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Abstract: In block ciphers, the nonlinear components, also known as sub-
stitution boxes (S-boxes), are used with the purpose of inducing confusion in
cryptosystems. For the last decade, most of the work on designing S-boxes over
the points of elliptic curves has been published. The main purpose of these
studies is to hide data and improve the security levels of crypto algorithms.
In this work, we design pair of nonlinear components of a block cipher over
the residue class of Gaussian integers (GI). The fascinating features of this
structure provide S-boxes pair at a time by fixing three parameters. But the
prime field dependent on the Elliptic curve (EC) provides one S-box at a time
by fixing three parameters a, b, and p. The newly designed pair of S-boxes
are assessed by various tests like nonlinearity, bit independence criterion,
strict avalanche criterion, linear approximation probability, and differential
approximation probability.
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1 Introduction

Cryptography was widely used in military, diplomatic, and government applications until the
1970s. In the 1980s, the telecommunications and financial industries installed hardware cryptographic
devices. The mobile phone system was the first cryptographic application in the late 1980s. Nowadays,
everyone uses cryptographic applications in their daily lives. Our daily lives are commonly dependent
on the secure transmission of information and data. Online shopping, cell phone messages and calls,
ATMs, electronic mail, facsimile, wireless media, and data transfer over the internet all require a
system to maintain the secrecy and integrity of private information. In an antagonistic environment,
cryptography provides a way for everyone to communicate securely. Cryptography plays a major
role in the security of data. Encryption of a message ensures that the meaning is concealed in it so
that someone who reads the message cannot understand anything out of it unless people crack the
message [1].

In cryptography, the S-box plays a major role in maintaining safe communication. In 1949,
Shannon proposed the concept of an S-box. In creating confusion in data, S-boxes play a key role.
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According to Shannon, hiding the relationship between the key and cipher text is known as confusion,
while hiding the statistical relationship between plain text and cipher text is known as diffusion.
In other words, the plain text’s non-uniformity in the distribution of individual letters should be
redistributed into the cipher text’s non-uniformity in the distribution of much larger structures, which
is significantly much harder to detect [2].

In literature, for creating confusion very well-known S-boxes are available in data and information,
such as data encryption standard (DES), advanced encryption standard (AES), affine power affine,
Gray, Skipjack, Xyi, and Residue Prime Substitution boxes. In 1974, the National Bureau of Standards
requested an American company to create a strong cryptosystem that could be used in unclassified U.S.
applications. So, DES was developed by IBM and was adopted by NIST (then called the National
Bureau of Standards) on January 15, 1977. It soon became the most widely used cryptosystem in the
world. However, from the very beginning, DES attracted criticism for not having a sufficiently large
key space to make it secure. The size of the key space in DES is 256. From early on, attempts were
made to build a special-purpose machine devoted exclusively to the task of breaking the DES code. In
1998 a massively parallel network computer, called “DES Cracker,” was built by Electronic Frontier
Foundation EFF that could search 88 billion DES keys per second. It succeeded in finding a DES
secret key in 56 h. In 1999, working in conjunction with a worldwide network of 100,000 computers,
the DES Cracker could search 245 billion keys per second and succeed in finding a secret DES key in
a little more than 22 h. It was thus clear that DES was no longer a secure cryptosystem [3]. Therefore
it was necessary to phase out the DES and adopt a more secure encryption standard.

A brief description of the latest cryptosystem is approved for general use by the National Institute
of Standards and Technology (NIST). It is called the Advanced Encryption Standard (AES) and was
adopted, effective May 26, 2002, as the official Federal Information Processing Standard (FIPS) to be
used by all U.S. government organizations to protect sensitive information. It is also expected to be
used by other organizations, institutions, and individuals all over the world. The enciphering algorithm
in AES was designed by two Belgian cryptographers, Dr. Joan Daeman and Dr. Vincent Rijmen. It
was given the name Rijndael (pronounced “rhine dahl”). The basic structure of the Rijndael algorithm
is that of an iterated block cipher, but with some additional features. Before considering the Rijndael
algorithm, we will move towards an iterated block cipher which is present in [4].

For creating confusion on data, for the construction of S-boxes, many researchers used different
schemes with algebraic and statistical structures. The authors proposed S-boxes over the permutation
of the symmetric group in [5]. The construction of S-boxes over the action of the quotient of a modular
group by using a secure scheme is given in [6]. The construction of the S-box based on the subgroup of
the Galois field is given in [7]. The author proposed a strong encryption scheme by using a modified
Chebyshev map, AES S-boxes, and a symmetric group of permutations [8].

In [9], the authors proposed a new scheme for the construction of the S-box based on the linear
fractional transformation (LFT) and permutation function. In [10], the author proposed S-box over
the Mobius group and finite field. The author proposed S-box on a nonlinear chaotic map in [11].
The authors proposed S-boxes over the second coordinate of EC in [12]. Adnan et al. [13], designed
the construction of a non-linear component of block cipher by means of a chaotic dynamical system
and symmetric group. In [14], the author constructed cyclic codes over quaternion integers, these
quaternion structures can be helpful for the construction of S-boxes.

