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Abstract: A complex Laboratory Developed Test (LDT) is a clinical test
developed within a single laboratory. It is typically configured from many fea-
ture constraints from clinical repositories, which are part of the existing Lab-
oratory Information Management System (LIMS). Although these clinical
repositories are automated, support for managing patient information with
test results of an LDT is also integrated within the existing LIMS. Still, the
support to configure LDTs design needs to be made available even in standard
LIMS packages. The manual configuration of LDTs is a complex process and
can generate configuration inconsistencies because many constraints between
features can remain unsatisfied. It is a risky process and can lead patients to
undergo unnecessary treatments. We proposed an optimized solution (opt-
LDT) based on Genetic Algorithms to automate the configuration and resolve
the inconsistencies in LDTs. Opt-LDT encodes LDT configuration as an
optimization problem and generates a consistent configuration that satisfies
the constraints of the features. We tested and validated opt-LDT for a local
secondary care hospital in a real healthcare environment. Our results, averaged
over ten runs, show that opt-LDT resolves 90% of inconsistencies while taking
between 6 and 6.5 s for each configuration. Moreover, positive feedback based
on a subjective questionnaire from clinicians regarding the performance,
acceptability, and efficiency of opt-LDT motivates us to present our results
for regulatory approval.
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1 Introduction

A Laboratory Developed Test (LDT) is a relatively simple, non-commercial clinical test developed
and validated within a single laboratory and regulated by the drug regulatory authorities (DRAs) [1–
3]. In Pakistan, the Drug Regulatory Authority of Pakistan (DRAP) has several divisions to provide
compliance with Pakistan Drugs Act., particularly the Quality Assurance and Laboratory Testing
(QALT) division and Management Information Services (MAS) division. Although QALT and MAS
are responsible for regulating LDTs in Pakistan, they have no standard operating procedure for such
a regulation.

LDTs can be either simple or complex [4,5]. Typically, a simple LDT is configured by clinicians
from a small repository of clinical testing features and measures single-analytes, such as a test to
measure the sodium or calcium level in a patient. The configuration of simple LDTs is comparatively an
easy process where clinicians can manually satisfy the limited number of constraints of clinical features.
While a complex LDT is configured from hundreds of feature constraints. The manual configuration of
complex LDTs is a complicated and error-prone process. It can generate configuration errors because
many constraints between features can only be satisfied partially through the manual process. A limited
number of hospitals configure (complex) LDTs in Pakistan. A team of clinicians configures an LDT,
which requires selecting features from available medical repositories which are part of the Laboratory
Information Management System (LIMS) (explained in Section 2). Each clinician configures the
features related to their specialized field included in the final LDT configuration. During the LDT
configuration, clinicians communicate extensively to resolve all feature constraints, which indicate
clinical rules. This process is complicated, possibly taking many weeks, in which important features can
be overlooked with many unresolved constraints in the final integrated LDT configuration. This could
lead to an inconsistent LDT configuration. Two examples of this scenario could be the omission of the
features concerning the timing and amount of drug administration, and the inability of the clinician
to specify the method for collecting and handling specimens in the LIMS. The difficulties increase
for those LDTs that require contributions from clinicians with various specializations. A physician
with expertise in a particular field can focus on selecting the relevant features within their domain,
without considering the features from other domains. However, for an LDT, the interpretation of
these features must be combined to produce an accurate outcome. Further defining this complexity
is that complex LDTs use large feature repositories, increasing the chances of an improper LDT
configuration and potentially leading to faulty data analyses and unacceptable clinical performance.
For instance, patients can undergo unnecessary treatment or run risks of extreme and irreversible
interventions [6–9]. These issues have motivated DRAs to start a risk-based procedure to regulate
high-risk complex LDTs [6–8]. In Pakistan, DRAP has yet to begin any regulatory process for LDTs,
possibly because of a minimal number of LDT configurations due to a lack of required infrastructure.
However, some rare diseases rarely became prevalent locally in Pakistan, such as Diastrophic Dysplasia
[10], for which configuring a complex LDT became necessary. In this situation, local clinicians of
LIMS-based hospitals resort to manual LDT configuration mechanisms. Regular medical lab test
functions and automated support for storing patient information and sample results of an LDT are
also integrated within the existing LIMS. However, the support to configure and resolve inconsistencies
in complex LDT design currently needs to be made available. Even in standard healthcare software
packages available to store, retrieve, and process data from LDTs, such as ClinQuan software [11],
LDT configuration support with a focus on inconsistency resolution is not available. To the best of
our knowledge, there is no standard automated support to date for designing and configuring an LDT
within a LIMS.
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Besides these issues, this paper’s work is mainly motivated by a recent rare disease in Gujrat’s
suburban region (Pakistan). The clinicians of a local secondary care hospital in Gujrat were required
to configure an LDT to detect the disease. This LDT required medical experts’ input from different
domains, and the main issue was that a consensus could not be reached amongst the experts in resolv-
ing all feature constraints. Hence, the final LDT product remained inconsistent. This paper employs
state-of-the-art health informatics concepts to manage and solve these LDT issues. Specifically, we
propose opt-LDT (Optimized LDT), an automated LDT which implements evolutionary optimization
to resolve feature constraints in an LDT configuration. In opt-LDT, Genetic Algorithms (GA) are
used because it is widely applicable in many domains [4,7,8,12].

