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Abstract: Multivariate time-series forecasting (MTSF) plays an important
role in diverse real-world applications. To achieve better accuracy in MTSF,
time-series patterns in each variable and interrelationship patterns between
variables should be considered together. Recently, graph neural networks
(GNNs) has gained much attention as they can learn both patterns using
a graph. For accurate forecasting through GNN, a well-defined graph is
required. However, existing GNNs have limitations in reflecting the spectral
similarity and time delay between nodes, and consider all nodes with the
same weight when constructing graph. In this paper, we propose a novel
graph construction method that solves aforementioned limitations. We first
calculate the Fourier transform-based spectral similarity and then update this
similarity to reflect the time delay. Then, we weight each node according to
the number of edge connections to get the final graph and utilize it to train
the GNN model. Through experiments on various datasets, we demonstrated
that the proposed method enhanced the performance of GNN-based MTSF
models, and the proposed forecasting model achieve of up to 18.1% predictive
performance improvement over the state-of-the-art model.

Keywords: Deep learning; graph neural network; multivariate time-series
forecasting

1 Introduction

Accurate predictions on multivariate time-series data (i.e., data with numerous input variables in
a single step) are crucial for many real-world applications. For example, the spread of an infectious
disease can be mitigated by predictions based on the infection status of surrounding areas [1],
congested driving routes can be avoided with predictions based on traffic flow in different locations [2],
and investment direction can be determined based on the stock price trend of various companies [3].

With the recent rapid development of machine/deep learning models, many deep learning models
for multivariate time-series forecasting (MTSF) such as Recurrent Neural Networks (RNNs) have
been proposed. Unlike conventional statistical models, RNNs are powerful for capturing nonlinear
characteristics of temporal features within univariate time-series data (i.e., intra-series patterns) [4].
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However, for an accurate MTSF, besides the intra-series patterns, inter-relationships between variables
(i.e., inter-series patterns) should be considered because each variable depends not only on its own
historical values, but also on the historical values of other variables. Hence, a recent trend to address
this is to use Graph Neural Networks (GNNs), which learn both the intra-series and the inter-series
patterns in the format of a graph [5–8].

In GNNs, a graph consists of nodes (entities or regions) and edges (interrelationships between
nodes) [9], so setting an appropriate graph is important for modeling multivariate time-series data. The
graph can be set in two ways. The first is to define a graph in advance based on location identification
or distance-based neighbor node selection algorithm, which is called a pre-defined graph [10,11]. This
works well for datasets with fixed edges, such as roads or flights connecting cities. However, this
structure is not suitable for cases where the relationship between nodes changes dynamically, such
as the economic growth rate and the number of confirmed infections by country [8,12]. In these cases,
the graph must be continuously changed during training to reflect the relationships between nodes in
the input data that change dynamically over time.

Therefore, many existing GNNs construct dynamically changed graphs based on the similarity
between two nodes, such as embedding vector similarity [12] or attention score similarity [13]. However,
there are three limitations to this approach.

1. As time-series data is a combination of frequency functions, evaluation of their similarity must
be made in the spectral domain where periodic patterns can be reflected fundamentally.

2. Setting up a graph that only considers similarity cannot effectively represent the time delay
between the two time-series data. Although the flow of the two data is similar, it is difficult to
capture the similarity in the case of time delay.

3. Existing GNN-based models consider all nodes equally weighted. There is no weighting
process based on the number of connected nodes in the graph. However, hub nodes that
are connected with many other nodes exchange more information than other nodes, so it is
important to consider the influence of these hub nodes in constructing the graph.

To solve these limitations, in this paper, we propose a novel graph construction method for
GNN-based MTSF models. The proposed method consists of three modules: (1) a Spectral Similarity
Calculation Module to construct a graph based on the spectral features of the time-series data, (2) a
Time Delay Reflection Module to refine the graph by considering the time delay between nodes, and
(3) a Node Weighting Module to assign a weight to each node of the constructed graph according
to the number of connections with other nodes. Using the proposed method, we obtain a graph
matrix that contains the dynamic interrelationships between nodes that can enhance the forecasting
performance of GNN-based MTSF models. In addition, we propose a forecasting model by replacing
the graph construction part of a state-of-the-art GNN model by our graph construction method
(hereafter, referred to proposed model). In extensive experiments on various public multivariate time
series datasets, we show that the proposed graph construction method can improve the forecasting
performance of existing GNN-based MTSF models, and the proposed prediction model can achieve
up to 18.1% predictive performance improvement over the state-of-the-art model. Also, we visualize
the constructed graph and show that our method can learn dynamic interrelationships between
nodes. Finally, we investigate the effect of hyperparameters on our method and demonstrate that all
components in our method are indispensable.
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The contributions of this paper are as follows:

1. We propose a graph construction method for GNN-based MTSF that reflects the relationship
between nodes considering the similarity in a spectral domain, time delay, and hub node.

2. We compare various MTSF models and demonstrate that our model outperforms other
existing MTSF models in various public datasets.