An S-box generator is appropriate for cryptographic purposes if it can efficiently make highly
dynamic S-boxes with good cryptographic properties or tests like nonlinearity, bit independence
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criterion, strict avalanche criterion, linear approximation probability, and differential approximation
probability. The key contributions of our proposed study are given below:

• Propose an algorithm to generate pair of S-boxes by the cyclic group over the residue class of
Gaussian integers.

• Security Analysis.
• The advantages of the proposed algorithm over GI with some of the existing algorithms

over EC.

This paper is structured as follows: Basic definitions, cyclic group over the residue class of
Gaussian integers, and some fundamental results are elaborated in Section 2. The scheme of the pair
of new S-boxes is proposed in Section 3. Analysis of the proposed S-boxes including nonlinearity, bit
independence criterion, strict avalanche criterion, linear approximation probability, and differential
approximation probability investigated in Section 4. The comparison of the proposed S-boxes with
some of the existing S-boxes are given in Section 5. Conclusions and future directions are given in
Section 6.

2 Preliminaries

This section provides the key concepts and basic findings that will be used in the study of upcoming
sections. First of all, we recall the definition of Gaussian integers, cyclic group over a residue class of
Gaussian integers, and some fundamental results.

Gaussian Integers

By following [[15], Section 2], Gaussian integers are a subset of complex numbers which have
integers as real and imaginary parts;

1. Z [i] = {b0 + b1i: b0, b1 ∈ Z}, where Z is the set of integers.
2. Multiplicative identity is 1.
3. i2 = −1

Let h = b0 +b1i be an element of the Gaussian integer ring, then the conjugate of h is h = b0 −b1i.
The norm of h is the sum of the squares of the real part and the coefficient of the vector part of h;

p = n (h) = hh = b2
0 + b2

1

A Gaussian integer has only two parts, one is the scalar part b0 and the other is the vector part
b1i.

Addition of two Gaussian Integers

Let h = a1 +b1i and k = a2 +b2i are two Gaussian integers then, the sum of two Gaussian integers
is also a Gaussian integer defined as;

h + k = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + i(b1 + b2) = a3 + b3

Multiplication of two Gaussian Integers

Let h = a1+b1i and k = a2+b2i are two Gaussian integers then, the multiplication of two Gaussian
integers is also a Gaussian integer defined as;

hk = (a1 + b1i) (a2 + b2i) = (a1a2 − b1b2) + i(a1b2 + a2b1) = (a1a2 − b1b2 , a1b2 + a2b1) = a4 + b4i
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Theorem: In [[15], Section 2], the set of natural numbers for each odd rational prime p, there is a
prime h ∈ Z [i], such that N (h) = p = hh. In particular, p is not prime in Z [i].

Theorem: In [[16], Theorem 6.3], if the norm of a Gaussian integer N (h) is prime in Z, then the
Gaussian integer h is prime in Z [i].

Definition: In [[17], Section 2], let Z [i] be the set of Gaussian integers and Z [i]h be the residue class
of Gaussian integers over modulo h, h = a + bV. Then, the modulo function

ω: Z [i] = {c + dV :c, d ∈ Z} → Z [i]h

Then, ω (u) = z (mod h) = u −
[

uh

hh

]
h.

Where z ∈ Z [i]h and [.] are rounding to the nearest integer. The rounding of a Gaussian integer
can be done by rounding the real part and coefficients of the imaginary part separately to the closest
integer.

Theorem: In [[17], Theorem 7.12], let h be a Gaussian prime, and the number of Gaussian integers
modulo h is the norm of h. If ρ �= 0 (mod h), then ρn(h)−1 ≡ 1 (mod h).

Theorem: In [[17], Theorem 2], If c and d are two relatively prime integers, then Z [i]/〈c + di〉 is
isomorphic to Zc2+d2 .

3 Redesign of Pair of n × n S-Boxes Over Gaussian Integers

Numerous procedures can be used to generate confusion in a security system. S-box is one of the
most efficient techniques in modern cryptosystems. The S-boxes are generally constructed through
the class of GI, which is the multiplicative cyclic group. Consequently, there is a good choice to design
a variety of S-boxes over the residue class of GI, which provides a marvelous perspective for secure
and consistent cryptosystems. The following steps are helpful for the construction of S-boxes over the
residue class of GI (Multiplicative cyclic group);

Step 1: Construct a cyclic group of order p − 1 over the residue class of GI.

Step 2: Separate real and imaginary parts of the cyclic group constructed in Step 1.

Step 3: Apply modulo 2n over the separated parts in Step 2.

Step 4: Select the first 2n non-repeated elements from the elements of Step 3.

Step 5: Apply permutation through affine mapping as

f (x) = (ax + b) (mod 2n)

where b ∈ Z2n and a be the units element of Z2n .

Step 6: Get a pair of S-boxes.

