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Abstract: Automated X-ray defect inspection of occluded objects has been
an essential topic in semiconductors, autonomous vehicles, and artificial
intelligence devices. However, there are few solutions to segment occluded
objects in the X-ray inspection efficiently. In particular, in the Ball Grid
Array inspection of X-ray images, it is difficult to accurately segment the
regions of occluded solder balls and detect defects inside solder balls. In
this paper, we present a novel automatic inspection algorithm that segments
solder balls, and detects defects fast and efficiently when solder balls are
occluded. The proposed algorithm consists of two stages. In the first stage,
the defective candidates or defects are determined through the following four
steps: (i) image preprocessing such as noise removal, contrast enhancement,
binarization, connected component, and morphology, (ii) limiting the inspec-
tion area to the ball regions and determining if the ball regions are occluded,
(iii) segmenting each ball region into one or more regions with similar gray
values, and (iv) determining whether there are defects or defective candidates
in the regions using a weighted sum of local threshold on local variance. If
there are defective candidates, the determination of defects is finally made
in the following stage. In the second stage, defects are detected using the
automated inspection technique based on oblique computed tomography. The
3D precision inspection process is divided into four steps: (i) obtaining 360
projection images (one image per degree) rotating the object from 0 to 360
degrees, (ii) reconstructing a 3D image from the 360 projected images, (iii)
finding the center slice of gravity for solder balls from the axial slice images in
the z-direction, and getting the inspection intervals between the upper bound
and the lower bound from the center slice, and (iv) finally determining whether
there are defects in the averaged image of solder balls. The proposed hybrid
algorithm is robust for segmenting the defects inside occluded solder balls, and
improves the performance of solder ball segmentation and defect detection
algorithm. Experimental results show an accuracy of more than 97%.
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1 Introduction

Automated X-ray defect inspection of occluded objects has been an essential topic in semicon-
ductors, autonomous vehicles, and artificial intelligence (AI) devices. However, there are few solutions
to segment objects efficiently. As high-performance computing, AI, and the autonomous vehicle
market is advancing at an increasingly rapid pace. There is demand for semiconductor devices that
deliver enhanced performance with high density, high speed, and miniaturized size. To inspect the
defects inside these devices, it is essential to segment the occluded objects in these devices efficiently.
Soldering is one of the critical processes in the manufacture of electronic devices. This process helps
attach different electronic components to the printed circuit board (PCB) and package, thus forming
electrical connections, as shown in Fig. 1. The soldering process is needed for these connections, but
in the this process, various defects such as voids, non-wet defects, and shorts may occur continuously.
In the Ball Grid Array (BGA) soldering defect inspection, it is difficult to accurately segment the ball
regions of occluded solder balls and detect defects occurring inside them.

Figure 1: The structure of the multilayer package (left) and its X-ray image (right)

Voids are defects generated inside the solder joint during the reflow process, mainly created by
cold joints when insufficient solder is applied to a joint. They might consist of spaces, holes or flux
resins inside the solder joint, as shown in Fig. 2.

Figure 2: Original X-ray image (left) and the voids (right) in solder balls

The previous automated defect detection methods do not produce good accuracy because a num-
ber of challenges exist in 2-D X-ray images. For example, some of these challenges are to find defects,
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such as voids, cracks, and non-wet defects, in partially and fully occluded situations. The overall X-ray
image contrast and brightness can also vary as a function of various devices, PCBs, X-ray operators,
etc. The defect detection algorithm needs to cope with all these variations. Aryan et al. [1] reviewed
various types of defects, and the capabilities of the most common non-destructive testing methods
employed for defect detection. Yuk et al. [2] proposed a non-referential method for fault detection
by extracting features based on an image processing method and learning the fault information using
random forests. Huang et al. [3] discussed various visual inspection algorithms and systems applied
in the semiconductor manufacturing industry. Moreover, they reviewed the multiple defect types of
various inspected products that could be referenced for further implementations and improvements.