3. We prove that our graph construction method can enhance the forecasting accuracy of existing
GNN-based MTSF models.

4. We show that nodes with similar data patterns have high edge weight in a generated graph.

The paper is organized as follows. In Section 2, we describe the related works of the methodologies
used in this paper and the time-series forecasting field. In Section 3, we introduce the problem formu-
lation of this research. Section 4 describes the details of the model used in this paper. Experimental
settings, datasets, and evaluation metrics are covered in Section 5. In Section 6, we introduce the
experimental results. Finally, we summarize our work and discuss future studies in Section 7.

2 Related Works

So far, diverse conventional statistical forecasting models have been used to forecast univariate
time-series. For instance, Perone et al. [14] proposed the Auto Regressive Integrated Moving Average
(ARIMA) model for forecasting future influenza outbreaks. They combined Auto Regression (AR)
and Moving Average (MA) to show better forecasting performance compared to the existing statistical
models. Furthermore, García-Ascanio et al. [15] proposed Vector Auto Regression (VAR) model,
an extended model of the AR model, to capture the linear interdependencies among electric power
time-series data. VAR achieved higher forecasting performance than interval Multi-Layer Perceptron
(iMLP), a simple form of the neural network model. Senanayake et al. [16] proposed a non-parametric
model based on Gaussian Process (GP) regression. GP model can be applied to multivariate time-series
data by modeling multiple variables of a function using a Gaussian distribution. Accordingly, the GP
regression model is applied to capture the spatial and spatial and temporal dependencies in influenza-
like illness data. The model outperformed the predictive performance of the ARIMA model. However,
these statistical forecasting models do not work well for rapidly changing multivariate time-series data
[17]. This is because nonlinear relationships are not suitable for describing large datasets and focus on
estimating mean values rather than data distributions.

Recently, deep learning models are demonstrating outstanding performance on MTSF. For
instancec, Volkova et al. [18] proposed a long short-term memory (LSTM)-based deep learning model
specialized for processing sequential time-series data [19–21] to forecast multivariate time-series data.
They used topics, word n-grams, and stylistic patterns that were extracted from social media data.
Zhu et al. [22] also proposed a LSTM-based deep neural model for influenza forecasting. The model
had multi-channel LSTM layers that drew multiple pieces of information from multiple different
inputs, including climate, pharmacy, and symptom data. Likewise, Tang et al. [23] proposed a LSTM-
based deep learning model to predict stock prices. They denoised the data and passed the data through
a model constructed by stacking LSTM in multiple layers. They improved the forecasting performance
further by denoising. Khashei et al. [24] proposed a multi-layer perceptron (MLP)-based stock price
forecasting model. They forecasted stock price through a hybrid model by combining ARIMA with
MLP, and this model showed good performance compared to the existing statistical models [25].

Recently, GNN has been widely used for MTSF. The graph of GNN consists of a set of nodes
representing each input variable in a multivariate time series and a set of edges representing the
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relationship between the input variables [26]. In GNN, node information is propagated through the
edge, and prediction of a node is performed by considering information from neighboring nodes.
GNNs are better suited for multivariate prediction because they can effectively reflect information
from other nodes. GNN receives the graph as an input and learns along the relationship between
nodes. Hence, they showed good performance in various areas.

Bloemheuvel et al. [27] proposed a GNN model that predicts peak ground acceleration (PGA),
peak ground velocity (PGV), and spectral acceleration (SA) from seismic wave data from various
locations in Italy. The features of each seismic wave were extracted through 1d convolutional neural
network (CNN) layer, and each node information was exchanged through a Graph Convolutional
Network (GCN). In addition, the authors set the adjacency matrix to be inversely proportional to
the distance between nodes. The proposed model showed superior performance compared to the
comparative models.

For instance, Deng et al. [28] forecasted the number of confirmed cases of infectious diseases
using a distance-based pre-defined graph. In this model, the input time-series data is processed in
parallel by the RNN and CNN modules. The RNN module obtains a hidden state with embedded
temporal features for the input, and the model calculates an interrelationship attention score based on
the hidden state value and the pre-defined graph. Meanwhile, the CNN module extracts temporal
features by performing temporal convolution to the input data. Then, graph message passing is
established based on interrelationship attention scores and temporal features obtained from the two
modules. After that, the model predicts the node information through the MLP layer. The model
outperformed statistical models and other deep learning models. On the other hand, Yu et al. [29] used
both temporal convolution and graph convolution for traffic flow forecasting. Temporal convolution
captures temporal features, and graph convolution captures inter-series patterns. The core of the
model, the ST-Conv block, was constructed in the form of a graph convolution sandwiched between
two temporal convolution layers. This “sandwich” structure was created to achieve a bottleneck
strategy for scale compression and feature squeezing with graph convolution. The model predicts
traffic in each region through the input traffic data and a pre-defined road graph based on the distance
between each area. Table 1 summarizes all the models mentioned so far.