3.1 Pair of 4 × 4 S-Boxes Over the Residue Class of GI

Let h = 1 + 16i, p = n (h) = 12 + 162 = 257, and β = 2 + 4i = (2, 4), then the cyclic group
generated by β as follows;

Select the first 16 non-repeated elements from the last two columns of Table 1, then apply the
affine permutation mapping, f (x) = (3x + 5) (mod 16) , and get the pair of S-boxes separately in
Tables 2 and 3.
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Table 1: Cyclic group generated by β

Number β i Real (β i) Imaginary (β i) (Real (β i))(mod 256) (Imaginary (β i))(mod
256)

1 (2, 4) 2 4 2 4
2 (3, 256) 3 256 3 0
3 (250, 252) 250 252 10 12
. . . . . .
. . . . . .
. . . . . .
256 (1, 0) 1 0 1 0

Table 2: 4 × 4 S-box by the real part of GI

2 3 10 7
4 11 12 15
0 6 13 14
9 5 8 1

Table 3: 4 × 4 S-box by the imaginary part

4 0 12 6
7 14 13 8
11 9 3 5
10 1 2 15

3.2 Pair of 8 × 8 S-Boxes Over the Residue Class of GI

Let h = 14 + 61i, p = n (h) = 3917, and β = 1 + 11i = (1, 11), then the cyclic group generated
by β as follows;

Select the first 256 non-repeated elements from the real part of Table 4. Then apply the affine
permutation map f (x) = (165x + 120) (mod 256), and get the S-box for the real part of GI in Table 5.

Table 4: Cyclic group generated by β

Number β i Real (β i) Imaginary (β i) (Real (β i))(mod 256) (Imaginary (β i))(mod
256)

1 (1, 11) 1 11 1 11
2 (213, 22) 213 22 213 22
3 (267, 58) 267 58 11 58
. . . . . .

(Continued)
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Table 4: Continued
Number β i Real (β i) Imaginary (β i) (Real (β i))(mod 256) (Imaginary (β i))(mod

256)

. . . . . .

. . . . . .
3916 (1, 0) 1 0 1 0

Table 5: A = 8 × 8 S-box for the real part of GI

203 75 194 118 144 137 174 127 133 68 140 123 220 216 201 59
165 154 222 107 223 252 86 15 143 234 132 69 218 101 81 119
120 248 9 46 56 153 170 14 98 251 30 245 83 171 177 148
1 58 186 19 122 198 141 105 241 76 36 178 172 204 55 208
50 211 3 250 158 214 61 175 106 145 182 41 180 44 138 233
195 125 126 121 231 21 176 215 151 227 22 67 246 112 237 187
192 152 247 24 142 166 244 206 242 64 40 111 32 13 191 95
74 108 100 97 217 163 73 29 232 38 139 146 70 179 7 157
117 93 10 60 207 12 115 162 66 229 129 193 184 48 77 240
149 6 78 199 82 209 205 113 90 183 243 84 11 33 53 85
2 17 159 104 114 109 116 72 54 213 34 18 219 168 196 160
26 235 210 173 189 212 249 23 47 190 49 156 255 42 254 91
92 238 224 185 202 164 79 155 27 124 197 20 62 52 188 228
99 134 136 31 130 147 230 4 96 94 0 88 65 102 35 239
25 225 71 131 16 28 43 169 135 236 181 110 57 221 161 37
150 103 167 80 39 8 89 253 5 128 200 226 45 87 63 51

Select the first 256 non-repeated elements from the imaginary part of Table 4. Then apply the
affine permutation map f (x) = (165x + 119) (mod 256) , and get S-box for the imaginary part of GI
in Table 6.

Table 6: B = 8 × 8 S-box for the imaginary part of GI

59 46 28 222 115 100 45 131 156 214 76 19 243 247 237 69
186 74 37 147 232 78 234 196 163 204 85 172 126 39 253 48
183 118 79 57 188 1 254 201 215 8 15 184 73 144 187 42
239 7 217 33 109 62 138 87 26 230 133 110 5 122 123 209
132 98 90 185 40 242 177 165 65 246 124 52 88 43 241 199
60 129 218 190 161 80 227 108 223 174 203 41 219 197 56 34
191 101 63 235 158 150 251 51 245 99 125 13 141 35 53 151
116 68 159 216 157 72 155 176 0 238 18 181 210 231 212 140
16 178 50 225 17 14 211 96 135 143 38 66 205 162 20 180

(Continued)
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Table 6: Continued

27 206 107 128 121 61 240 24 164 192 179 31 102 202 119 142
194 198 75 91 30 182 226 71 22 111 97 255 93 137 55 12
120 58 248 103 4 134 105 95 167 92 32 104 54 153 195 148
224 229 106 233 67 94 168 169 2 193 44 213 130 221 127 250
112 6 170 173 23 89 86 83 152 208 200 154 47 175 207 149
236 10 11 117 244 84 36 114 136 146 77 228 29 3 113 189
25 49 21 249 171 82 70 145 252 220 64 9 81 160 139 166

3.3 Pair of 8 × 8 S-Boxes Over the Residue Class of GI

Let h = 19 + 50i, p = n (h) = 2861, and β = 1 + 7i, then apply a similar process like 3.2 and 3.3,
then get a pair of S-boxes over the residue class of GI in Tables 7 and 8.

