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Abstract: Epilepsy is a central nervous system disorder in which brain activity
becomes abnormal. Electroencephalogram (EEG) signals, as recordings of
brain activity, have been widely used for epilepsy recognition. To study epilep-
tic EEG signals and develop artificial intelligence (AI)-assist recognition, a
multi-view transfer learning (MVTL-LSR) algorithm based on least squares
regression is proposed in this study. Compared with most existing multi-view
transfer learning algorithms, MVTL-LSR has two merits: (1) Since traditional
transfer learning algorithms leverage knowledge from different sources, which
poses a significant risk to data privacy. Therefore, we develop a knowledge
transfer mechanism that can protect the security of source domain data while
guaranteeing performance. (2) When utilizing multi-view data, we embed view
weighting and manifold regularization into the transfer framework to measure
the views’ strengths and weaknesses and improve generalization ability. In the
experimental studies, 12 different simulated multi-view & transfer scenarios
are constructed from epileptic EEG signals licensed and provided by the Uni-
versity of Bonn, Germany. Extensive experimental results show that MVTL-
LSR outperforms baselines. The source code will be available on https://
github.com/didid5/MVTL-LSR.

Keywords: Multi-view learning; transfer learning; least squares regression;
epilepsy; EEG signals

1 Introduction

Epilepsy is a brain disorder caused by damage to neurons in the brain, resulting in the abnormal
firing of neuronal cells, which temporarily prevents the brain from working normally [1,2]. Due to
the different starting locations and transmission modes of abnormal electrical activity in the brain,
epilepsy has various complex clinical manifestations, but sometimes there are no obvious seizure
characteristics, so clinicians can only determine whether a patient has a seizure by observing changes in
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the EEG signals. Therefore, EEG signals play a very important role in the clinical diagnosis of patients
with epilepsy [3].

With the development of AI, intelligent algorithms are widely used for epileptic EEG signals
recognition. In general, the AI-based EEG signals recognition process includes the steps of EEG
signals acquisition, feature extraction, feature selection, and modeling, as shown in Fig. 1. In this
research field, Anusha et al. extracted time and frequency domain features from EEG signals, and
proposed an automated epileptic EEG diagnosis system based on artificial neural network (ANN)
[4]. Tao et al. used variational mode decomposition (VMD) to decompose the epileptic EEG signals,
combined with an autoregressive (AR) model for quadratic feature extraction, and then employed
random forest (RF) for epilepsy diagnosis [5]. Wang proposed a classification model based on wavelet
analysis and support vector machine (SVM) for epilepsy diagnosis [6]. The above-mentioned studies
demonstrated that intelligent algorithms achieved promising performance for epilepsy recognition
based on the epileptic EEG signals. However, the EEG signals of epileptic patients are complex, and
the potential information contained in the EEG signals can no longer be captured more adequately
and comprehensively by using only the algorithmic domain features from a single view. Therefore,
more and more multi-algorithmic domain features are extracted and analyzed based on an assumption
that different kinds of domain features can provide complementary patterns for epilepsy recognition.
The analysis algorithms for multi-algorithmic domain features belong to the category of multi-view
learning in AI [7].

Figure 1: Epilepsy diagnosis based on EEG sensing signals

Multi-view learning exploits the consensus and complementary information contained in multi-
view data to explore potential correlations between views, and thus achieve a learning model
with promising performance and robustness [8]. For example, to handle high-dimensional data,
Li et al. used a feature partition strategy to organize all features into different subsets and taken
each subset as a view. Then the authors proposed a semi-supervised multi-view learning method [9].
Jiang et al. proposed an algorithm of collaborative probabilistic latent semantic analysis (C-PLSA)
to transform the problem of maximizing the consistency of clustering results from two views into a
regularization problem [10]. Tzortzis et al. proposed kernel-based multi-view learning algorithms by
using a kernel matrix to represent data from different views [11]. Zhao et al. found that learning by
tandem method for multi-view data usually leads to overfitting when the training sample size is small
[12]. Therefore, the authors proposed a weighting strategy to emphasize the importance of high-quality
views.
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Data labeling is a very time-consuming and labor-intensive task, which has led to the scarcity
and high cost of high-quality labeled data. Therefore, transfer learning emerges as the requirement
of real applications. Transfer learning refers to leveraging knowledge from source domains with high-
quality labeled data and applying it to the target domain with no labeled data or few labeled data.
Zhang et al. experimentally verified the feasibility of using transfer learning to address attention-
deficit/hyperactivity disorder (ADHD) recognition problems [13]. Duan et al. accelerated the transfer
process by applying the model-agnostic meta-learning (MAML) algorithm when dealing with the
cross-topic EEG classification problem [14]. Took et al. proposed a new convolutional neural network
(CNN) algorithm for recognizing epileptic EEG signals by focusing on the first layer of the network
to adapt to each task. The new CNN achieved 12% accuracy improvement [15].

In clinical data analysis, although transfer learning reduces the cost of data labeling, it is easy
to lead to the disclosure of the privacy of patients in the source domain. In addition, the analysis of
clinical data from a single view often ignores the high-order characteristics contained in clinical data.

Driven by the above-mentioned motivations, in this paper, we propose a multi-view & transfer
learning algorithm for epilepsy recognition based on the EEG signals. The main contributions of this
paper are as follows.

1) We develop a knowledge transfer mechanism to leverage multi-view knowledge from the source
domain, instead of directly transferring features, which can protect the privacy of the source
domain.

2) When leveraging multi-view knowledge, we embed view weighting and manifold regular-
izations into the transfer mechanism to detect the importance of views and improve the
generalization ability.

3) The effectiveness of the proposed algorithm is verified through EEG signals. Its excellent
performance against existing state-of-the-art algorithms is demonstrated by the promising
extensive experimental results.

The rest of the paper is organized as follows. In Section 2, we review some of studies related to
this study. Then, in Section 3, we detail the knowledge transfer mechanism, the multi-view weighting
mechanism, and the optimization process of the proposed algorithm, respectively. In Section 4, we
report the experimental results. Finally, a summary is presented in Section 5.

2 Related Work

In this section, we will briefly review some related studies regarding multi-view learning, transfer
learning and their combinations.