Table 1: A summary of relevant works

Author (Year) Forecasting target Forecasting
method

Description

Perone et al. [14] (2020) Influenza ARIMA This approach
showed better
forecasting
performance
compared to the
existing
statistics-based
models

(Continued)
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Table 1: Continued
Author (Year) Forecasting target Forecasting

method
Description

Garcia et al. [15] (2009) Electric power demand VAR This approach
showed better
forecasting
performance
compared to iMLP

Senanayake et al. [16]
(2016)

Influenza GP This approach
captured the
space-time
dependencies by
combining different
kernels

Volcova et al. [18] (2017) Influenza-like illness LSTM This approach used
various linguistic
signals extracted
from social media
data to forecast
influenza-like illness
dynamics

Zhu et al. [22] (2019) Influenza LSTM This approach
utilized
multi-channel LSTM
layers that can draw
multiple information
from multiple inputs
and added attention
mechanism to
improve forecasting
accuracy

Tang et al. [23] (2021) Stock price LSTM This approach
showed that using
data denoised by the
wavelet transform
(WT) and singular
spectrum analysis
(SSA) can forecast
more accurately

(Continued)
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Table 1: Continued
Author (Year) Forecasting target Forecasting

method
Description

Khashei et al. [24] (2019) Stock price ARIMA, MLP This approach
outperformed each
component
(ARIMA, MLP) and
also showed better
performance than
ARIMA-MLP
model

Deng et al. [28] (2020) Infectious diseases GNN This approach
outperformed
statistical-based
models and other
deep learning models
by using
distance-based
pre-defined graph
with RNN and CNN
module

Yu et al. [29] (2017) Traffic flow GNN This approach
effectively captured
comprehensive
spatio-temporal
correlations by using
both temporal
convolution and
graph convolution

However, graphs of existing GNN models have limitations in considering spectral similarity,
time delay between nodes, and importance of hub nodes. In this paper, we propose a novel graph
construction method that overcomes these limitations and construct a GNN-based MTSF model using
the constructed graph. To consider spectral similarity, we utilize Fast Fourier transform (FFT) and to
reflect the time delay, we identify the progress order of the two time-series data and reflect it in the
graph. In addition, the weight of the hub node is increased by assigning a weight according to the
number of connections each node has.

3 Problem Formulation

In this section, we first define a multivariate time-series forecasting problem based on a graph
G. As described in Eq. (1), X seq = {

xi
t

} ∈ R
N×T stands for the multivariate time-series input, where N

means the number of time-series (nodes), and T means the sequence length of input time-series data.
Here, a node can be a region or city in influenza forecasting, a company in stock price forecasting, and
a building or factory in electrical load forecasting. We denote xi

t ∈ R as time-series data in node i at
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time t, and indicate Xt = [x1
t , x2

t , x3
t . . . xN

t ] ∈ R
N×1 and X i = [xi

t−T+1, xi
t−T+2, xi

t−T+3 . . . xi
t] ∈ R

1×T as a set of
time-series data in each node at time t and a set of node i during the past T time stamps, respectively.
Our goal is to predict Y = [x1

t+h, x2
t+h, x3

t+h . . . xN
t+h], which is the value obtained after h time stamps. We

denote by G the matrix representing connection information and interrelationships between multiple
nodes. We also denote the edge weight of node i and node j in matrix G as Gij and the total connection
strength of node i as Ci. Table 2 shows the key notations and descriptions. The undefined notations in
this section are described in detail later.

Xseq =
⎡
⎢⎣

x1
t−T+1 · · · x1

t
...

. . .
...

xN
t−T+1 · · · xN

t

⎤
⎥⎦ (1)

Table 2: Notations and descriptions

Notation Description

N Number of nodes
T Input sequence length
Xseq Input data
h Horizon/lead time of forecasting
Y Actual value
Ŷ Forecasted value
Gij Edge weight of graph adjacency matrix

that connects node i and node j
Ci Total connection strength of the node i

4 Proposed Method

This section describes the overall structure of the proposed model. Fig. 1 shows the overall
structure of our model.

Figure 1: Overall architecture of the proposed method

4.1 Spectral Similarity Calculation Module

To determine the similarity of two time-series data, we compose the data into temporal frequencies
and compare the intensity (amplitude) of each frequency to determine the similarity. FFT is a popular
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frequency decomposition technique for time-series data [30] due to its outstanding capability of
learning latent representations of multiple time-series data in the spectral domain.

FFT decomposes a sequence data into multiple frequency components ranging from 1 to
�(T − 1)/2�, about half of the input time length. Low-frequency functions represent the overall trend
of the time-series data, while high-frequency functions represent the noise in the data [31]. Therefore,
low-frequency functions are suitable for similarity comparison of time-series data. For this reason, we
calculate the similarity of time-series in this layer using only low-frequency functions. We use the lower
20% of the frequency range, so the frequency range becomes 1 ∼ ��(T − 1)/2� ∗ 0.2�.