Table 7: C = 8 × 8 S-box for the real part of GI

29 225 215 178 1 62 238 101 85 186 173 107 194 197 66 198
191 52 108 119 42 151 153 210 81 88 253 236 252 145 109 157
202 106 59 49 181 231 159 26 170 174 7 27 3 58 13 63
138 244 55 179 10 73 229 30 19 6 176 147 243 154 139 137
117 37 102 233 172 35 219 209 204 77 17 128 165 230 47 149
125 23 12 67 68 33 187 180 120 44 144 143 93 249 206 208
15 25 127 226 196 245 50 112 207 97 83 171 72 4 221 212
216 250 136 132 100 169 45 199 20 156 133 57 121 195 71 61
22 39 218 193 94 123 53 91 54 228 163 89 5 164 223 90
146 140 248 205 188 40 175 130 98 232 134 84 86 152 148 113
46 184 211 21 124 239 79 185 203 31 161 162 14 95 80 110
99 43 65 190 87 241 122 103 92 131 24 155 116 18 11 183
254 70 48 78 220 69 247 240 242 246 32 160 111 192 182 200
16 8 60 115 118 28 222 217 129 166 0 105 237 189 74 255
104 213 224 214 41 251 167 235 150 227 51 126 2 56 76 96
36 38 168 82 64 158 234 201 75 34 142 114 141 9 177 135

Table 8: D = 8 × 8 S-box for the imaginary part of GI

80 35 193 46 83 108 212 88 240 105 14 228 49 196 103 38
101 24 213 8 54 90 159 183 60 178 167 69 231 229 19 161
162 171 180 43 220 7 120 154 147 22 18 15 203 106 44 216
242 217 181 152 138 65 53 185 78 151 211 157 117 109 191 205
72 122 89 133 11 234 61 253 143 199 136 146 56 98 30 12
92 112 94 201 135 52 192 137 165 248 150 75 236 223 68 119

(Continued)
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Table 8: Continued

96 197 115 177 21 97 13 95 186 221 81 17 62 166 29 190
184 249 73 163 64 194 169 224 59 174 172 93 113 232 41 58
2 164 241 155 254 139 144 127 235 87 244 158 36 227 145 247
129 6 107 218 173 110 111 63 51 28 116 33 208 170 9 128
210 23 67 245 230 26 141 148 188 214 4 131 76 238 66 27
182 149 250 42 77 91 255 121 71 142 82 246 126 226 50 189
243 123 25 153 206 31 132 34 118 79 16 251 204 160 252 202
102 222 156 47 176 124 57 37 134 195 84 140 70 45 99 100
0 48 215 237 239 114 125 55 168 175 39 5 198 187 200 40
32 1 10 74 225 207 104 209 85 3 179 20 219 233 130 86

3.4 Inverse S-Boxes

The S-boxes A, B, C, and D in 3.2, and 3.3 are invertible and bijective. The procedure of inverse
S-boxes over the residue class of GI is defined by applying inverse permutation through the following
affine mapping h (x) = (cx + d) (mod 2n) , where c is the multiplicative inverse of a under modulo 2n

and d is the additive inverse of cb under modulo 2n.

The Inverse S-box of A is defined by the map, h1 (x) = (45x + 232) (mod 256) in Table 9.

Table 9: E = Inverse S-box of A

218 48 160 66 215 248 145 126 245 34 130 156 133 109 39 23
228 161 171 51 203 85 90 183 99 224 176 200 229 119 42 211
108 157 170 222 58 239 121 244 106 75 189 230 77 252 35 184
141 186 64 255 205 158 168 62 36 236 49 15 131 70 204 254
105 220 136 91 9 27 124 226 167 118 112 1 57 142 146 198
243 30 148 44 155 159 22 253 219 246 152 191 192 129 217 111
216 115 40 208 114 29 221 241 163 55 72 19 113 165 235 107
93 151 164 134 166 128 3 31 32 83 52 11 201 81 82 7
249 138 212 227 26 8 209 232 210 5 78 122 10 54 100 24
4 73 123 213 47 144 240 88 97 37 17 199 187 127 68 162
175 238 135 117 197 16 101 242 173 231 38 45 60 179 6 71
86 46 59 125 76 234 74 153 140 195 50 95 206 180 185 110
96 139 2 80 174 202 53 147 250 14 196 0 61 150 103 132
63 149 178 65 181 169 69 87 13 116 28 172 12 237 18 20
194 225 251 89 207 137 214 84 120 79 25 177 233 94 193 223
143 56 104 154 102 43 92 98 33 182 67 41 21 247 190 188

The inverse S-box of B is defined by the map, h2 (x) = (45x + 21) (mod 256) in Table 10.

The inverse S-box of C for the real part of GI is given in Table 11.