Image enhancement and segmenting objects in X-ray images have been essential research topics
in computer vision concerning defect detection algorithms. Al-Waisy et al. [4] proposed a novel
hybrid deep learning system for detecting pneumonia of coronavirus disease of 2019 (COVID-19) in
chest X-ray (CX-R) images using two discriminative deep learning approaches. They proposed an
effective image enhancement procedure to enhance the CX-R image’s poor quality before feeding
to the proposed approaches. Nagi et al. [5] proposed state-of-the-art deep-learning models, and
evaluated the performance of deep-learning models for COVID-19 diagnosis using chest X-ray images
from a dataset. Hasoon et al. [6] proposed a method for the classification and early detection of
COVID-19 through image preprocessing of X-ray images. Kim et al. [7] proposed a new method for
real-time anomaly detection in packaged food products using a supervised deep learning network.
Park et al. [8] proposed a multi-task learning method that simultaneously learned the lung region and
nodule-labeled data based on prior knowledge. Luo et al. [9] presented a comprehensive survey on
surface defect detection technologies by reviewing about 120 publications over the last two decades
for three typical flat steel products. Liu et al. [10] proposed an improved k-nearest neighbor (KNN)
outlier detection algorithm to reduce the time complexity, and improve the performance of anomaly
detection. Kim et al. [11] proposed methods for detecting abnormal images on chest X-ray images
based on existing anomaly detection techniques.

For the past several years, many methods to segment the solder balls have been proposed, and
the most common methods are based on threshold segmentation. The key to threshold segmentation
is to find an appropriate threshold. Said et al. [12–15] proposed a way based on the histogram of
images. The histogram of the two cluster regions can be represented using a mixture of two Gaussian
distributions with two different means and variance parameters. After the segmentation, the major
features of principal axis, roundness, and area are used to extract the best candidate solder ball
template in the image. This method works well if the background is clean. Nuanprasert et al. [16]
proposed a method based on Hough circle detection and Delaunay triangulation. These methods
can accurately extract the target solder in images with simple backgrounds. Teramoto et al. [17,18]
proposed a novel automated solder inspection technique using oblique computed tomography (OCT).
This technique consists of position adjustment, bump extraction, character extraction, and judgment.
Linear discriminant analysis and an artificial neural network were proposed as the determination
techniques for the automated inspection of BGA soldering. However, it takes a long time to inspect
the defects using OCT.

In this paper, to solve these problems, we present a new and fast hybrid inspection algorithm to
improve the accuracy of automatic ball segmentation and defect detection of occluded solder balls.
Our algorithm consists of two stages. In the first stage, the voids and void candidates are determined
using the following four steps: (i) image preprocessing such as noise removal, contrast enhancement,
binarization, connected component and morphology, etc., (ii) reducing the inspection area to the ball
regions and determining whether the regions are occluded, (iii) segmenting each ball region into one
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or more regions of similar gray value, and (iv) determining whether there are defects or defective
candidates in the regions using a weighted sum of local threshold on local variance. If there are
defective candidates, the determination of defects is finally made in the following stage. If defective
candidates are not found, the inspection process is finished in the first stage. In the second stage,
we confirm the presence or absence of defects using the automated inspection technique based on
OCT. The 3D precision computed tomography (CT) inspection process is divided into four steps: (i)
obtaining 360 projection images (one image per degree) rotating the object from 0 to 360 degrees, (ii)
reconstructing a 3d scene from the 360 images, (iii) finding the center slice of gravity for solder balls
from the axial slice images in the z-direction and set the inspection intervals between upper and lower
bounds based on the center slice, and (iv) finally determine whether there are voids in the solder ball
area using a weighted sum of local threshold on local variance. The main contribution of the proposed
hybrid algorithm is to accurately segment the ball regions of the partially occluded solder balls and
detect defects quickly. Experimental results show an accuracy of more than 97%.

The rest of this paper is organized as follows: we describe a hybrid automated defect detection
algorithm in Section 2. The experimental results and performance of our algorithm are described in
Section 3. Lastly, we give our conclusions in Section 4.