We calculate the similarity of the time-series data of two nodes using the decomposed frequency
functions based on two factors: (1) The similarity of two time-series data is high when they have the
same phase for the same frequency, and (2) the similarity is higher when the amplitudes of the two
time series data are similar. To satisfy these factors, the similarity is calculated by dot-producting the
amplitudes of low-frequency periodic functions of the two time-series data. Here, the similarity Gij

of the time-series data of nodes i and j is calculated by Eqs. (2) and (3). In these equations, Ik and
Jk represent the amplitude of k-th frequency function of X i and X j, which are the input time-series
data of nodes i and j, respectively. In addition, t represents ��(T − 1)/2� ∗ 0.2�, which is the highest
frequency among the frequencies to be calculated.

After calculating the similarity of the time-series data between all nodes by Eq. (2), we can
construct an N × N similarity matrix composed of Gij between nodes. The matrix values are arranged
in normal distribution in order to filter values with high similarity. Similarity values with standard
score greater than 0 are used, and values with standard score less than 0 are set to 0 to eliminate the
edges.

FFT (Xi) ≈
t∑

k=1

Ik, FFT(Xj) ≈
t∑

k=1

Jk (2)

Gij = FFT(Xi) · FFT(Xj) (3)

4.2 Time Delay Reflection Module

Although the Spectral Similarity Calculation Module constructs a similarity matrix in the spectral
domain, various time-series data in the real world have a time delay. For example, in the case of
infectious diseases, as the infectious disease spreads from the affected area, the number of confirmed
cases in other areas (usually adjacent areas) also increases over time [32]. In this case, the current time
series data has a great influence on subsequent time series data. In addition, data before h timestamp
is most important when forecasting after h timestamp. Such time delay property of the time series
data is handled by the Time Delay Reflection Module, as described in Algorithm 1. In particular,
the algorithm considers two factors: One is the time delay and the other is the horizon difference. To
account for time delay, we set one of the two time-series data as fixed data and the other as moving
data. Then, while moving the starting point of the moving data, we find the point where the distance
between the two time-series data is minimal. Here, the distance is calculated using Dynamic Time
Warning (DTW) [33], an algorithm that measures the similarity between two time-series data. DTW is
easier to eliminate noise than Euclidean distance because it uses not only the same time data but also
the surrounding time data as a comparison target. If the DTW distance is the minimum at the point
where the starting point of the moving data is smaller than the starting point of the fixed data, we set
the moving data as the preceding data. In addition, we consider horizon time step h when constructing
the graph. To do this, we set Gij large when the temporal difference (time delay) between the data at
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preceding node i and the data at following node j is exactly h, and set smaller when the temporal
difference is far from h. Accordingly, the edge weight is set to be inversely proportional to the absolute
value of the difference between horizon time step and time delay. If the time delay is equal to the
horizon time step, then the weight Gij of the edge connecting two nodes i and j is set to 1. The graph
edge weight from the following node to the preceding node is set to be inversely proportional to the
time delay.

Algorithm 1: Reflection time delay
Input: Xseq, G, input length T , moving length m, horizon h
Output: updated G
for each node i of Xseq do

for each neighbor j of node i do
for each starting point of Xj do

Target data ← Xj [starting point: starting point + T ]
Distance ← DTW(Target data, Xi)
if Distance < min Distance do

min Distance, min starting point ← Distance, starting point
starting point ← starting point + m

if min starting point < fixed data starting point do
preceding data, following data ← Xj, Xi

else do
preceding data, following data ← Xi, Xj

time delay ← |Xi starting point – min starting point|
Gij ← Gij/|time delay – h + 1|
Gji ← Gji/time delay

4.3 Node Weighting Module

In dynamically changing data such as population movement or economic flow, the influence of
hub nodes with many connected edges such as amount of movement is much greater than that of other
ordinary nodes. For example, hub airports with many transfers are crowded with transfer passengers
[34]. Therefore, it is important to reflect hub node information to the graph for the GNN model
to learn dynamically changing data. To do that, we assigned a higher weight to nodes with many
connections with other nodes.

Earlier, we constructed a graph G that defined the edge weights of the graph based on the similarity
between nodes. The goal of this module is to reflect the weights according to the influence of nodes
on the graph using Eq. (4). In the equation Ci represents the total amount of influence node i has and
f represents a transformation function with the similarity value calculated in the earler step. Then, we
update the original graph Gi by multiplying f (Ci) to obtain the updated Gi. We multiplied edges from
a node with a lower weight to another node by a lower weight. Conversely, we multiplied the edges
from the node with a higher weight to another node by a higher weight.

Gupdated
i = f (Ci) · Goriginal

i (4)

If we denote the sum of the influences node i has on its neighboring nodes as Ci, C =
{C1, C2, C3, . . . Cn}. Eq. (5) describes how to calculate Ci. Here, Ni denotes the set of neighboring nodes
of node i. If we use the original similarity value in this step, the influence of nodes with few connections



5826 CMC, 2023, vol.75, no.3

can be completely removed. Hence, we applied a logarithmic function to the similarity so that small
similarity values are not removed and have only minimal impact. Also, we set all Cis to be positive
based on the largest and smallest connection weights, Cmax and Cmin, respectively.