This paper’s purpose is to execute opt-LDT in a healthcare environment. The performance of
opt-LDT is also compared with the manual LDT configuration process. For this, we are interested in
answering the following two research questions:

Q1: Does GA have the potential to produce a consistent (conflicts-free) LDT configuration?

Q2: Is the efficiency of a GA higher than that of manual LDT configuration?

In this research, an opt-LDT prototype has been created comprising 100 test features in the
repository to answer these questions. Our results, averaged over ten runs, show that GA resolves 90%
of inconsistencies while taking between 6 and 6.5 s for each configuration. In other words, opt-LDT
can autonomously resolve a large percentage of constraints (inconsistencies) in almost negligible time.
The results show that opt-LDT can improve the LDT configuration process.

The main contributions of this paper are:

• An optimized solution (opt-LDT) based on GA to automate the configuration of complex LDT
is presented.

• Testing and validation of opt-LDT prototype in a real-time hospital environment.
• Practical evaluation of opt-LDT based on clinicians’ feedback.

The rest of the paper is organized as follows: Section 2 discusses the background of the research
with the motivation and challenges presented in Section 3. The theoretical framework and method-
ology are discussed in Section 4. The dataset is described in Section 5, and the details about the
experiments and results. The questionnaire evaluation and limitations are provided in Section 6, and
the paper is concluded in the next section.

2 Relevant Background

This section describes a relevant background related to Laboratory Information Management
Systems (LIMS) and Genetic Algorithms.

2.1 Laboratory Information Management Systems (LIMS)

LIMS is a collection of modules to store, process, and manage data from all stages of a medical
lab test [13,14]. It helps clinicians supervise many patient tests, such as hematology, immunology, and
microbiology. Typically, LIMS has the following three modules, which exchange patient, sample, and
laboratory result data with each other.

• Master Data Module (MDM): It has features to store all the relevant data of patients or
requesters. The patient’s name, phone number, address, and email can be included.

• Sample Data Module (SDM): It stores sample data features such as sample date, collection
time, materials (e.g., blood, urine), and sample results.
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• Report Generation Module (RGM): RGM stores report printing features such as report format,
report header (name and address of the lab), contents of the report, comments on test results
analysis, and interpretation. In a typical LIMS, RGM has proper interfacing with MDM and
SDM to fetch timely data and produce an error-free and reliable report.

Like a regular medical lab test, automated support for storing patient information and sample
results of an LDT is also integrated within the LIMS. Clinical Laboratory Improvement Amendments
(CLIA) of 1988-compliant software is available to store, retrieve, and process data from LDTs, such
as ClinQuan software [11].

2.2 Genetic Algorithms (GA)

GA is an optimization method that simulates the process of natural selection to generate effective
solutions [15,16]. A data structure called chromosome represents the optimization task, with different
task parameter values producing different chromosomes [17]. The fitness of each chromosome towards
an optimized solution is determined using an objective function. GA initially generates an initial
population of chromosomes. The two best chromosomes (identified through the objective function) are
selected, and GA parameters called mutation and crossover are used to produce the next-generation
chromosome [18].

The crossover combines the parent chromosomes to produce children’s chromosomes. The
mutation changes the new children to produce a small diversity from their parents.

Moreover, the parameter crossover fraction specifies each population’s fraction, other than the
best children, made up of crossover children. A crossover fraction of 1 means that all children other
than the best are crossover children, while a crossover fraction of 0 means that all children are mutated.
Both extremes are unacceptable, and a crossover fraction between 0 and 1 is selected. This process of
generating children’s chromosomes is repeated until a new population is evolved.

After several iterations, one of the chromosomes is selected as the optimal solution for the problem
designers. The optimal values for GA parameters, i.e., crossover function, crossover fraction, mutation
rate, and population size, depend on the problem’s nature. Therefore, before running the actual GA
experiments, it is necessary to tune these parameters to obtain their optimal values [19].