2.1 Multi-View Learning

With the rapid development of data collection and processing technologies, more and more
complex data with different views or modalities are emerging. Generally, we call them multi-view
data. Some toy examples of multi-view data are illustrated in Fig. 2. For example, in natural language
processing, the same semantic meaning can be described by different languages, and each language
corresponds to a view. When depicting objects, the morphology of the whole object can be depicted by
images from different angles, each angle corresponds to a view. In clinical diagnosis, X-ray images,
electrocardiograms, and clinical examination results can be taken as different views/modalities. In
EEG signals analysis, time-domain, frequency-domain and time-frequency-domain can be extracted
by wavelet packet decomposition (WPD), short-time Fourier transform (STFT), kernel principal
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component analysis (KPCA) etc. Each type of features can be taken as a view. These views have
different feature spaces, but they all describe the same object, reveal different characteristics of the
object.

Figure 2: Multi-view data

In earlier studies, most traditional algorithms for epileptic EEG signals analysis were single-view
based, which not only fail to tap the consensus and complementary information of each view, but also
may lead to dimensional disasters. In subsequent studies, some scholars demonstrated that multi-view
learning has better classification performance than single-view learning [16,17]. Jiang et al. proposed
a multi-view Takagi-Sugeno-Kang fuzzy system. This system uses multi-view data to enable the model
to produce more comprehensive and reasonable results than traditional single-view learning models
[18]. Zhu et al. proposed a novel double-index-constrained, multi-view, fuzzy clustering algorithm
(DIC-MV-FCM), which has better clustering performance than traditional clustering algorithms
when dealing with multi-view EEG signals [19]. Although all of the above studies demonstrated the
advantages of multi-view learning over single-view learning, none of them focused on the possible
overfitting effects of multi-view learning in the model training process.

2.2 Transfer Learning

Transfer learning is a machine learning technique whose main idea is to exploit the similarities
between data, models and tasks. Transfer learning attempts to learn a model by applying the pre-
learned knowledge in a domain with sufficient training data to a new domain and increase the
generalization performance of the model. Transfer learning can usually be classified as instance
transfer, feature transfer, relationship transfer, and model transfer [20]. In transfer learning, the domain
where the learning is performed in advance is called the source domain and domain that accepts the
knowledge learned in advance is called the target domain. Instance-based transfer is done by changing
the existence form of samples to reduce the difference between source and target domain; feature-based
transfer is done by mapping the source and target domain in some feature space and minimizing the
distance between them through feature transformation; relationship-based transfer is done by creating
a mapping of the correlation knowledge between two domains; model-based transfer is done by sharing
certain parameters between the source domain model and the target domain model and adjusting them
to accomplish knowledge transfer.

Transfer learning has also received extensive attention from researchers in the research field
related to EEG signals processing. Jeng et al. proposed a transfer learning framework based on low-
dimensional topic representation to address the problem of human variability in brain-computer
interface [21]. Sameri et al. used a multi-stage fine-tuning approach during transfer learning to train
end-to-end CNN models to learn discriminative features from EEG signals [22]. Zhang et al. proposed
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a Kullback–Leibler divergence-based transfer learning algorithm to deal with the effects of the non-
stationarity of the motor imagery EEG signals [23].

In epilepsy diagnosis studies, Wang et al. found that in some scenarios, the classification of
epileptic EEG signals was not finely delineated. Therefore, they utilized sub-band mean amplitude
spectrum map (MAS) of multichannel EEG for signal representation and used three commonly used
deep convolutional neural networks for feature transfer learning separately, achieving classification
performance of prefrontal epilepsy signals on a fine time scale [24]. Song et al. proposed a new EEG-
based epilepsy detection strategy, the main idea of which is to use an improved transfer learning model
to decode EEG models in the nonlinear dynamic domain, and this framework does not lose important
nonlinear features to a certain extent, a property that makes the model outperform seven well-known
neural network transfer learning models and provides new insights into EEG decoding [25]. Although
transfer learning algorithms have been extensively used in the study of EEG signals, there are still
relatively few transfer learning-based algorithms for seizure detection, necessitating additional study
and performance validation.

2.3 Multi-View & Transfer Learning

Multi-view learning, which involves learning from several views, can enhance a model’s per-
formance by enabling it to comprehend information from various views more thoroughly. Transfer
learning enables us to use information from similar issues to aid the model in problem-solving, which
can enhance the model’s generalization capabilities and stability. Therefore, by including a multi-view
learning algorithm into transfer learning, it is possible to avoid both the one-sided description of single-
view data as well as the lack of experimental data.

Currently, there are not many studies using multi-view learning algorithms in the field of transfer
learning. At first, Xu et al. chose the adaboost algorithm to implement multi-view transfer learning,
and although the experimental results proved the feasibility of the algorithm, this algorithm was
developed based on two-view data and did not make good use of multi-view learning [26]. With
the change of research direction, this type of algorithm is mostly used in the research of object
classification. For instance, Liu et al. was studied on categorizing moving objects in traffic scenes
used the adaboost-based multi-view transfer learning technique. A modest number of labeled target
scene instances in this system can greatly enhance performance and reduce labeling time and labor
requirements [27]. Bian et al. considered that using deep neural networks for automatic dermatological
classification would largely limit the scalability of the model, and proposed a multi-view filtered
transfer learning network to represent the discriminative information from different image views with
a reasonable weighting strategy [28]. In the research area related to EEG sensing signals processing,
Jiang et al. proposed an online multi-view transfer learning model with high interpretability for
identifying fatigue driving based on EEG sensing signals, considering that the existing classification
models are based on single-view data and are not interpretable transfer learning models. In this model,
features in both the source and target domains are multi-view data, allowing more pattern information
to be utilized during model training [29]. Abbas et al. proposed a real-time driver inattention and
fatigue detection system by extracting hybrid features from multi-view cameras and biosignal sensors
[30]. Although multi-view transfer learning algorithms have been used in the study of EEG sensing
signals, further research and performance validation are still required for the algorithms that have
been explored for seizure identification.
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2.4 Motivation

1) Considering the lack of experimental data, traditional transfer learning algorithms can transfer
data or model knowledge from different source domains to exploit patterns related to the
target. However, the transfer learning process requires knowledge sharing and exchange among
participants, which poses a greater risk to the data privacy of participants.