Ci =
∑
j∈Ni

(
ln

(
Gij + 1

) + 1
)

(5)

f (Ci) =
(

1
1 + e−a∗(Ci−b)

)
∗ c + d (6)

We generate a node weighting function f via Ci, and multiply f by Goriginal. In this way, we update
Goriginal by applying node weight. We define the function f as Eq. (6). This function determines the
weight for each node, such that hub nodes are given large weights. We describe the explanation of
parameter a ∼ d in Table 3 that used in Eq. (6) to eliminate differences in expressions according to
data characteristics. The node weight was multiplied by the row corresponding to each node of the
Goriginal. We repeat this process for all nodes and obtain the Gupdated .

Table 3: Parameters of the node weight function

a =
(

10
Cmax − Cmin

)
This keeps the shape of f . The numerator value makes a
function suitable for the hub node weighting task.

b = Cmin + Cmax
2

This moves f along the Ci axis so that the center of the f is
located at average value of Cmin and Cmax.

c = 1 − ln
(

1.35 ∗
(

1 + Cmin
Cmax

))
This limits the range of f result values.

d = ln
(

1.35 ∗
(

1 + Cmin
Cmax

))
This moves f to the node weight axis so that the result value
of Cmax converges to 1. If the numerical difference between
Cmin and Cmax is small, f (Cmin) ≈ ln (2.70) ≈ 1.00.

4.4 GNN-Based MTSF Model

Using the graph constructed by the proposed method, we construct a GNN-based MTSF model
(referred to “the proposed model” in the following sections) based on Cola-GNN [28]. This model
was initially proposed for predicting infectious disease occurrences and used a pre-defined graph that
considered only geological locations. We modified this pre-defined graph structure using the proposed
graph construction method so that the graph can reflect dynamically changing interrelationships
between the variables (nodes). Even though we apply our graph to Cola-GNN for forecasting, our
graph structure can be applied to other GNN-based models (described in Section 6. D).

Now, we describe the process of learning the inter-relationship and the intra-relationship of
multivariate time-series using the graph we proposed. Cola-GNN consists of three main components:
(1) graph that considers inter-relationships between nodes, (2) node feature that represents the intra-
relationship in each node, and (3) graph message passing that uses graph and node feature for learning
information from neighboring nodes. We obtain the first component by attention score based on the
last hidden state of the RNN. Then, we use this attention matrix along with the graph G generated by
the graph construction layer. Next, we obtain the features of each node by applying dilated convolution
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to each node of Xseq. Finally, we perform graph message passing and forecast future time-series with
neighbor nodes data.

5 Experimental Settings

To evaluate the effectiveness of the proposed model, we performed extensive experiments using
six public datasets. Before we present the experimental results in detail, we first describe the datasets
we used, the evaluation metrics, and the experimental setup for the comparison models.

5.1 Datasets

We used six real-world datasets in the experiments: three influenza-like illness (ILI) data, exchange
rate data, stock price data, and electrical load data. In the experiments, we normalized all datasets to
a range between 0 and 1 for each node data using min-max normalization. Also, we split the data into
training, validation, and test sets in chronological order at ratios of 60%, 20%, and 20%.

• ILI US-States: This contains weekly ILI for each state in the US from 2010 to 2017. From the
original dataset, we utilized weekly data on new cases in each state in the United States from
the Centers for Disease Control and Prevention (CDC) [35].

• ILI US-Regions: This dataset includes weekly ILI for ten regions of the US from 2002 to 2017.
The ten regions were defined as geographically close states by the Department of Health and
Human Services (HHS). Data collection proceeded in the same way as US-States.

• ILI Japan-Prefectures: This contains weekly ILI for each prefecture in Japan from 2012 to 2019.
We collected weekly data on new cases in each prefecture in Japan from the Infectious Diseases
Weekly Report (IDWR) [36].

• Exchange rate: This contains daily exchange rate data for 8 countries (Australia, British,
Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to 2016 [37].

• US stock market price: We collected daily stock prices of 50 major companies listed on the US
stock market from 2007 to 2016 [38] and composed this dataset.

• GEFCOM 2012: This dataset includes the hourly electrical load data of a US utility from
January 1, 2005 to December 31, 2008 for 20 zones, which were used in the load forecasting
track of the Global Energy Forecasting Competition 2012 (GEFCOM 2012) hosted on Kaggle
[39]. Among 20 zones, we utilized data from zone 1 to zone 11 since the other nine zones have
different variable conditions.

5.2 Evaluation Metrics

RMSE =
√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (7)

PCC =
∑N

n=1(yi − yi)(ŷi − ŷi)√∑N

n=1(yi − yi)2

√∑N

n=1(ŷi − ŷi)2

(8)

For performance comparison, we used two popular metrics for MTSF [28]: Root Mean Squared
Error (RMSE) and Pearson Correlation Coefficient (PCC). The RMSE represents the difference
between forecasted values and actual values. PCC is a numerical value in range (−1, 1) that quantifies
the linear correlation between forecasted and actual values. Since PCC is calculated as a value close to
1 when the predicted value is similar to the actual value, it is useful not only for comparison between
different models but also for comparison between different datasets. On the other hand, RMSE is
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represented by a lower value as the model’s forecasting performance improves, and is not suitable for
comparing the predictive performance of different datasets due to data scale dependence. We selected
these two metrics because PCC is easy to compare since all results are calculated in the same range,
and RMSE is effective in determining how far the predicted value differs from the actual value.