2 Hybrid Automated Defect Detection

Since the power of an X-ray tube beam varies, and the thickness of the solder ball and PCB is
also changeable, a fixed one-setting level of binarization to the X-ray image of the PCB and package
cannot apply to different PCBs and packages. These days, multilayer and double-sided PCBs are used
in most electronic devices. The images obtained from X-ray devices for these PCBs are non-occluded,
partially occluded, and fully occluded, as shown in Fig. 3. Also, a poor contrast of BGA and the ball’s
surrounding background are not homogeneous. Accordingly, it can be a very time-consuming task to
detect the voids of each solder ball.

Figure 3: Non-occluded, partially-occluded and fully-occluded solder balls

In this paper, we present a hybrid inspection algorithm that efficiently segments solder balls and
detects defects, as shown in Fig. 4. The proposed algorithm consists of two stages: (i) 2D inspection
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algorithm, and (ii) 3D precision CT inspection algorithm. We find defects or defective candidates using
the confidence degree in the first stage. If the confidence degree is greater than θ1, it is determined to
be a defect, and if it is greater than θ2, it is determined to be a defective candidate (θ1 > θ2). If defective
candidates are not found, the inspection process is finished in the first stage, but if there are defective
candidates, determining defects is done in the following stage. In the second stage, we confirm the
presence or absence of defects using the automated inspection technique based on OCT.

Figure 4: Overview of the proposed hybrid inspection algorithm

2.1 2D Defect Inspection

In the first stage, the defective candidates or defects are determined using the following four
steps: (i) image preprocessing such as noise removal, contrast enhancement, binarization, connected
component, and morphology, (ii) reducing the inspection area to the ball regions, and determining
whether the regions are occluded, (iii) segmenting each ball region into one or more regions of similar
gray value, and (iv) determining whether there are defects or defective candidates in the regions.

The contrast and brightness of the overall X-ray image depend on various devices, PCBs, and
X-ray operators. Some regions of the image can be lighter or darker than others. It is necessary to
keep the image quality consistent. The contrast enhancement is also used to improve the performance
of succeeding tasks, such as solder ball segmentation and defect detection. The image preprocessing
steps are shown in Fig. 5. First, noises are reduced through a Gaussian filter. Second, image stretching
makes accurate and consistent image analysis with fewer errors, and enhance the contrast of the image.
Third, the algorithm that clips the histogram at a predefined value and redistributes the probabilities
is applied to the images to remove the contrast amplification. Fourth, adaptive histogram equalization
is used to enhance the local contrast. Finally, difference of Gaussians (DOG) is used to remove the
noise of the image and enhance its edges.

In the second step, an efficient segmentation method for occluded solder ball is presented, as
shown in Fig. 6. Otsu’s thresholding method is used for automatic binarization, and all the blobs are
segmented. The blobs are labeled using the connected component labeling method. The regions of the
blobs are roughly segmented but are refined using closing and opening. We reduce the inspection area
to the ball regions, and determine whether the regions are occluded.
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Figure 5: Image preprocessing for the 2D input images

Figure 6: The segmentation process of solder ball after image preprocessing

In the third step, we segment each ball region into one or more regions of similar gray value.
The segmentation process of solder balls is completed by eliminating the blobs that are not matched
through the feature matching method. The representative features used in feature matching are area,
circularity, convexity, etc. The circularity and convexity indicate the degree of similarity to a circle.

In the fourth step, an efficient method to detect the void defects for solder balls is presented. In
automatic defect detection, a histogram-based analysis is used to segment defects from a ball region
efficiently. In general, if a solder ball and a defect have two distinct peaks, the segmentation of the
defect from the solder ball will work quite well. However, when the dynamic histogram range of the
ball and defect is narrow, and the segmentation is sensitive to a threshold, the defect detection results
vary dynamically. To efficiently segment the defects even in these situations, we use a weighted sum
of local thresholds on local variance. A high variance in a local area indicates a more probable region
containing void defects in the ball. The best threshold in Eq. (1) is defined as a weighted sum of N
small local regions of N×N pixels by dividing the ball.