2) Most of the epileptic EEG sensing signals classification methods learn only a single algorithmic
domain feature. This makes it possible for some specific information from different views to
be interfered with by some noisy features (e.g., Gaussian noise) during the feature learning
process. This specific information contributes to the most discriminative features of important
category cues for EEG sensing signals recognition tasks. Therefore, feature extraction should
be performed from various algorithmic domain views.

3) Traditional learning models can only perform a simple splicing process when faced with multi-
view data, but this simple processing renders the previously done feature extraction work
meaningless. In addition, in the case of a small number of training samples, this simple splicing
process for features will make overfitting in the operation.

Based on the above motivations, we propose a multi-view transfer learning algorithm. In order to
solve the above problems, this paper introduces a knowledge transfer mechanism, which aims to avoid
the mutual contact of multiple participants in the transfer learning process, and chooses to protect
the privacy of participants by directly using the multi-view knowledge of the source domain. And the
multi-view weighting mechanism is used to measure the advantages and disadvantages of multiple
views to describe the object more comprehensively and scientifically as possible.

3 Multi-View & Transfer Learning for Epilepsy Recognition
3.1 Notations

In this study, some of important notations are listed in Table 1. Usually, bold numbers represent
vectors, and un-bold italics represent scalars.

3.2 Multi-View & Transfer Learning
3.2.1 Knowledge Transfer with Privacy Protection

In machine learning, the empirical risk is usually used to describe how well the AI algorithm
fits the training data. Suppose we have a training set denoted as {X, Y}, the empirical risk can be
represented as ‖XA − Y‖2

F . A is the transformation matrix, aiming at transforming the feature space
to the label space. A is also the knowledge learned from the training set. In this paper, we assume that
if two domains are related, then the transformation matrices of two domains are also similar to each
other. Therefore, in order to leverage knowledge from the source domain to the target domain, based
on the above-mentioned assumption, we can minimize the following term,∥∥∥A − Ã

∥∥∥2

F
(1)

where A is the transformation matrix of the target domain, and Ã is the transformation matrix of the
source domain. Ã is the knowledge from the source domain. Notably, Ã does not contain any feature
information, therefore, the privacy of the source domain is well-protected.
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Table 1: Notations

Notation Description

n Number of data samples
d Number of features
c Number of classes
v Number of views
fi Decision function for the i-th sample
ωm Weight of the m-th view
Xm ∈ Rn×d Training set of the m-th view
Ãm ∈ Rd×c Prior knowledge of the m-th view
Am ∈ Rd×c Transformation matrix of the m-th view
Wm ∈ Rd×c Similarity matrix of the m-th view
Zm ∈ Rd×c Diagonal matrix of the m-th view
Lm ∈ Rn×n Laplace matrix of the m-th view
Y ∈ Rd×c Label matrix
δ Heat kernel parameter
λ, γ , η Regularized parameters

3.2.2 Multi-View Weighting

To explore the consistent or complementary information from different views, in this paper, we
develop a multi-view weighting mechanism based on the information theory. To be specific, a view
weighting penalty term based on “Shannon entropy” is introduced to measure the weight of each
view, which is defined as follows,∑v

m=1
ωm ln ωm (2)

where v is the number of views, ωm is the weight of the m-th view. By minimizing (2), the view which
contains form pattern information is assigned bigger weight.

3.2.3 The Compactness Graph

Minimizing empirical risk to the maximum extent can easily lead to overfitting. In manifold
learning, it is usually assumed that samples sharing the same labels should be kept close together in the
transformed space. Based on this assumption, the compactness graph is introduced in this paper to
handle overfitting problems. To be specific, we use the following equation to capture the relationship
between training samples in the compactness graph,

Wij =
{

e−‖xi−xj‖2
/δ if xi and xj have the same labels

0, otherwise
(3)

where δ is the heat kernel parameter. According to [31], if Wij can capture the relationship that the
samples sharing the same labels should be kept close together, then any two transformed samples fi
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and fj with the same labels have a bigger weight Wij. Therefore, to keep the compactness of samples in
the transformed space, we can minimize the following equation,

min
f

∑
ij

∥∥fi − fj

∥∥2
Wij (4)

where fi and fj are any two transformed samples of xi and xj by the transformation matrix A. By
introducing the Laplacian matrix, it is easy to find that (4) can be simplified into the following
objective,

min
A

tr
(
Am

TXm
TLmXmAm

)
(5)

where L is the Laplacian matrix which can be computed by L = Z − W. Z is a diagonal matrix and
its diagonal entries can be computed by Zij = ∑

j Wij.

3.2.4 Objective and Optimization

Based on the above-mentioned components, we propose a new multi-view & transfer learning
algorithm MVTL-LSR. The objective is formulated as follows,

JMVTL−LSR = min
Am ,ωm

∑v

m=1
ωm ‖XmAm − Y‖2

F + λ
∑v

m=1
tr(Am

TXm
TLmXmAm)

+ η
∑v

m=1
ωmlnωm + γ

∑v

m=1

∥∥∥Am − Ãm

∥∥∥2

F
(6)

s.t.
v∑

m=1

ωm = 1

where λ > 0, η > 0 and γ > 0 are trade-off parameters to balance the effects of different
components in the objective function. Since the objective is convex, the updated rules regarding ωm and
Am has closed-form solution. Therefore, it is straightforward to use an alternative iteration strategy to
optimize the objective.

Firstly, when ωm is fixed, the following theorem can be used to the optimal Am.