The inverse S-box of D for the imaginary parts of GI is given in Table 12.
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Table 10: F = Inverse S-box of B

120 37 200 237 180 60 209 49 41 251 225 226 175 107 133 42
128 132 122 11 142 242 168 212 151 240 56 144 2 236 164 155
186 51 95 109 230 18 138 29 68 91 47 77 202 6 1 220
31 241 130 103 75 110 188 174 94 35 177 0 80 149 53 98
250 72 139 196 113 15 246 167 117 44 17 162 10 234 21 34
85 252 245 215 229 26 214 55 76 213 66 163 185 172 197 183
135 170 65 105 5 97 156 179 187 182 194 146 87 52 59 169
208 238 231 4 112 227 33 158 176 148 61 62 74 106 28 206
147 81 204 7 64 58 181 136 232 173 54 254 127 108 159 137
45 247 233 19 191 223 101 111 216 189 219 118 8 116 100 114
253 84 141 24 152 71 255 184 198 199 210 244 27 211 89 221
119 70 129 154 143 123 165 32 43 67 16 46 36 239 83 96
153 201 160 190 23 93 161 79 218 39 157 90 25 140 145 222
217 63 124 134 126 203 9 40 115 50 82 92 249 205 3 88
192 131 166 86 235 193 57 125 20 195 22 99 224 14 121 48
150 78 69 12 228 104 73 13 178 243 207 102 248 30 38 171

Table 11: G = Inverse S-box of C

103 252 39 167 128 99 151 133 255 172 31 66 132 129 154 211
101 72 8 229 84 29 245 32 63 188 34 206 78 170 164 168
180 116 106 53 126 125 241 253 61 41 77 80 119 20 189 102
185 194 250 222 147 46 62 83 200 10 232 177 226 242 58 248
201 93 70 159 89 36 33 24 157 94 227 47 190 81 195 224
209 14 52 45 105 117 239 173 212 118 6 148 178 207 192 55
130 141 25 247 27 146 158 144 183 181 228 76 67 92 145 218
235 165 43 153 57 104 35 161 198 100 166 139 21 85 4 60
30 86 225 50 160 138 40 142 208 220 174 223 82 120 18 59
91 2 23 122 236 22 251 17 110 42 156 74 233 203 197 136
217 243 184 238 171 16 73 134 135 196 246 13 205 75 249 48
26 5 38 187 155 202 123 51 149 87 88 71 214 204 95 108
199 237 37 79 107 216 28 176 113 1 97 182 179 98 9 127
240 3 140 234 143 254 231 163 96 68 131 109 193 150 230 65
210 121 213 219 162 191 169 0 137 124 186 221 115 19 152 215
112 111 244 175 114 15 69 7 90 64 44 11 49 54 56 12
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Table 12: H = Inverse S-box of D

121 231 164 125 146 182 90 172 100 11 214 103 163 134 109 67
88 62 222 53 33 80 97 16 216 173 3 68 153 147 227 10
137 126 171 144 5 92 91 167 58 239 199 66 8 59 45 89
148 49 249 57 157 210 108 81 202 138 28 130 177 118 106 107
209 236 123 120 158 32 52 82 161 254 175 30 42 60 232 215
253 76 24 169 140 72 26 14 190 176 151 9 46 186 160 181
63 219 197 132 15 129 207 150 189 220 87 200 201 71 229 241
55 56 149 159 93 0 234 4 38 64 195 191 245 240 166 156
185 208 35 13 251 242 110 179 119 206 22 145 74 165 226 180
127 198 112 255 69 2 114 136 27 54 174 99 133 188 196 73
37 117 23 212 17 102 65 116 86 21 79 44 218 85 223 25
154 36 1 192 246 162 139 39 12 77 178 41 237 143 238 213
224 70 122 141 228 184 124 211 128 83 221 252 152 51 233 115
34 203 6 104 75 243 7 244 40 135 142 19 155 168 98 250
183 113 48 61 131 101 194 84 205 230 105 29 47 78 170 193
95 204 217 111 20 96 31 18 247 225 248 50 43 235 187 94

4 Analysis of S-Boxes

In this section, we will present some useful analyses of the proposed S-box like as; Nonlinearity,
bit independence criterion, strict avalanche criterion, linear approximation probability, and differential
approximation probability.

4.1 Nonlinearity (NL)

The NL of a Boolean function can be defined as the distance between the function and the set of
all affine functions. In other words, we can say that; Non-linearity is the number of bits that must be
changed in the truth table of a Boolean function to reach the closest affine function. The upper bound
of NL for the S-box is N (f ) = 2n−1 − 2

n
2 −1 [18]. The optimal value of the NL of the S-box is 120. The

NL results of the proposed 8 × 8 S-boxes A, B, C , and D are given in Table 13.

