 × 368 to 1920 × 1080 pixels, they were uniformly
resized to 224 × 224 pixels according to the network training requirements.

4.2 Network Training Details

The Polyp-DedNet was pre-trained using the ImageNet Large Scale Visual Recognition Challenge
datasets, that is, using transfer learning to improve the classification performance of the network. The
network parameters were optimized by the Adam algorithm with an initial learning rate of 0.0001.
All programs were run on an Ubuntu 18.04.5 LTS PC with one RTX 2080Ti GPU and Intel (R) Core
i7-7800X 3.5-GHz CPU.

4.3 Loss Function

Cross-entropy (CE) loss function is often used for deep learning network training. In this paper,
to address the problem of training on imbalanced data, we adopted CB sigmoid cross-entropy loss by
introducing a weighted factor that was inversely proportional to the effective number of samples. The
CB sigmoid cross-entropy loss is formulated as:

CBsigmoid (z, y) = − 1 − β

1 − βny

∑C

i=1
log

(
1

1 + exp
(−zt

i

)
)

(6)

where z = [z1, z2, . . . , zC]T represents the predicted value for all classes from Polyp-DedNet, and C is
the total number of polyp types. y is the sample whose category is labeled as y. β indicates the effective
sample growth rate, β ε [0, 1).

4.4 Performance Metrics

To evaluate the classification performance of the Polyp-DedNet network, we introduced four
metrics including accuracy, recall, precision, and F1 Score [28], which can be calculated by the
following formulas:

Accuracy = TP + TN
TP + TN + FP + FN

(7)

Precision = TP
TP + FP

(8)
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Recall = TP
TP + FN

(9)

F1 Score = 2 × Recall × Precision
Recall + Precision

(10)

where TP, FP, TN and FN denote the numbers of true positives, false positives, true negatives, and
false negatives, respectively.

In this study, 5-fold cross-validation was used to analyze the network performance for four-
and six-category classifications. The difference between the proposed model Polyp-DedNet and
comparative models were calculated for each performance metric using the paired t-test. The p-value
of <0.05 was considered to indicate a statistically significant difference between groups.

5 Results and Discussions
5.1 Evaluation of Loss Function During Training

To evaluate the effect of loss function on data imbalance during training, we compared two specific
methods’ performance, including CE loss and CB sigmoid cross-entropy loss. As shown in Fig. 3, while
the train loss and the test loss gradually converged to 0.20 ± 0.03 and 0.65 ± 0.03 when training with
the proposed Polyp-DedNet with CE loss, they gradually converged to 0.04 ± 0.01 and 0.10 ± 0.01
with CB sigmoid cross-entropy loss. In this case, our Polyp-DedNet had a faster convergence rate and
a lower value for final loss with the implementation of CB sigmoid cross-entropy loss for network
training compared with the use of CE loss. To a certain extent, the performance degradation caused
by data imbalance was alleviated, especially with CB sigmoid cross-entropy loss.

Figure 3: The dynamic changes of training loss and test loss during the training of Polyp-DedNet with
CE loss and CB sigmoid cross-entropy loss
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5.2 Testing of the Proposed Method

The four- and six-category performance tests on a test set of 426 images were performed
on the ResNet50 and Polyp-DedNet, respectively. Results of the five-fold cross-validation for the
classifications were listed in Table 3, in which the best for each metric was highlighted. For the
four-category classification task, although Polyp-DedNet achieved insignificant increment in recall
compared with the baseline ResNet50 (p = 0.068), the remaining metrics including accuracy (89.91
± 0.92 vs. 88.46 ± 0.79, p = 0.001), precision (82.35 ± 2.71 vs. 79.37 ± 2.28, p = 0.009) and F1-
score (82.29 ± 1.75 vs. 79.41 ± 1.73, p = 0.006) were significantly improved. Therefore, the overall
performance of Polyp-DedNet for colorectal polyp classification was superior to that of ResNet50.
For the six-category classification task, the cross-validation results illustrated the performance of the
developed network was significantly improved in all evaluation metrics to varying degrees compared
with the baseline network (p < 0.05). The above results confirmed that extracting more spatial features
from the input colonoscopy images can facilitate the network’s effect on multi-classification.