Theorem 1: Given ωm, then the optimal Am can be computed by

Am = (ωmXm
TXm + λXm

TLmXm + γ I)−1(Xm
TY + γ Ãm) (7)

Proof. Given an arbitrary ωm, the objective in (6) can be re-formulated as

JMVTL−LSR(Am) = min
Am ,ωm

∑v

m=1
ωm ‖XmAm − Y‖2

F +λ
∑v

m=1
tr(Am

TXm
TLmXmAm)+γ

∑v

m=1

∥∥∥Am − Ãm

∥∥∥2

F
(8)

By setting the partial derivative of JMVTL−LSR(Am) with respect to Am to 0, we have
∂JMVTL−LSR(Am)

∂Am

= 0

⇒ 2ωmXm
TXmAm − 2Xm

TY + 2λXm
TLmXmAm + 2γ (Am − Ãm) = 0

⇒ (ωmXm
TXm + λXm

TLmXm + γ I)Am = Xm
TY + γ Ãm

Therefore, Am can be expressed as

Am = (ωmXm
TXm + λXm

TLmXm + γ I)−1(Xm
TY + γ Ãm) (9)
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Thus, the proof is finished.

Secondly, when Am is fixed, the following theorem can be used to the optimal ωm.

Theorem 2: Given Am, then the optimal ωm can be computed by

ωm = e
−‖XmAm−Y‖2

F
η

∑v

m′=1 e
−‖Xm′ Am′ −Y‖2

F
η

(10)

Proof. Given an arbitrary Am, the objective in (6) can be re-formulated as

JMVTL−LSR(ωm) = min
Am ,ωm

∑v

m=1
ωm ‖XmAm − Y‖2

F + η
∑v

m=1
ωm ln ωm (11)

s.t.
∑v

m=1
ωm = 1

By setting the partial derivative of JMVTL−LSR(ωm) with respect to ωm to 0, we have
∂JMVTL−LSR(ωm)

∂ωm

= 0

⇒ ‖XmAm − Y‖2
F + η(ln ωm + 1) + ξ = 0

⇒ ln ωm = −ξ − ‖XmAm − Y‖2
F

η
− 1

⇒ ωm = e
−ξ−‖XmAm−Y‖2

F
η −1 = e− −ξ

η e
−‖XmAm−Y‖2

F
η e−1

Owing to
∑v

m=1 ωm = 1, we have∑v

m=1
e− −ξ

η e
−‖XmAm−Y‖2

F
η e−1 = 1

⇒ e− −ξ
η e−1 = 1∑v

m=1 e
−‖XmAm−Y‖2

F
η

By substituting e− −ξ
η e−1 to ωm, we have

ωm = e
−‖XmAm−Y‖2

F
η

∑v

m′=1 e
−‖Xm′ Am′ −Y‖2

F
η

(12)

Thus, the proof is finished.

3.2.5 Algorithm

Based on the updated rules of Am and ωm, the algorithm of MVTL-LSR can be derived as follows.

Algorithm 1: Training algorithm of MVTL-LSR

Input: Multi-view training samples in the source domain {X̃m, Ỹ}, multi-view training samples in the
target domain {Xm}, λ, η and γ

Output: Am and ωm

Stage 1: Obtain knowledge Ãm for each view
Step 1: Set γ ← 0

(Continued)
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Algorithm 1: Continued
Step 2: Compute Lm for each view
Step 3: Transform label vector to label matrix Y
Step 4: Randomize ωm ← 1/v
Repeat

Step 5: Compute Am for each view
Step 6: Compute ωm for each view

Until
(∥∥Am

(t) − Am
(t−1)

∥∥ ≤ 10−4
)

Step 7: Ãm ← Am

Stage 2: Multi-view transfer learning
Step 8: Randomize ωm ← 1/v
Repeat

Step 9: Compute Am for each view
Step 10: Compute ωm for each view

Until
(∥∥Am

(t) − Am
(t−1)

∥∥ ≤ 10−4
)

Step 11: Return Am and ωm

Based on Algorithm 1, the testing algorithm of MVTL-LSR can be deduced as follows.

Algorithm 2: Testing algorithm of MVTL-LSR

Input: Multi-view testing set in the target domain {X̂m}, Am and ωm

Output: Ŷ
Ŷ = ∑v

m=1 ωmX̂mAm

Remark 1: In Algorithm 1, it is first necessary to set γ to 0 and find the transfer knowledge Ãm in
the source domain.

Remark 2: In Algorithm 1, the condition to end the iteration is
∥∥Am

(t) − Am
(t−1)

∥∥ ≤ 10−4, where 10−4

is the termination condition set by this algorithm, and you can set the threshold value according to
the actual scenario of your algorithm.

Remark 3: The time complexity of this algorithm mainly consists of the computation complexity of
the transformation matrix A and the computation complexity of the view weight ω. The computation
complexity of the transformation matrix A for a single view is O

(
2d3 + d2c

)
, where d is the dimension

of the input feature space and c is the number of classes. The computation complexity of the view
weight ω of a single view is O (nc), where n is size of the training set. Therefore, the time complexity of
Algorithm 1 is O

(
2d3 + d2c + nc

)
. Obviously, the computational complexity of Algorithm 1 mainly

depends on d3, which indicates that Algorithm 1 is suitable for large-scale low-dimensional datasets.

4 Experimental Studies
4.1 EEG Sensing Signals Processing

The epilepsy EEG signals licensed and provided by the University of Bonn, Germany, are used
in this study. The dataset consists of 5 sub-datasets (Set A, Set B, Set C, Set D, and Set E). Each
sub-dataset contains 100 single-channel EEG segments with a duration of 23.6 s and a sampling
frequency of 173.61 Hz. A brief description of the five sub-datasets is presented in Table 2.
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Table 2: Data description

Health people Epilepsy patients

Groups A B C D E

Group size 100 100 100 100 100
State Open eyes Closed eyes Seizure interval Seizure interval Seizure

period
Data type Scalp layer Scalp layer Intracranial Intracranial Intracranial
Electrode
position

Scalp Scalp Hippocampal
structures

Lesion area Lesion area

In the stage of EEG signals acquisition, the obtained signals often contain different kinds of noises
[32–34], which may affect the physician’s analysis and diagnosis. Therefore, it is important to pre-
process the EEG signals before the beginning of the next stage. Fig. 3 shows a toy example of the
collected EEG signals.

Figure 3: Collected EEG signals of 5 individuals from sub-datasets A, B, C, D, and E, respectively

In recent years, with the continuous research for EEG signals, more and more feature extraction
methods have been proposed to process the raw data. To better study the information contained in
EEG signals, we select three classical feature extraction methods, i.e., WPD [35], STFT [36] and KPCA
[37], to extract the time-domain features, frequency-domain features and time-frequency features,
respectively, as shown in Fig. 4.
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Figure 4: Features extracted by WPD, STFT and KPCA. (a) WPD. (b) STFT. (c) KPCA.