Table 13: Nonlinearity of 8 × 8 proposed S-boxes

Primes Proposed S-boxes f1 f2 f3 f4 f5 f6 f7 f8 Average

3917 A 108 108 108 108 108 108 106 106 107.50
B 108 108 104 106 104 106 108 108 106.50

2861 C 108 106 104 108 108 108 106 106 106.75
D 108 106 106 106 108 108 106 106 106.75
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The maximum nonlinearity of all proposed S-boxes A, B, C, and D is 108. The minimum
nonlinearity of proposed S-boxes A, B, C, and D are 106, 104, 104, and 106. The average nonlinearity
of proposed S-boxes A, B, C, and D are 107.5, 106.5, 106.75, and 106.75.

4.2 Bit Independence Criterion (BIC)

The output BIC was also first introduced by Webster and Tavares, which is explained in [18], which
is another desirable property for any cryptographic design. It means that all the avalanche variables
should be pair-wise independent for a given set of avalanche vectors generated by the complementing
of a single plaintext bit. The average value of BIC is 1

2
. The BIC analysis with the pair of proposed

S-boxes A, and B are given in Tables 14 and 15. The BIC of the proposed S-boxes generated by GI is
up to the standard in the sense of encryption strength.

Table 14: BIC of proposed S-box A

. . . .. 0.50390625 0.5 0.50390625 0.515625 0.50390625 0.498046875 0.4765625
0.50390625 . . . .. 0.513671875 0.49609375 0.484375 0.50390625 0.51171875 0.48828125
0.5 0.513671875 . . . .. 0.501953125 0.521484375 0.49609375 0.509765625 0.490234375
0.50390625 0.49609375 0.501953125 . . . .. 0.4921875 0.5078125 0.48828125 0.515625
0.515625 0.484375 0.521484375 0.4921875 . . . .. 0.52734375 0.490234375 0.513671875
0.50390625 0.50390625 0.49609375 0.5078125 0.52734375 . . . .. 0.53515625 0.49609375
0.498046875 0.51171875 0.509765625 0.48828125 0.490234375 0.53515625 . . . .. 0.505859375
0.4765625 0.48828125 0.490234375 0.515625 0.513671875 0.49609375 0.505859375 . . . ..

Table 15: BIC of proposed S-box B

. . . .. 0.53125 0.521484375 0.513671875 0.52734375 0.50390625 0.486328125 0.505859375
0.53125 . . . .. 0.515625 0.5 0.494140625 0.513671875 0.4765625 0.51171875]
0.521484375 0.515625 . . . .. 0.505859375 0.46484375 0.494140625 0.50390625 0.482421875
0.513671875 0.5 0.505859375 . . . .. 0.501953125 0.5 0.5078125 0.4921875
0.52734375 0.494140625 0.46484375 0.501953125 . . . .. 0.478515625 0.494140625 0.505859375
0.50390625 0.513671875 0.494140625 0.5 0.478515625 . . . .. 0.5 0.486328125
0.486328125 0.4765625 0.50390625 0.5078125 0.494140625 0.5 . . . .. 0.51953125
0.505859375 0.51171875 0.482421875 0.4921875 0.505859375 0.486328125 0.51953125 . . . ..

The maximum (Max), average (Ave), and minimum (Min) BIC values of proposed S-boxes
(A, B, C, and D) are (0.625, 0.609, 0.609, and 0.578), (0.047, 0.47, 0.47, and 0.47), and (0.375, 0.375,
0.375, and 0.391). The DAP comparison of proposed S-boxes with S-boxes on EC from the literature
are given in the comparison section.

4.3 Linear Approximation Probability (LAP)

LAP is the maximum value of the imbalance of an event. The parity of the input bits selected by
the mask �u is equal to the parity of the output bits selected by the mask �v. According to Matsui’s
original definition, linear approximation probability (or probability of bias) of a given s-box is defined
in [18];



5298 CMC, 2023, vol.75, no.3

LP = max
�u, �v=0

∣∣∣∣#{u: u.�u = S (u) . �v
2n

− 1
2

∣∣∣∣
where, �u and �v are input and output masks, respectively; X is the set of all possible inputs and 2n

is the number of its elements. We have calculated the linear approximation probability of proposed
S-boxes. We will compare it with some well-known S-boxes in Comparison Table 22. The maximum
values of LAP of proposed S-boxes are given in Table 16, which are not so bad against linear attacks.

Table 16: LAP of proposed S-boxes

Primes Proposed S-boxes LAP values

3917 A 0.1328125
B 0.140625

2861 C 0.1328125
D 0.1328125

4.4 Differential Approximation Probability (DAP)

The nonlinear transformation S-box should ideally have differential uniformity. An input differ-
ential �ui should uniquely map to an output differential �vi, thereby ensuring a uniform mapping
probability for each i. The differential approximation probability DAP of a given S-box is a measure
of differential uniformity and is defined as

DPs (�u → �v) =
[

# {u ∈ X : S (u) ⊕ S (u ⊕ �u) = �v}
2m

]
The DAP results of proposed S-boxes A and B are given in Tables 17 and 18.