E (th) = [Th1 × σ1 + Th2 × σ2 + · · · + ThN × σN]/σT (1)

=
[

N∑
i=1

Thi × σi

]
/σT , where σT =

N∑
i=1

σi.

The each region of the solder balls is masked, and the image area of each masked region is
stretched. Then, the first general local binarization process for each masked image area is performed,
and the second binarization threshold using optimal threshold by local variance is performed. The
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union process of the two images obtained through the two binarization processes is performed,
and the void regions are segmented, as shown in Fig. 7. The segmented regions are enlarged and
reduced through morphological opening and closing. If the confidence C(i) in Eq. (2) is greater than
a predefined threshold, the union of the regions in the solder ball is determined as a defect or a
defective candidate. If defective candidates are not contained in the solder balls, only 2D inspection
is performed. Otherwise, the defect determination for the candidates is done in the following CT
inspection stage.

Figure 7: Optimal threshold as a weighted sum of local variance

C (i) =
m(i)∑
j=0

Vij/Ai, (2)

where Vij is the area of the jth segmented region in the ith solder ball, m(i) is the number of segmented
regions in the ith solder ball, and Ai is the area of the ith solder ball.

2.2 3D CT Inspection

In the second stage, we confirm the presence or absence of defects for the defective candidates
using the automated inspection technique based on OCT. The 3D precision CT inspection process is
divided into four steps: (i) obtain 360 projection images rotating the object from 0 to 360 degrees, (ii)
reconstruct a 3D scene from the 360 images, (iii) find the center slice of gravity, Sc, for solder balls from
the axial slice images in the z-direction. We get the inspection interval between the upper bound, Sc+g,
and the lower bound, Sc−g, and average the images of the bounds between c−g and c+g. (iv) finally,
determine whether there are defects in solder ball regions of the averaged image.

After reconstructing a 3D scene from 360 images, we find the center of gravity of solder balls,
Sc, for each axial slice in the z-direction, as shown in Fig. 8. We define the axial slice, Sk, ∀k, in the
z-direction and a joint feature di = [ai, oi, ci, ri] , ∀i, for detected blob i, where ai is the area, oi is the
circularity, ci is the convexity and ri is the roundness. If ai > θ1, oi > θ2, ci > θ3 and ri > θ4, the blob i is
assigned to a set of blobs, Bk.

max
k

f (k) , ∀k, (3)

f (k) = ∑l(k)

j=0 Akj, 0 ≤ k ≤ n, 0 ≤ j ≤ l(k),

Akj is the area of blob bkj in Sk,

Bk is the set of the blobs, bkj

l(k) is the total number of blobs, bkj in Sk,
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n is the total number of cross-sectional images in the z-direction

Eq. (3) is used to find the slice k, Sk, in the z-direction that maximizes the function, f(k). The area
of blob Acj, at the center slice of gravity, Sc, is bigger than each area between A(c−g)j and A(c+g)j, as shown
in Fig. 9. We find the slice, Sc, that maximizes the total sum of blob areas, f(k). We get the inspection
intervals between the upper bound, Sc+g, and lower bound Sc−g, and then average the images of the
bounds between c−g and c+g, as shown in Fig. 10.

Figure 8: The center slice of gravity and inspection bounds for solder balls in the z-direction

Figure 9: Three cross-sectional images for locations in the z-direction

Figure 10: Averaged images in the z-direction obtained by averaging the slice images between c−g and
c+g

Finally, we determine whether there are voids in the solder ball regions of the averaged image.
The voids in the averaged image are detected using the same 2D defect inspection method presented in
the previous chapter. The defects can be easily detected in these CT images of good quality, as shown
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in Fig. 10. To evaluate the performance, we use Precision, Recall, Accuracy, and F1-score using TP
(True Positive), TN (True Negative), FN (False Negative), FP (False Positive), as shown in Table 1. TP
is the number of the good solder balls that are correctly classified, TN is the number of the defective
solder balls that are correctly classified, FN is the number of the good solder balls that are incorrectly
classified, and FP is the number of the defective solder balls that incorrectly classified. The precision
is the number of TP divided by the total number of solder balls detected as belonging to the positive
class. Recall is the number of TP divided by the total number of the solder balls that belong to the
positive class. The accuracy is defined by (TP+TN)/(TP+TN+FP+FN), and F1-score is defined by
2 ∗ (precision ∗ recall)/(precision+recall).