4.2 Transfer Scenarios

Unlike previous studies using the Bonn dataset, this study treats each feature space as a view.
Therefore, we have three views in this study. In addition, since the data distributions of A, B, C, D
and E are different, we generate 6 different transfer scenarios by grouping different sub-datasets. For
example, we randomly select 70% samples from A and E to generate a source domain, and select the
rest 30% samples from A and randomly select 30% samples from D to generate the corresponding
target domain. Therefore, in this study, we generate 12 transfer scenarios including 6 2-view scenarios
and 6 three-view scenarios, as shown in Tables 3 and 4.
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Table 3: 2-view combinations and transfer scenarios

Scenarios 2-View combinations Source domains Target domains

SC-1
“AE” vs. “AE”

WPD-STFT (DS2-1)
WPD-KPCA (DS2-2)
STFT-KPCA (DS2-3)

A, E A, E

SC-2
“ABE” vs. “ABE”

WPD-STFT (DS2-4)
WPD-KPCA (DS2-5)
STFT-KPCA (DS2-6)

A, B, E A, B, E

SC-3
“AE” vs. “AC”

WPD-STFT (DS2-7)
WPD-KPCA (DS2-8)
STFT-KPCA (DS2-9)

A, E A, C

SC-4
“AE” vs. “AD”

WPD-STFT (DS2-10)
WPD-KPCA (DS2-11)
STFT-KPCA (DS2-12)

A, E A, D

SC-5
“ACE” vs. “BCE”

WPD-STFT (DS2-13)
WPD-KPCA (DS2-14)
STFT-KPCA (DS2-15)

A, C, E B, C, E

SC-6
“ADE” vs. “BDE”

WPD-STFT (DS2-16)
WPD-KPCA (DS2-17)
STFT-KPCA (DS2-18)

A, D, E B, D, E

Table 4: 3-view combinations and transfer scenarios

Scenarios 3-View combinations Source domains Target domains

SC-7
“AE” vs. “AE”

WPD-STFT-KPCA
(DS3-1)

A, E A, E

SC-8
“ABE” vs. “ABE”

WPD-STFT-KPCA
(DS3-2)

A, B, E A, B, E

SC-9
“AE” vs. “AC”

WPD-STFT-KPCA
(DS3-3)

A, E A, C

SC-10
“AE” vs. “AD”

WPD-STFT-KPCA
(DS3-4)

A, E A, D

SC-11
“ACE” vs. “BCE”

WPD-STFT-KPCA
(DS3-5)

A, C, E B, C, E

SC-12
“ADE” vs. “BDE”

WPD-STFT-KPCA
(DS3-6)

A, D, E B, D, E
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4.3 Experimental Settings

To highlight the performance of the suggested algorithm, four state-of-the-art algorithms are
introduced for comparison.

Baseline 1 (MV-NTL-LSR as BL1), which is a multi-view machine learning algorithm. MV-NTL-
LSR is trained on the source domain and directly tested on the target domain. MV-NTL-LSR is a
non-transfer regression algorithm.

Baseline 2 (MV-NR-LSR, as BL2), which is a multi-view transfer learning algorithm. MV-NR-
LSR is trained on the source domain and tested on the target domain by leveraging knowledge learned
from the source domain.

Baseline 3 (BL3), which are three single-view transfer learning algorithms, i.e., geodesic flow
kernel (GFK), transfer component analysis (TCA), and joint distribution adaptation (JDA), having
the following two forms of input data: (i) transfer learning with single-view data; and (ii) transfer
learning with multiple-view data stitched and merged into single-view data.

Baseline 4 (BL4), which is the coupled local-global adaptation (CLGA) algorithm proposed by
Liu et al. [38]. It transfers the source domain knowledge into the target domain for training in each
scenario and updates the view weights in real-time.

All algorithms are implemented in MATLABR2020a and run on a PC with Intel (R) Core (TM)
i7-7500U, 8.00 GB with the Windows operating system. Parameter settings are shown in Table 5. 5-
cross validation combined with the grid search strategy is used to search for the optimal parameters. All
experiments are repeated 10 times and the average accuracy and the standard deviation are recorded.

Table 5: Parameter settings

Methods Parameter settings for grid search

BL1 The tradeoff parameter λ ∈ {0.01, 0.1, 1, 10, 100},
η ∈ {0.1, 1, 10, 100}.

BL2 The tradeoff parameter η ∈ {0.1, 1, 10, 100},
γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}

GFK The dim = 3, 6, 9.
TCA The tradeoff parameter λ ∈ {0.01, 0.1, 1, 10, 100}; the width in radial

BL3 basis function kernel (RBF kernel) γ ∈ {0.001, 0.01, 0.1, 1, 10, 100};
the dim = 6, 12, 18.

JDA The tradeoff parameter λ ∈ {0.01, 0.1, 1, 10, 100}; the width in RBF
kernel γ ∈ {0.001, 0.01, 0.1, 1, 10, 100}; the dim = 6, 12, 18.

BL4 The tradeoff parameter λ ∈ {0.01, 0.1, 1, 10, 100},
β ∈ {0.1, 1, 10, 100}; the width in RBF kernel
γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

MVTL-LSR The tradeoff parameter λ ∈ {0.01, 0.1, 1, 10, 100},
η ∈ {0.1, 1, 10, 100}, γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
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4.4 Experimental Results and Analysis

In this section, the average classification performance of the four baselines and the proposed
MVTL-LSR are reported, as shown in Tables 6–9. As can be seen that, in scenarios 1, 2, 7, and 8,
the classification performance of BL1 and the single-view transfer learning algorithm performs well
because the data distributions in the source and target domain are the same. In other scenarios, the
proposed MVTL-LSR algorithm achieves the best classification performance on both 2-view and 3-
view data sets. Additionally, the comparison results exhibit the following characteristics.