Table 17: DAP of proposed S-box A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.016 0.023
0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.016 0.023 0.023 0.023
0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.031 0.023
0.031 0.023 0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.023 0.039 0.023 0.023 0.023 0.023
0.031 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.016 0.047 0.031 0.023 0.023 0.023 0.023 0.023
0.023 0.023 0.023 0.031 0.031 0.039 0.023 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023
0.031 0.039 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.023
0.023 0.039 0.023 0.023 0.023 0.023 0.023 0.031 0.016 0.023 0.023 0.023 0.023 0.023 0.023 0.023
0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.031 0.039 0.023 0.023
0.031 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.016
0.023 0.023 0.023 0.039 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.016 0.023 0.023
0.023 0.031 0.023 0.016 0.023 0.031 0.023 0.031 0.023 0.031 0.023 0.031 0.023 0.023 0.031 0.031
0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.039 0.023 0.023 0.031 0.023

(Continued)
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Table 17: Continued
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.031
0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0

Table 18: DAP of proposed S-box B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.031 0.031 0.023 0.039 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031 0.023
0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.031 0.023 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.031 0.023 0.039 0.023 0.031 0.031 0.023 0.031
0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023
0.039 0.023 0.016 0.023 0.031 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.023 0.031 0.023
0.023 0.023 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.039 0.023 0.023 0.023 0.031 0.031 0.031
0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031
0.039 0.023 0.031 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023
0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.023
0.039 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.039 0.023 0.031 0.031 0.031 0.031
0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.023 0.031 0.031 0.023 0.031 0.031
0.031 0.023 0.023 0.023 0.031 0.031 0.039 0.023 0.023 0.031 0.031 0.016 0.023 0.023 0.023 0.031
0.023 0.023 0.039 0.031 0.016 0.031 0.023 0.023 0.031 0.023 0.039 0.031 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.047 0.031 0.023 0.039 0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.031
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.031 0.023 0.031 0.023 0.023 0.023 0

The Max. DAP values of proposed S-boxes A, B, C, and D are 0.047, 0.47, 0.47, and 0.47.
The DAP comparison of proposed S-boxes with S-boxes on EC from the literature are given in the
comparison section.

4.5 Strict Avalanche Criterion (SAC)

An S-box satisfies SAC if a single bit changes on the input results in a change on half of the output
bits. Note that when S-box is used to build an S-P network, then a single change on the input of the
network causes an avalanche of changes. The SAC results of the proposed S-boxes A and B are given
in Tables 19 and 20. We have come to a close that the value of the proposed S-boxes is approximately

equal to
1
2

. So, we conclude that we can make use of proposed S-boxes in block cipher for secure

communication.

The Max SAC values of proposed S-boxes A, B, C, and D are 0.594, 0.594, 0.594, and 0.594. The
minimum SAC values of the proposed S-boxes A, B, C, and D are 0.406, 0.406, 0.406, and 0.422. The
average SAC values of the proposed S-boxes A, B, C, and D are 0.5, 0.5, 0.5, and 0.508. Hence, we
conclude that the proposed S-boxes satisfied the SAC close to the optimal possible value.
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Table 19: SAC of proposed S-box A

0.53125 0.453125 0.5 0.421875 0.484375 0.59375 0.484375 0.5625
0.53125 0.53125 0.484375 0.484375 0.53125 0.53125 0.4375 0.484375
0.515625 0.484375 0.515625 0.484375 0.515625 0.546875 0.515625 0.46875
0.5 0.5625 0.484375 0.515625 0.53125 0.484375 0.515625 0.484375
0.5 0.5625 0.515625 0.53125 0.5625 0.484375 0.515625 0.453125
0.484375 0.46875 0.484375 0.46875 0.515625 0.5625 0.5 0.546875
0.40625 0.46875 0.453125 0.5 0.546875 0.53125 0.546875 0.515625
0.453125 0.515625 0.5625 0.484375 0.578125 0.5 0.546875 0.484375

Table 20: SAC of proposed S-box B

0.46875 0.5 0.515625 0.5 0.5 0.515625 0.53125 0.53125
0.453125 0.53125 0.53125 0.5 0.46875 0.46875 0.53125 0.5625
0.515625 0.46875 0.4375 0.53125 0.5625 0.453125 0.5 0.515625
0.515625 0.515625 0.59375 0.40625 0.484375 0.4375 0.578125 0.5625
0.53125 0.5 0.421875 0.53125 0.515625 0.484375 0.5 0.484375
0.515625 0.5 0.484375 0.46875 0.53125 0.4375 0.515625 0.453125
0.484375 0.546875 0.5 0.53125 0.4375 0.453125 0.515625 0.4375
0.5 0.53125 0.5 0.453125 0.515625 0.5625 0.453125 0.40625

5 Comparison

The former tests are applied on well-known S-boxes over EC presented in [19,20] to compare with
the proposed S-boxes A, B, C, and D over GI. The analysis of EC and GI for the same primes with
different parameters is presented in Table 21, and Figs. 1–5.