We denote the forecasted values, actual values, and number of data samples as ŷi, yi, and N,
respectively. We also denote the mean value of yi as yi. RMSE and PCC are calculated using Eq. (7)
[40] and (8) [41,42], respectively.

5.3 Experimental Settings

For performance comparison, we considered eight different MTSF models: AutoRegressive (AR),
AutoRegressive and MovingAverage (ARMA), MLP, RNN, LSTM, LSTNet, ST-GCN, and Cola-
GNN. We set epoch, batch size, learning rate, input sequence length T , and dropout probability to
500, 100, 0.001, 30, and 0.3 respectively. And we measure the forecasting performance by averaging
the results of repeating the experiment 5 times. Depending on the setting of the [28], we evaluate our
approach in short-term (horizon h = 2, 3) and long-term (horizon h = 5, 10, 15) settings. We ignore
the case of h equals 1 because symptom monitoring data is usually delayed by at least one-time step.
We measured the forecasting performance by averaging the results of repeating the forecasting 10
times. All experiments were done in the Python environment, and all models were implemented using
PyTorch [43] library. The model-specific hyperparameters are empirically determined.

6 Experiments and Discussion

In this section, we first present the experimental results and analyze the graph we construected.
We then report on the ablation studies performed.

6.1 Forecasting Performance

Tables 4–9 show the results of comparative experiments using six datasets. In the tables, the bold
values indicate the highest values of RMSE and PCC in each horizon. Tables 4–6 present the results
of comparative experiments on the ILI datasets. Table 4 shows that our model outperforms other
existing models for all cases on the ILI US-Regions dataset. In particular, since the graph generated
by the proposed model better reflects the characteristics of dynamically changing time series data than
the predefined graph of Cola-GNN, the proposed model shows better predictive performance.

Table 4: Comparison of forecasting performance on the ILI US-Regions dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 570 0.927 757 0.878 997 0.792 1330 0.612 1404 0.527
ARMA 560 0.927 742 0.876 989 0.792 1322 0.614 1400 0.520
MLP 524 0.931 701 0.869 974 0.803 1312 0.608 1409 0.531
RNN 513 0.940 689 0.895 896 0.821 1328 0.587 1434 0.499
LSTM 507 0.943 688 0.895 975 0.812 1351 0.586 1477 0.488

(Continued)
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Table 4: Continued
Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

LSTNet-
skip

554 0.935 801 0.868 998 0.746 1157 0.609 1231 0.533

ST-GCN 697 0.879 807 0.840 1038 0.741 1290 0.644 1286 0.619
Cola-GNN 480 0.940 636 0.909 855 0.835 1134 0.717 1203 0.639
Ours 478 0.946 634 0.922 726 0.890 932 0.815 1101 0.755

Table 5: Comparison of forecasting performance on the ILI US-States dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 161 0.940 204 0.909 251 0.863 306 0.773 327 0.723
ARMA 161 0.939 200 0.909 250 0.862 306 0.773 326 0.725
MLP 159 0.938 200 0.917 236 0.891 294 0.791 320 0.739
RNN 149 0.948 181 0.922 217 0.886 274 0.821 315 0.758
LSTM 150 0.948 180 0.922 213 0.889 276 0.820 307 0.771
LSTNet-
skip

199 0.913 249 0.850 299 0.759 292 0.760 292 0.802

ST-GCN 189 0.907 209 0.778 256 0.823 289 0.769 292 0.774
Cola-GNN 136 0.955 167 0.933 205 0.887 241 0.822 237 0.856
Ours 141 0.947 151 0.949 202 0.897 229 0.841 221 0.880

Table 6: Comparison of forecasting performance on the ILI Japan-Prefectures dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 1377 0.752 1705 0.579 2013 0.31 2107 0.238 2042 0.483
ARMA 1371 0.754 1703 0.579 2013 0.31 2105 0.238 2041 0.486
MLP 1190 0.817 1437 0.716 1712 0.46 1905 0.497 1827 0.604
RNN 1001 0.892 1259 0.833 1376 0.821 1696 0.616 1629 0.709
LSTM 1052 0.896 1246 0.873 1335 0.853 1622 0.681 1649 0.695
LSTNet-
skip

1133 0.846 1459 0.728 1883 0.432 1811 0.518 1884 0.515

ST-GCN 996 0.902 1115 0.88 1129 0.872 1541 0.735 1527 0.773
Cola-GNN 929 0.915 1051 0.901 1117 0.89 1372 0.810 1475 0.753
Ours 918 0.922 1030 0.914 1088 0.898 1398 0.813 1446 0.758
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Table 7: Comparison of forecasting performance on the Exchange rate dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 0.00689 0.921 0.00814 0.887 0.0104 0.793 0.0143 0.703 0.0169 0.554
ARMA 0.00672 0.921 0.00829 0.882 0.0106 0.793 0.0142 0.694 0.0171 0.553
MLP 0.00656 0.927 0.00764 0.876 0.0109 0.789 0.014 0.716 0.0167 0.573
RNN 0.00627 0.92 0.00798 0.869 0.00988 0.799 0.013 0.7 0.0147 0.56
LSTM 0.00638 0.921 0.00701 0.868 0.00987 0.798 0.0129 0.701 0.0158 0.56
LSTNet-
skip