1) Since BL1 is a straightforward multi-view learning algorithm without knowledge transfer, it
is unable to adapt to situations in which the distribution of data in the source and target
domains is different. In scenarios 1, 2, 7 and 8, BL1 has similar performance to the proposed
MVTL-LSR. However, in other scenarios, MVTL-LSR performs significantly better than
BL1. Therefore, the present algorithm is not picky about transfer scenarios.

2) Regularization is not used in BL2 to prevent the algorithm from overfitting. Comparing BL2
with the proposed MVTL-LSR, it can be found that the classification performance of MVTL-
LSR is better than that of BL2.

3) In BL3, three classical single view transfer learning algorithms are selected for comparison. In
scenarios 1, 2, 7 and 8, since the data distribution of the source domain and target domain is
the same, on some views, BL3 performs better than MVTL-LSR. We also report the multi-view
results of BL3 by directly putting features of each view together. Direct feature stitching is the
first solution to multi-view learning, but we prove that it is not the best data processing method
through comparison. Measuring the weight of each view can achieve better performance.

Table 6: Experimental results of 2-view datasets

Datasets MV-NTL-LSR CLGA λ = 0 MVTL-LSR

DS2-1 0.9683 (0.0200) 0.9667 (0.0389) 0.9833 (0.0269) 0.9889 (0.0234)
DS2-2 0.8750 (0.0196) 0.8555 (0.0794) 0.8722 (0.1337) 0.9055 (0.0830)
DS2-3 0.9700 (0.0070) 0.9278 (0.0695) 0.9611 (0.0269) 0.9667 (0.0389)
DS2-4 0.9956 (0.0140) 0.8185 (0.0508) 0.9926 (0.0234) 0.9926 (0.0234)
DS2-5 0.5711 (0.2318) 0.7408 (0.0676) 0.7741 (0.1110) 0.7852 (0.1015)
DS2-6 0.9878 (0.0035) 0.8074 (0.0574) 0.9556 (0.0796) 0.9741 (0.0351)
DS2-7 0.7400 (0.0779) 0.7667 (0.0861) 0.8944 (0.0715) 0.9111 (0.0468)
DS2-8 0.7550 (0.0865) 0.6667 (0.0828) 0.9167 (0.0705) 0.9500 (0.0553)
DS2-9 0.8167 (0.0000) 0.6833 (0.0830) 0.9611 (0.0375) 0.9555 (0.0351)
DS2-10 0.6500 (0.1390) 0.7445 (0.1147) 0.9444 (0.0454) 0.9499 (0.0410)
DS2-11 0.8017 (0.1823) 0.7667 (0.0820) 0.8278 (0.1706) 0.8278 (0.2532)
DS2-12 0.8566 (0.0285) 0.7056 (0.0909) 0.9167 (0.0600) 0.9389 (0.0410)
DS2-13 0.8778 (0.0602) 0.8333 (0.0470) 0.9222 (0.0616) 0.9370 (0.0677)
DS2-14 0.4589 (0.1168) 0.7926 (0.0469) 0.7037 (0.2124) 0.7815 (0.1661)
DS2-15 0.9500 (0.0120) 0.7963 (0.0502) 0.9111 (0.0804) 0.9371 (0.0654)
DS2-16 0.8211 (0.0865) 0.7444 (0.0565) 0.9222 (0.0863) 0.8445 (0.0777)
DS2-17 0.6878 (0.1169) 0.8296 (0.0681) 0.7222 (0.1554) 0.7741 (0.0564)
DS2-18 0.8011 (0.0110) 0.7222 (0.0682) 0.8926 (0.0686) 0.8778 (0.0742)

(Continued)
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Table 6: Continued
Datasets MV-NTL-LSR CLGA λ = 0 MVTL-LSR

Avg.Acc 0.8103 0.7871 0.8930 0.9055
Avg.Std 0.1488 0.0786 0.0843 0.0729

Table 7: Experimental results of 3-view datasets

Datasets MV-NTL-LSR CLGA λ = 0 MVTL-LSR

DS3-1 0.9350 (0.0123) 0.9000 (0.0511) 0.9833 (0.0375) 0.9333 (0.0574)
DS3-2 1.0000 (0.0000) 0.9815 (0.0262) 0.9926 (0.0234) 0.9963 (0.0117)
DS3-3 0.7533 (0.0723) 0.8333 (0.0585) 0.9278 (0.0644) 0.9778 (0.0389)
DS3-4 0.8717 (0.0817) 0.7611 (0.1081) 0.9722 (0.0393) 0.9778 (0.0287)
DS3-5 0.8244 (0.0945) 0.7889 (0.0655) 0.9185 (0.0488) 0.9556 (0.0455)
DS3-6 0.5489 (0.1268) 0.8148 (0.0524) 0.8371 (0.0804) 0.8741 (0.0191)
Avg.Acc 0.8222 0.8466 0.9386 0.9525
Avg.Std 0.1589 0.0811 0.0581 0.0441

Table 8: Experimental results of single-view transfer learning and multi-view transfer learning on 2-
view datasets

Datasets View
identification

TCA JDA GFK MVTL-LSR

WPD 0.9111 (0.0388) 0.8722 (0.0695) 0.8500
DS2-1 STFT 0.9222 (0.0468) 0.9333 (0.0351) 1.0000 0.9889 (0.0234)

ALL 0.9389 (0.0315) 0.9444 (0.0586) 0.9833

WPD 0.8722 (0.0644) 0.8556 (0.0537) 0.8833
DS2-2 KPCA 0.9389 (0.0410) 0.9389 (0.0552) 0.8833 0.9055 (0.0830)

ALL 0.8889 (0.0585) 0.8833 (0.0665) 0.8833

STFT 0.9111 (0.0388) 0.9278 (0.0375) 1.0000
DS2-3 KPCA 0.8778 (0.0438) 0.8278 (0.0960) 0.8500 0.9667 (0.0389)

ALL 0.9444 (0.0370) 0.9222 (0.0597) 1.0000
WPD 0.7185 (0.0785) 0.7222 (0.0586) 0.7000

DS2-4 STFT 0.8741 (0.0703) 0.8259 (0.0631) 0.9778 0.9926 (0.0234)
ALL 0.7444 (0.0863) 0.7852 (0.0649) 0.9333

WPD 0.7297 (0.0782) 0.7111 (0.0671) 0.7111
DS2-5 KPCA 0.8296 (0.0610) 0.8111 (0.0979) 0.8667 0.7852 (0.1015)