Table 21: Proposed S-boxes comparison with EC S-boxes for the same primes

S − boxes Primes Type NL LAP DAP SAC Max SAC Ave SAC Min BICMax BIC Ave BICMin

A 3917 GI 107.5 0.133 0.047 0.594 0.5 0.406 0.625 0.5 0.375
B 3917 GI 106.5 0.141 0.047 0.594 0.5 0.406 0.609 0.492 0.375
C 2861 GI 106.75 0.133 0.047 0.594 0.5 0.406 0.609 0.492 0.375
D 2861 GI 106.75 0.133 0.047 0.594 0.508 0.422 0.578 0.4845 0.391
[19] 3917 EC 104.0 0.148 0.047 0.610 0.516 0.422 0.543 0.503 0.463
[20] 2861 EC 104.0 0.148 0.039 0.625 0.508 0.391 0.531 0.501 0.471
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Figure 1: Nonlinearity

Figure 2: Linear approximation probability

Figure 3: Differential approximation probability
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Figure 4: SAC average values

Figure 5: Bit independent criteria

Similarly, the comparison of S-boxes over EC presented in [19–27] with the proposed S-boxes
A, B, C, and D over GI by some tests of S-boxes. The analysis of EC and GI for different primes with
different parameters is presented in Table 22, and Figs. 1–5.

Table 22: Proposed S-boxes comparison with EC S-boxes for different primes

S − boxes Primes Type NL LAP DAP SAC Max SAC Ave SAC Min BICMax BIC Ave BICMin

A 3917 GI 107.50 0.133 0.047 0.594 0.5 0.406 0.625 0.5 0.375
B 3917 GI 106.50 0.141 0.047 0.594 0.5 0.406 0.609 0.492 0.375
C 2861 GI 106.75 0.133 0.047 0.594 0.5 0.406 0.609 0.492 0.375
D 2861 GI 106.75 0.133 0.047 0.594 0.508 0.422 0.578 0.4845 0.391
[19] 9551 EC 104.00 0.141 0.039 0.610 0.508 0.406 0.525 0.499 0.473
[21] 2851 EC 104.00 0.145 0.039 0.610 0.5 0.390 0.531 0.501 0.471

(Continued)
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Table 22: Continued
S − boxes Primes Type NL LAP DAP SAC Max SAC Ave SAC Min BICMax BIC Ave BICMin

[22] 3299 EC 106.00 0.148 0.039 0.641 0.5235 0.406 0.537 0.504 0.471
[23] 4177 EC 106.00 0.148 0.047 0.625 0.5155 0.406 0.539 0.505 0.471
[26] 3917 EC 106.00 0.188 0.039 0.610 0.508 0.406 0.527 0.496 0.465
[27] 1607 EC 106.00 0.148 0.023 0.609 0.5 0.391 0.525 0.499 0.473

It is observed that the value of nonlinearity of the proposed S-boxes is better than with EC S-boxes.
The fascinating features of the proposed technique by using affine mapping provide S-boxes pair at
a time by fixing three parameters a, b, and p. But the prime field dependent on the EC by different
techniques provides one S-box at a time by fixing three parameters a, b, and p. The nonlinearity of
the proposed S-boxes is given in Table 22, and Figs. 1–5. The LAP results of the proposed S-boxes
are less than the S-boxes presented in [19–27] This fact reveals that the proposed S-boxes create high
confusion in the data and higher resistance against linear attack [24] as compared to [19–27]. The SAC
and BIC results of proposed S-boxes are comparable with other S-boxes used in Tables 21, 22, and
Figs. 1–5. Thus, the S-box generated by the proposed technique and S-boxes presented in Tables 21,
22, and Figs. 1–5 create diffusion in the data of equal magnitude. The DAP of proposed S-boxes is
comparable to the DAP of S-boxes in [19–27]. Thus, the proposed technique generates S-box with
high resistance against differential cryptanalysis [25] as compared to the others. The analysis results of
newly generated paired S-boxes by the cyclic group of GI are listed in Tables 21, 22, and Figs. 1–5. It is
evident from Tables 21, 22, and Figs. 1–5 that the performance of paired S-boxes by the cyclic group
over GI is comparable with the S-boxes over EC.

6 Conclusion and Future Directions

A novel S-box construction technique is presented in this article. The fascinating features of the
proposed technique by using affine mapping provide S-boxes pair at a time by fixing three parameters
a, b, and p. But the prime field dependent on the EC by different techniques provides one S-box
at a time by fixing three parameters a, b, and p. For the generation of cryptographically strong
proposed S-boxes prime p which is greater than or equal to 257 and a, b belongs to the cyclic group
over the residue class of Gaussian integers. Several tests are applied to the newly proposed S-boxes and
analyze their cryptographic strength. Furthermore, the cryptographic properties of proposed S-boxes
are compared with some of the existing prevailing S-boxes over EC. Experimental results showed that
the proposed algorithm is capable of generating paired S-boxes with high resistance against linear and
differential attacks.

The proposed S-boxes over the residue class of GI can be extended to the S-boxes over the residue
class of quaternion and octonion integers. Furthermore, we can use these structures in watermarking
and image encryption.
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