0.00594 0.933 0.00785 0.897 0.0100 0.802 0.0121 0.722 0.0164 0.594

ST-GCN 0.00572 0.949 0.00729 0.894 0.0112 0.781 0.0122 0.741 0.0159 0.589
Cola-GNN 0.00624 0.940 0.00708 0.917 0.0094 0.812 0.0119 0.743 0.016 0.641
Ours 0.00587 0.947 0.00700 0.921 0.0092 0.835 0.0118 0.751 0.0154 0.668

Table 8: Comparison of forecasting performance on the US stock market price dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 18.55 0.937 21.76 0.907 25.82 0.856 32.29 0.774 36.96 0.698
ARMA 18.27 0.939 20.98 0.918 25.94 0.859 32.58 0.781 36.73 0.690
MLP 17.97 0.943 19.07 0.906 25.60 0.848 32.08 0.780 34.78 0.657
RNN 17.49 0.930 18.99 0.920 24.87 0.867 30.52 0.771 34.51 0.672
LSTM 17.68 0.927 18.99 0.911 24.87 0.855 30.59 0.768 34.72 0.681
LSTNet-
skip

17.12 0.943 18.97 0.927 25.06 0.862 31.06 0.783 34.16 0.669

ST-GCN 16.71 0.949 19.01 0.933 23.97 0.870 28.97 0.790 34.00 0.710
Cola-GNN 16.73 0.950 18.65 0.933 24.14 0.891 28.61 0.807 33.16 0.714
Ours 16.89 0.939 18.44 0.950 23.43 0.910 28.04 0.793 32.79 0.721

Table 9: Comparison of forecasting performance on the GEFCOM2012 dataset

Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

AR 6248 0.922 6814 0.887 7517 0.849 9914 0.765 11713 0.673
ARMA 6198 0.939 6808 0.888 7496 0.851 9871 0.781 11001 0.661
MLP 6112 0.943 6772 0.891 7444 0.869 9889 0.775 10988 0.680
RNN 6090 0.938 6669 0.912 7381 0.881 9718 0.783 10640 0.716

(Continued)
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Table 9: Continued
Horizon 2 3 5 10 15

Metric RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

LSTM 6098 0.939 6663 0.914 7294 0.887 9634 0.802 11211 0.724
LSTNet-
skip

6034 0.943 6571 0.920 7130 0.899 9313 0.807 9930 0.732

ST-GCN 5999 0.949 6498 0.934 6992 0.886 9226 0.812 9917 0.739
Cola-GNN 5910 0.959 6447 0.931 6924 0.890 9236 0.819 9900 0.752
Ours 5872 0.963 6322 0.944 6814 0.919 9047 0.838 9793 0.760

On the other hand, Table 5 for the ILI US-States dataset shows that the proposed model achieves
the best accuracy, except for h = 2 and 5, where Cola-GNN had the best predictive performance. Even
in these cases, our model achieves the second best performance, and the difference from the best case
is negligible compared to the other models. This is because ILI US-States dataset has a more fine-
grained pre-defined graph (51 nodes) compared to the ILI US-Regions dataset (10 nodes). As a result,
in some cases, the Cola-GNN model performed better on the ILI US-tates dataset.

In Table 6 for the ILI Japan-Prefectures dataset, our model outperforms other models in all cases
except when h = 10 in RMSE. However, our model achieves the best performance in PCC.

Table 7 presents the comparison results for the Exchange rate dataset, similar to the results for the
ILI US-States dataset. It should be noted that ST-GCN performs well when h = 2 in this experiment.
This is because unpredictable factors such as the international situation are more decisive than trends
in time series data for short-term forecasting in the economic field [44]. Therefore, the effectiveness of
our proposed graph construction may be reduced for short-term forecasting. Nevertheless, our model
shows the best performance in other cases.

Table 8 presents the results for the US stock market price dataset, similar to the results of the
Exchange rate dataset. Our model shows slightly lower performance for US stock market dataset
compared to the Exchange rate dataset. This is because the US stock market price data set has less
influence on each other than the Exchange rate dataset.

Lastly, Table 9 (GEFCOM 2012 dataset) shows that our model achieved the best accuracy for
all cases. Also, Cola-GNN ranked second in most cases. Statistics-based forecasting models showed
relatively low performance than GNN-based forecasting models. In addition, our model showed
outstanding performance even in multi-regional electrical load forecasting.