Table 1: Confusion matrix for defect evaluation

Predicted

Negative Positive

Actual Negative TN FP
Positive FN TP

3 Experimental Results

To evaluate the performance of our algorithm, a hybrid inspection algorithm was performed using
a BGA substrate and package in which soldering defects occurred, as shown in Fig. 11. The number of
solder balls in the PCB was more than 1000, and all solder balls were classified as good or defective by
manually viewing the OCT images. We selected ten partially occluded solder balls with voids and ten
partially occluded solder balls without voids, as shown in Fig. 13, and then we experimented 100 times
on a X-ray device. However, we did not have an experiment that segments two and more solder balls in
70% or more partially occluded conditions. We selected five insufficient solder balls and five excessive
solder balls, as shown in Fig. 13, and then we experimented 40 times. The experiment was performed
using a 2D+3D hybrid inspection system. Moreover, the overall X-ray image contrast and brightness
can vary as a function of various devices and operators. To evaluate measurement variation in these
situations, we experimented on the two X-ray devices using the same voltage and electric current.

Figure 11: BGA substrate (left) used for the experiment and the X-ray image with voids (right)



6346 CMC, 2023, vol.75, no.3

In the first stage, we preprocessed the image to improve the performance of succeeding tasks,
such as solder ball segmentation and defect detection. The image preprocessing for the 2D input
images was performed, as shown in Fig. 12. Noise removing was done by convolving an image with
the Gaussian filter of a 5 × 5 kernel size. We enhanced and adjusted the contrast of an image that
was not homogenous with histogram stretching and contrast limited adaptive histogram equalization
(CLAHE). The clip limit of CLAHE is set to 0.01. Then, we blurred and removed the noise with
Gaussian filter of two kernel sizes (3 × 3, 7 × 7), and the sigma of the DOG filter was set to 1.0.

Figure 12: The input image before preprocessing (up) and the image after preprocessing (down)

In the following steps, we had the experiments to segment the regions of occluded solder balls and
detect defects in the regions. First, we used otsu’s thresholding method for automatic binarization-
level decisions based on the shape of the histogram. Second, all components in images were detected
and labeled using the connected component labeling method. Third, the regions and their edges
of the components were refined using closing and opening. Some regions for all components were
eliminated through the features matching method. We reduced the inspection area to the ball regions,
and determined whether the solder balls in the regions were occluded. We then segmented each ball
region into one or more regions of similar gray value. Finally, we determined whether there were defects
or defective candidates in the regions using a weighted sum of local thresholds on local variance. The
union of regions in ith solder ball was determined as a void defect if it satisfied the condition that the
C(i) was greater than the predefined threshold, which was set to 10%. The union of regions in ith solder
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ball was determined as a void candidate if it satisfied the condition that the C(i) was greater than the
predefined threshold, which was set to 5%. If C(i) is less than 5%, a void does not exist in the ith solder
ball. The union of the region contained in the 1st solder ball was greater than 10%, as shown in Fig. 14b,
so it was determined as a void. However, the union of void regions contained in the 2nd solder ball was
less than 10%, so it was determined as a void candidate. The defective candidates could be classified
as defects in the following stage.

Figure 13: Defects used in the experiment

Figure 14: The input image and binarized image with voids

The 3D image was reconstructed using 360 projection images, and the pitch angle for the
projection was 1 degree. By parallelizing the collection of the projection images, reconstruction
processing and inspection of the defects, the 3D inspection was completed in 4 s.

To evaluate the performance, we used TP, TN, FN, FP, Precision, Recall, Accuracy and F1-score.
The first experiment was performed after only two preprocessing steps: noise removal and histogram
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equalization. The results are shown in Table 2. The precision value, recall value, accuracy and F1-
score for void defects were less than 64.0%. The precision value, recall value, accuracy and F1-score
for insufficient soldering were less than and equal to 71.0%. The precision value, recall value, accuracy
and F1-score for excessive soldering were less than 69.0%.