ALL 0.7333 (0.0455) 0.7111 (0.0777) 0.7000

STFT 0.8667 (0.0558) 0.8222 (0.0625) 0.9889
DS2-6 KPCA 0.8074 (0.0649) 0.7852 (0.0716) 0.7778 0.9741 (0.0351)

ALL 0.8296 (0.0681) 0.8519 (0.0494) 0.9667

(Continued)
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Table 8: Continued
Datasets View

identification
TCA JDA GFK MVTL-LSR

WPD 0.7556 (0.0703) 0.7667 (0.0731) 0.7833
DS2-7 STFT 0.6278 (0.0946) 0.6889 (0.0987) 0.5833 0.9111 (0.0468)

ALL 0.7389 (0.0909) 0.7500 (0.0752) 0.5500

WPD 0.6778 (0.1250) 0.6833 (0.0644) 0.6167
DS2-8 KPCA 0.6889 (0.0876) 0.7278 (0.1321) 0.5333 0.9500 (0.0553)

ALL 0.7778 (0.0980) 0.6556 (0.0820) 0.7333

STFT 0.7111 (0.1135) 0.7278 (0.0805) 0.5000
DS2-9 KPCA 0.7389 (0.0788) 0.6500 (0.0695) 0.5667 0.9555 (0.0351)

ALL 0.7000 (0.0915) 0.6834 (0.1201) 0.5000

WPD 0.7667 (0.0860) 0.8333 (0.0828) 0.7333
DS2-10 STFT 0.6556 (0.0777) 0.6445 (0.0537) 0.5500 0.9499 (0.0410)

ALL 0.7778 (0.0641) 0.7945 (0.1016) 0.5833

WPD 0.8222 (0.0937) 0.7889 (0.1165) 0.7667
DS2-11 KPCA 0.7833 (0.0805) 0.7556 (0.0915) 0.5677 0.8278 (0.2532)

ALL 0.8000 (0.0794) 0.8389 (0.0715) 0.7833

STFT 0.6889 (0.0750) 0.6834 (0.0695) 0.6167
DS2-12 KPCA 0.7945 (0.0870) 0.7333 (0.1136) 0.4333 0.9389 (0.0410)

ALL 0.7222 (0.1256) 0.7333 (0.0683) 0.6000

WPD 0.8259 (0.0580) 0.7741 (0.0477) 0.8222
DS2-13 STFT 0.7889 (0.0606) 0.7667 (0.0874) 0.8222 0.9370 (0.0677)

ALL 0.8741 (0.0584) 0.8815 (0.0546) 0.8889

WPD 0.8482 (0.0368) 0.8556 (0.0846) 0.8000
DS2-14 KPCA 0.7333 (0.1030) 0.7556 (0.0530) 0.6889 0.7815 (0.1661)

ALL 0.8371 (0.0823) 0.8333 (0.0877) 0.7778

STFT 0.8148 (0.0462) 0.7889 (0.0700) 0.7556
DS2-15 KPCA 0.7519 (0.0631) 0.7296 (0.0700) 0.7222 0.9371 (0.0654)

ALL 0.8185 (0.0408) 0.8111 (0.0591) 0.8111

WPD 0.7852 (0.0694) 0.7963 (0.0824) 0.7444
DS2-16 STFT 0.6889 (0.0876) 0.7148 (0.0908) 0.7556 0.8445 (0.0777)

ALL 0.7926 (0.0911) 0.7704 (0.0455) 0.8222

WPD 0.8334 (0.0559) 0.8371 (0.0658) 0.8222
DS2-17 KPCA 0.7593 (0.0976) 0.7704 (0.0777) 0.7000 0.7741 (0.0564)

ALL 0.8222 (0.0737) 0.8333 (0.0502) 0.8556
STFT 0.7333 (0.0488) 0.7111 (0.0777) 0.7667

DS2-18 KPCA 0.7296 (0.0464) 0.7704 (0.0757) 0.7556 0.8778 (0.0742)
ALL 0.7407 (0.0698) 0.7815 (0.0640) 0.8222
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Table 9: Experimental results of single-view transfer learning and multi-view transfer learning on 3-
view datasets

Datasets View
identification

TCA JDA GFK MVTL-LSR

DS3-1

WPD 0.8111 (0.0698) 0.8500 (0.0788) 0.8500

0.9333 (0.0574)
STFT 0.8555 (0.0652) 0.8833 (0.0552) 1.0000
KPCA 0.8333 (0.0468) 0.8440 (0.0676) 0.8000
ALL 0.9055 (0.0828) 0.8722 (0.0589) 0.9667

DS3-2

WPD 0.9037 (0.0457) 0.8852 (0.0508) 0.9333

0.9963 (0.0117)
STFT 0.9000 (0.0250) 0.9185 (0.0488) 1.0000
KPCA 0.8630 (0.0631) 0.8371 (0.0468) 0.8444
ALL 0.9556 (0.0383) 0.9889 (0.0179) 1.0000

DS3-3

WPD 0.7833 (0.1184) 0.7778 (0.0741) 0.7500

0.9778 (0.0389)
STFT 0.6833 (0.0946) 0.7611 (0.1081) 0.5167
KPCA 0.7167 (0.1125) 0.7500 (0.0655) 0.6333
ALL 0.7944 (0.0644) 0.8500 (0.0588) 0.5833

DS3-4

WPD 0.7889 (0.1165) 0.7833 (0.1155) 0.7000

0.9778 (0.0287)
STFT 0.6445 (0.0915) 0.6556 (0.1223) 0.5500
KPCA 0.9000 (0.0777) 0.8722 (0.0743) 0.5833
ALL 0.7333 (0.0861) 0.7389 (0.1016) 0.6333

DS3-5

WPD 0.8037 (0.0721) 0.7963 (0.0682) 0.8222

0.9556 (0.0455)
STFT 0.7074 (0.0616) 0.7185 (0.0765) 0.8222
KPCA 0.7741 (0.0640) 0.7074 (0.0663) 0.6444
ALL 0.8259 (0.0392) 0.8222 (0.0546) 0.8556