To sum up, our model showed the best performance in most cases (21 out of 25 for RMSE and 20
out of 25 for PCC). Also, basic deep learning models (MLP, RNN, LSTM) exhibited better accuracy
than statistical models (AR, ARMA). However, GNNs (ST-GCN, Cola-GNN, our model) showed
higher performance than basic deep learning models. Particularly, our model showed outstanding
performance, in the long-term forecasting that has a large difference between the test period and
training period, compared to short-term forecasting.

6.2 Graph Analysis

In this section, we present analysis results through comparison with the input data to provide a
more intuitive understanding of the constructed graph.
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Fig. 2a exhibits a heat map that visually represents the edge weights of New York (NY) state and
other states when forecasting the future ILI occurrence in NY when h = 10, using the ILI US-State
data. Fig. 2b shows the actual ILI for the states with high similarity to NY, such as New Jersey (NJ),
Massachusetts (MA), and Pennsylvania (PA). In Fig. 2a, the red color of the state indicates a higher
edge weight, and white color indicates a lower edge weight. Since infectious disease diffusion is greatly
affected by geographical factors (e.g., distance from the origin), nearby states of NY show higher edge
weight. For instance, NJ and MA, which are close to NY, have high edge weights. Conversely, states
that are far away from NY, such as Florida (FL), have low edge weights. From this visualization, we
can observe that the graph generated by the proposed method reflects the relationship between nodes
well. In Fig. 2b, we can also observe that the occurrences trend and peak timing of ILI are almost
identifical in NY and the states with high edge weights.

As a result, our model has good interpretability because it shows good performance in capturing
interrelationships and can visually represent the results.

Figure 2: Visualization of similar nodes when forecasting NY in ILI US-States data

6.3 Ablation Study

To analyze the effect of each component in our model, we conducted some ablation tests using
ILI US-Regions dataset. We compare the performance of the following three methods using the ILI
US-Regions dataset when h = 15.

• w/o Spectral Similarity Calculation Module: Instead of the graph generated by the Spectral
Similarity Calculation Module, we just use the pre-defined graph of Cola-GNN.

• w/o Time Delay Reflection Module: Here, we do not use the Time Delay Reflection Module.
That is, we just pass the outputs of the Spectral Similarity Calculation Module to the next
Node Weighting Module directly.

• w/o Node Weighting Module: Here, we do not perform the node weighting. That is, we pass the
generated graph to the Forecasting part without refining the node weights depending on the
connectivity.

Table 10 shows the RMSE and PCC of the three methods. The results show that all components
of our model are contributing to improved performance. First, the Spectral Similarity Calculation
Module significantly improves the performance because it creates a graph based on spectral similarity,
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enabling efficient information flow between nodes. Furthermore, the second method demonstrates
that incorporating time order and time delay into the graph help improve performance. Lastly, the
Node Weighting Module shows the advantage of reflecting the importance of the hub nodes in
the graph. That is, the information passing through the hub nodes has a lot of influence on the
performance.

Table 10: Forecasting results for ablation study using ILI US-Regions dataset

Method Our model w/o Spectral similarity
calculation module

w/o Time delay
reflection module

w/o Node
weighting module

RMSE 1101 1201 1138 1117
PCC 0.755 0.689 0.741 0.749

6.4 Applicability of the Graph Construction Method

In this section, we analyze the applicability of our graph method to other GNNs. Even though
we used Cola-GNN for prediction, our graph can be applied to other GNNs. To demonstrate this, we
consider ST-GCN [29] and MTGNN [12] for forecasting. Table 11 shows their forecasting results on
the ILI US-Regions dataset. In the table, both models showed better forecasting performance using
the proposed graph.

Table 11: Forcasting results of other GNN models using our graph

Method Original ST-GCN ST-GCN w/our graph Original MTGNN MTGNN w/our
graph

RMSE 1289 1259 1317 1291
PCC 0.619 0.623 0.599 0.608

7 Conclusion

In this paper, we proposed a novel graph construction method for GNN-based MTSF models.
For effective graph construction, we considered spectral similarity between nodes, time-delay between
time-series data of each node, and weight of hub nodes. We then constructed a MTSF model based
on Cola-GNN using the constructed graph. To demonstrate the effectiveness of the proposed method,
we compared the proposed model with other existing forecasting models in terms of RMSE and PCC
using public datasets from various fields (e.g., infectious disease, exchange rate, and stock market
data). Experimental results show that our model outperforms other comparative models in most cases,
especially in long-term forecasting.

We also conducted ablation tests to verify the importance of each component in the proposed
method. Experimental results show that all the components in the proposed method are indispensable.
In addition, we showed that the proposed model has an advantage of interpretability through the
visualization of the interrelationships between nodes. In the analysis of the heat map representing
node similarity, it was confirmed that the proposed model effectively captures the interrelationships
between nodes.



5834 CMC, 2023, vol.75, no.3

Even though our model outperforms other models, the accuracy of short-term forecasting is still
unsatisfactory compared to long-term forecasting. In addition, in node weighting process, forecasting
accuracy can be improved further by optimizing the parameters that adjust the node weighting
function. In future works, we will consider a graph that fits the characteristics of different time-
series data and optimize the best parameters for node weighting to improve short-term forecasting
performance.
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