Table 2: The experimental results performed after two preprocessing steps: noise removal and
histogram equalization

Defect TP TN FP FN Precision (%) Recall (%) Accuracy (%) F1-score (%)

Void 632 591 409 368 60.7 63.2 61.2 61.9
Insufficient soldering 71 62 38 29 65.1 71.0 66.5 67.9
Excessive soldering 65 72 28 35 67.4 68.5 65.0 67.4

The second experiment was performed on the 1st X-ray device using the proposed preprocessing
algorithm. The results are shown in Table 3. The precision value, recall value, accuracy and F1-
score for void defects were above 99.8%. The precision value, recall value, accuracy and F1-score for
insufficient soldering were 100%. The precision value, recall value, accuracy and F1-score for excessive
soldering were above 97.0%.

Table 3: The experimental results after the proposed preprocessing algorithm on the 1st X-ray device

Defect TP TN FP FN Precision (%) Recall (%) Accuracy (%) F1-score (%)

Void 999 998 2 1 99.8 99.9 99.9 99.8
Insufficient soldering 100 100 0 0 100 100 100 100
Excessive soldering 98 97 3 2 97.0 98.0 97.5 97.5

The third experiment on the 2nd X-ray device was performed under the same voltage and electric
current as the second experiment. The results are shown in Table 4. The precision value, recall value,
accuracy and F1-score for void defects were above 99.6%. The precision value, recall value, accuracy
and F1-score for insufficient soldering were 100%. The precision value, recall value, accuracy and
F1-score for excessive soldering were above 97.0%.

Table 4: The experimental results after the proposed preprocessing algorithm on the 2nd X-ray device

Defect TP TN FP FN Precision (%) Recall (%) Accuracy (%) F1-score (%)

Void 999 996 4 1 99.6 99.9 99.8 99.7
Insufficient soldering 100 100 0 0 100 100 100 100
Excessive soldering 97 97 3 3 97.0 97.0 97.0 97.0

4 Conclusions

In this paper, we presented a new hybrid automatic inspection algorithm that segmented solder
balls and detected defects efficiently when solder balls were occluded. The proposed algorithm consists
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of two stages. In the first stage, we determined the defective candidates or defects using the following
four steps: image preprocessing, determining whether the regions are occluded, segmenting each ball
region into one or more regions, determining whether there are defects or defective candidates in the
regions using a weighted sum of local threshold on local variance. If there were defective candidates,
the determination of defects was finally made in the next stage. In the second stage, we detected defects
using the automated inspection methodology based on OCT. The OCT inspection process was divided
into four steps: obtaining 360 projection images, reconstructing a 3d scene, finding the center slice of
gravity for solder balls and getting the inspection intervals from the center slice, and finally determining
whether there are defects in the averaged image of solder balls.

To evaluate the performance of our hybrid algorithm, we had two experiments. The first exper-
iment was performed after only the two preprocessing: noise removal and histogram equalization.
The precision value, recall value, accuracy, and F1-score for void defects were less than 64.0%. The
precision value, recall value, accuracy, and F1-score for insufficient soldering were less than and equal
to 71.0%. The precision value, recall value, accuracy and F1-score for excessive soldering were less than
69.0%. The second experiment was performed on the 1st X-ray device and 2nd X-ray device using the
proposed preprocessing algorithm. The precision value, recall value, accuracy and F1-score for void
defects were above 99.8%. The precision value, recall value, accuracy, and F1-score for insufficient
soldering were 100%. The precision value, recall value, accuracy and F1-score for excessive soldering
were above 97.0%.

We had the limitation that we did not have an experiment that segments solder balls in 70% or
more partially occluded conditions. It is still difficult to accurately segment the regions of occluded
solder balls. Also, we did not apply our proposed algorithm to detecting other types of defects. We will
apply our algorithms to defects such as non-wet, short, and head in pillow (HIP) that may occur in
PCBs and packages.
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