Table 3: Comparison of performances between ResNet50 and Polyp-DedNet tested with five-fold
cross-validation. Significant differences according to the paired t test are shown in the last row

Network Accuracy% Precision% Recall% F1-score%

Four-class Six-class Four-class Six-class Four-class Six-class Four-class Six-class

ResNet50 88.46 ± 0.79 82.08 ± 0.55 79.37 ± 2.28 80.89 ± 2.89 80.03 ± 2.96 78.96 ± 2.85 79.41 ± 1.73 79.51 ± 2.11
Polyp-DedNet 89.91 ± 0.92 85.13 ± 1.10 82.35 ± 2.71 84.30 ± 2.22 82.95 ± 3.16 80.91 ± 3.48 82.29 ± 1.75 81.98 ± 2.60
Significance p = 0.001 p = 0.005 p = 0.009 p = 0.02 NS p = 0.014 p = 0.006 p = 0.031

5.3 Analysis of Confusion Matrix

In order to further compare the classification ability between ResNet50 and Polyp-DedNet, heat
maps of the confusion matrix for the four- and six-category classifications were shown in Fig. 4, in
which the row and column represented the actual category and predicted category, respectively.

In the four-classification task, the proposed Polyp-DedNet outperformed ResNet50 in classifying
colorectal polyp images of adenomas and normal, with similar performance in classifying hyperplastic
polyps and sessile serrated adenoma/polyp (SSAP). In addition, both networks provided more than
90% achievable performance for the classifications of adenomas and normal. In contrast, the perfor-
mances of classifying other categories of polyps were relatively lower with the fact that most of them
were misclassified as adenomas (see Figs. 4a and 4b). It is worth mentioning that the training data for
hyperplastic polyps and sessile serrated adenoma/polyp (SSAP) were much less than that of adenomas,
and SSAP was more difficult to be distinguished than other polyps in clinical practice. In the six-
category classification task, although our proposed framework provided comparable performance for
the classifications of normal and villous adenomas with ResNet50, it achieved higher performance
consistently for the classifications of hyperplasia, sessile serrated adenoma/polyp (SSAP), tubular
adenoma and villoustubular adenoma with the improvements varied from 2% to 6%. In particular,
the network Polyp-DedNet correctly classified more than 90% of normal and tubular adenoma images
due to its increased focus on high-dimensional spatial information.
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Figure 4: Confusion matrix of ResNet50 and Polyp-DedNet for classification of colorectal polyps on
426 images in our test set. (a) Matrix of ResNet50 for four classes. (b) Matrix of Polyp-DedNet for
four classes. (c) Matrix of ResNet50 for six classes. (d) Matrix of Polyp-DedNet for six classes

5.4 Analysis of ROC Curve

We further measured the standalone performance of the networks by the overall and class-specific
ROC curves and the area under ROC curve (AUC) of four and six pathological types with an epoch set
of 100, respectively. The larger the value of AUC, the better the performance of the network. The metric
changes tend to level off after an average of 70 epochs. For the four-category classification, as shown
in Figs. 5a and 5b, the Polyp-DedNet was almost at a higher classification level in adenoma, normal
and SSAP. The AUCs were as follows: adenoma, 0.9645 vs. 0.9742, normal, 0.9949 vs. 0.9966, SSAP,
0.9576 vs. 0.9587. For the classification of hyperplastic polyps, Polyp-DedNet performed slightly worse
than ResNet50 (AUC, 0.9073 vs. 0.9062).
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Figure 5: Receiver Operating Characteristic (ROC) Curves for four and six classifications of ResNet50
and Polyp-DedNet in our test datasets (a) ROC of ResNet50 for four classes (b) ROC of Polyp-DedNet
for four classes (c) ROC of ResNet50 for six classes (d) ROC of Polyp-DedNet for six classes

In the six-category classification, the AUCs of Polyp-DedNet were significantly higher than those
of ResNet50 for the hyperplastic polyps, tubular, villioustublar and villious adenomas. However,
the Polyp-DedNet performed slightly worse for normal and SSAP with lower AUCs than the pre-
improved ResNet50. In addition, the improved network Polyp-DedNet showed overall competitive
multi-classification performance with a mean AUC of 0.9593.