DS3-6

WPD 0.8333 (0.0586) 0.8407 (0.0874) 0.8111

0.8741 (0.0191)
STFT 0.7741 (0.0444) 0.7519 (0.0721) 0.8222
KPCA 0.7778 (0.0699) 0.7889 (0.0496) 0.7667
ALL 0.8111 (0.0770) 0.8111 (0.0846) 0.8778

4.5 Parameter Sensitivity Analysis

In this section, we perform a sensitivity analysis of the parameters for MVTL-LSR. There are a
penalty coefficient λ and two trade-off coefficients η and γ in the proposed objective. In addition, a
parameter is used to describe the number of instances ratio in the specific process of conducting the
experiment, i.e., R.
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4.5.1 Sensitivity Study of Instance-to-Number Ratio

Since the number of instance ratio are randomly selected for optimization in the classification
problem, in this experiment we verify the effect of different R values on the overall accuracy of MVTL-
LSR. The experimental results for R values between 0.1 and 0.9 are shown in Fig. 5. From the figure,
we can observe that the accuracy of MVTL-LSR classification varies with increasing R-value. Based on
these experimental results, we show that setting the number of instances ratio R to 0.7 for classification
will be for getting more desirable experimental results.

Figure 5: Sensitivity analysis of the dataset instance ratio from different views (a. WPD-STFT; b. WPD-
KPCA; c. STFT-KPCA; d. WPD-STFT-KPCA)

4.5.2 Sensitivity Study of λ

In this section, we control the generalization error of the metric with the transformation matrix
A by adding a penalty term r (A). Thus, λ in Eq. (5) is the penalty coefficient of the penalty term. To
visualize the effect of the penalty term on the accuracy of MVTL-LSR, we sampled three datasets to
compare the training accuracy with the testing accuracy, as shown in Fig. 6. From the figure, we can
observe that the test accuracy is greater than the training accuracy for λ ∈ [10−5, 105], which indicates
the good generalization performance of this algorithm.

4.5.3 Sensitivity Study of η, γ

Here, we investigated the sensitivity analysis of two trade-off parameters, namely η and γ , in the
target algorithm of the MVTL-LSR Eq. (3). For simplicity, we chose to conduct experiments on the
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scenario DS2-1 dataset, and the results are shown in Fig. 7. It is observed from the figure that MVTL-
LSR performs well and is stable when η is set to a relatively large value, such as η ≥ 0.1, and γ is in a
large range [10−3, 103].

Figure 6: Sensitivity analysis of penalty coefficient λ (a. DS2-16; b. DS2-17; c. DS2-18)

Figure 7: Sensitivity analysis of η and γ

4.5.4 Non-Parametric Statistical Analysis

To verify the significant differences between these seven algorithms on 12 scenarios, Friedman’s
rank test and Holm’s post hoc test are used. To ensure the comparability of the experimental results,
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we chose to use the accuracy obtained by the feature stitching method for the subsequent analysis.
Depending on the algorithms, we divided them into two groups. One group is single-view transfer
learning algorithms (TCA, JDA, GFK, and MVTL-LSR), and the other group is multi-view transfer
learning algorithms (MV-NTL-LSR, MV-NR-LSR, CLGA, and MVTL-LSR). The confidence level
α set to 0.05.

First, the Friedman rank test is used to calculate the average rank of each group of algorithms.
Figs. 8 and 9 shows the ranking results of each group of algorithms. The p value indicates that there are
significant differences between each group of algorithms, and MVTL-LSR is the best in each group.

Figure 8: Rank test of TCA, GDA, GFK and MVTL-LSR

Figure 9: Rank test of CLGA, MV-NTL-LSR, MV-NR-LSR and MVTL-LSR

Secondly, Holm post test is performed on the two groups of algorithms to observe the performance
difference between them. The test results for each group are presented in Tables 10 and 11. All
algorithms in each group are ranked by the z-values obtained during testing. In the Holm test,
the hypothesis that the unadjusted p-value is smaller than the Holm value is rejected. From the
observations in Tables 10 and 11, we can see that MVTL-LSR performs the best in comparison
with single-view algorithms as well as multi-view algorithms, which indicates that MVTL-LSR is an
effective multi-view transfer learning algorithm. Although the MV-NR-LSR hypothesis is not rejected,
its corresponding lower p-value still indicates the competitive nature of the MVTL-LSR algorithm.

Table 10: Holm’s test for TCA, JDA, GFK, and MVTL-LSR when α = 0.05

i Algorithm z = (R0 − Ri)/SE p Holm = α/i Hypothesis

3 TCA 4.192627 0.000028 0.016667 Rejected
2 JDA 3.969021 0.000072 0.025 Rejected
1 GFK 3.465905 0.000528 0.05 Rejected
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Table 11: Holm’s test for CLGA, MV-NTL-LSR, MV-NR-LSR, and MVTL-LSR when α = 0.05

i Algorithm z = (R0 − Ri)/SE p Holm = α/i Hypothesis

3 CLGA 5.366563 0 0.016667 Rejected
2 MV-NTL-LSR 3.354102 0.000796 0.025 Rejected
1 MV-NR-LSR 1.565248 0.117525 0.05 Not rejected

5 Conclusions

In this study, we propose a multi-view transfer learning algorithm for epileptic EEG signals
recognition. First, transformation matrix as knowledge is transformed to the target domain, instead
of directly transferring samples or features. In this manner, the security of the source domain data is
properly protected on the basis of promising performance. Secondly, the manifold regularization term
is introduced to improve the generalization ability of the model. Also, Shannon entropy is introduced
to adaptively learn the weight coefficients of each view, which makes it possible to emphasize the
contribution of high-quality views in the multi-view learning process. Finally, in the experimental
study, we simulate several scenarios to verify the effectiveness of the proposed multi-view transfer
learning algorithm. And its superior performance against existing methods is demonstrated through
extensive experiments.

The limitation of this study mainly lies in the high computational complexity with respect to the
dimension of the input feature space. In our future work, we expect to find a more efficient method to
reduce the computational complexity.
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