5.5 Analysis of Class Activation Map

To display the area of interest in the colonoscopy image more intuitively, representative class
activation map (CAM) images of ResNet50 and Polyp-DedNet for multi-classification of polyps were
generated, including hyperplastic polyps, (tubular, villioustublar and villious) adenomas and SSAP.
As shown in Fig. 6, while both the networks ResNet50 and Polyp-DedNet could accurately localize
hyperplastic polyps and villous adenomas (see the column (a) and (c) of Fig. 6), our proposed network
Polyp-DedNet captured villioustublar adenomas (see the column (b) of Fig. 6) and tubular adenomas
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(see the column (e) of Fig. 6) more accurately. It can be also observed that when the point of interest
contained distinct categories of targets (i.e., a SSAP indicated by the red arrow and a non-SSAP polyp
indicated by the yellow dashed box in the column (d) of Fig. 6), the attended areas of ResNet50 were
broadly distributed on both of them, whereas the attention focus of Polyp-DedNet was more precise
on the characteristic area of SSAP, thereby extracting pathological features of colorectal polyps more
effectively. Therefore, the extracted classification discrimination area of the proposed Polyp-DedNet
was more consistent with the cognition of experts, which partially enhanced the applicability of deep
learning.

Figure 6: Class activation maps of ResNet50 and Polyp-DedNet for classification of several colorectal
polyps. (a) Hyperplastic polyp. (b) Villioustublar adenoma. (c) Villous adenoma. (d) SSAP. (e) Tubular
adenoma. The red arrows highlight the locations of polyps

5.6 Comparative Analysis with Other Networks

In order to further verify the colorectal polyp classification performance of Polyp-DedNet,
we performed comparative experiments with several state-of-the-art methods in terms of accuracy,
precision, recall and F1-score, in which all the deep learning networks were built based on pre-
trained ImageNet. In order to ensure the fairness of test results comparison, each network was trained
under the same condition and tested on the same datasets. The six-category test results from five-
fold cross-validation for each network were presented in Table 4. It can be seen that Polyp-DedNet
achieved the best performance in terms of selected evaluation indicators, which yielded an accuracy
of 85.13% ± 1.10%, a precision of 84.30% ± 2.22%, a recall of 80.91% ± 3.48% and an F1-score
of 81.98% ± 2.60%. As shown in Fig. 7, Polyp-DedNet was remarkably superior to MobileNetV3
according to all four indicators (p < 0.01, paired t test). Besides, the precision of Polyp-DedNet
was significantly higher than that of EfficientNetV2, and the metrics of recall and F1-score were
consistently higher than those of RegNet (p < 0.01). In addition, compared with EfficientNetV2,
Polyp-DedNet enhanced in various indicators and achieved a statistically significant improvement
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in the average precision (1.64%; p < 0.05) of multi-classification. In summary, with the more effective
ability of feature extraction, the proposed Polyp-DedNet has excellent recognition ability for colorectal
polyps with varying pathological types.

Table 4: Comparative results of various polyp classification methods in our test datasets

Network Accuracy% Precision% Recall% F1-score%

MobileNetV3 [29] 77.06 ± 1.85 76.41 ± 1.79 67.22 ± 3.06 70.16 ± 2.74
RegNet [30] 82.88 ± 1.78 82.93 ± 1.18 76.17 ± 3.07 78.68 ± 2.19
EfficientNetV2 [31] 84.57 ± 0.99 82.66 ± 2.26 79.69 ± 1.60 80.60 ± 0.83
Polyp-DedNet (Ours) 85.13 ± 1.10 84.30 ± 2.22 80.91 ± 3.48 81.98 ± 2.60

Figure 7: Performance comparison between the Polyp-DedNet and contrast networks of MobileNet,
RegNet and EffcientNetV2, in which ∗ denotes p < 0.05, ∗∗ denotes p < 0.01 and ∗∗∗ denotes p <

0.001

6 Conclusion

In this paper, we proposed a convolutional neural network named Polyp-DedNet, which is applied
to the task of four- and six-category classifications of colorectal polyps based on the WASP and WHO
medical classification standards under white light and narrow-band light. The experimental results of
the four- and six-category classifications showed that the developed Polyp-DedNet could be used in
the multi-classification task of common colorectal polyps, which helps to reduce superfluous resection
and improve the sensitivity for the defection of early lesions in the clinical field. In the future, we will
need to rationally validate the network through randomized clinical trials to help accurately classify
colorectal polyps in actual colorectal examinations and assist doctors in choosing the best treatment
strategy.
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