3 LDT Configuration: Challenges & Motivation

The management of laboratory testing is crucial in healthcare evaluation and patient treatment
and is accomplished through the use of In Vitro Diagnostic (IVD) devices, which are commercially
available medical products consisting of reagents, instruments, or systems used for patient diagnosis,
prognosis, disease monitoring, and prevention [20]. Simple LDTs can be created by selecting testing
features from a small repository and with the help of experts who can easily fulfill the limited number
of clinical feature constraints, avoiding errors resulting from inconsistencies.

On the other hand, a complex LDT which involves configuring from larger repositories, often
containing hundreds of feature constraints, can measure a vast range of analytes such as DNA
variations or parameters related to ongoing epidemic diseases. The manual configuration of such
complex LDTs is a complex process, leading to configuration errors due to partial satisfaction of
constraints between features. This manual process can result in critical features being omitted in the
final LDT product.
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The configuration of complex LDT in Pakistan, using LIMS, is a challenging task. This is due to
the fact that there are a limited number of laboratories performing the configuration and the process
involves a team of clinicians handpicking features from medical databases, each within their area
of expertise, such as patient behavior, microscopic analysis, microbiology cultures, tissue samples,
laboratory reporting, etc. The manual configuration process can result in errors such as omitted
critical features and partial satisfaction of constraints between features. The LIMS provides different
modules for managing data across various stages of a medical test, including workflow management,
scheduling, sample analysis, and reporting. Some examples of this scenario are listed next:

• The biological features in an LDT are selected incorrectly, e.g., diet and obesity features are
included in a microscopic examination.

• A genetic test is applied to subjects of an incorrect age group.
• The value of a particular feature (e.g., hypercalcemia) is not noted during testing.
• There are no features associated with any standard template for reporting, possibly leading to

the omission of important information or incorrect communication of LDT results.

The configuration of LDTs becomes complex when involving medical experts from various
specialties. Each expert may select features within their area of expertise without considering the
significance of features from other domains, leading to inconsistent LDT configurations that can
result in improper data analysis and unacceptable clinical outcomes. However, to provide appropriate
patient care, medical experts require the ability to configure LDTs. Despite the challenges posed
by the configuration of complex LDTs, regulatory agencies such as DRAP have not yet established
regulations for LDTs in Pakistan. In the absence of such regulations, the manual configuration of
LDTs by medical experts using LIMS-based laboratories remains the only solution, particularly for
rare diseases such as Diastrophic Dysplasia, which affects a large number of people globally, including
children. Thus, resolving the issues associated with the configuration of LDTs becomes increasingly
important.

In the context of this discussion, LDT designing is proposed as a feature selection problem along
with automated configuration support (detailed in Section 4).

4 Theoretical Framework and Methodology

In this section, first, we discuss the LDT configuration as a feature selection problem and the
framework of opt-LDT. The GA objective function’s formalization and the chromosome encoding
scheme are presented next.

4.1 LDT Configuration as a Feature Selection Problem

In this subsection, the LDT design process is described in detail. An LDT is configured by selecting
features from the available medical repository. A team of medical practitioners has participated in the
configuration process. Each practitioner configures their particular field’s features and adds these to
the LDT. Finally, these configured features produce a new LDT design. This integration can lead to
several issues, notably inconsistencies across test features due to the non-satisfaction of constraints
between features. For instance, consider that practitioner A adds feature P1, and practitioner B
adds feature P2, and medical validation sources oppose the existence of P1 and P2 in a single
LDT configuration. It is also possible that practitioner A adds P1 to the LDT and forgets to add
feature P3, while medical regulations dictate that the interpretation of P1 is incomplete without the
analysis of P3. Our research identified five types of constraints for an LDT configuration: mandatory,



6256 CMC, 2023, vol.75, no.3

optional, exclude, include, and alternative. We provide examples of these constraints next (most of
these examples are taken from [21]):

• Mandatory: Feature presence is compulsory in an LDT configuration. For instance, for
molecular genetic testing for heritable diseases and conditions, the test method’s intended use,
the test’s purpose, and the test method used are features with mandatory constraints. Some of
CLIA’s mandatory attributes for a medical lab that performs non-waived (high and moderate
complexity test) testing are: test requester identifier, patient unique identifier, and sex [22].

• Optional: Feature presence is optional in an LDT configuration; for instance, additional
information is required for the specific test, the patient’s place of birth, date/time of the test,
and patient racial details (for some tests, it is mandatory).

• OR: An LDT configuration can have a feature(s) from an OR-ed feature set, for instance, test
requester name OR any suitable unique identifier, patient name OR patient identifier, and date
of birth OR age.

• Alternative: An LDT configuration can contain only a single feature from a set of alternative
features. For instance, the type of specimens retained (whole blood and DNA samples), test
permission levels (lab director, supervisor, and technician), and type of testing (diagnostic, pre-
symptomatic, predictive, carrier, susceptibility) are examples of alternative features.

• Include: F1 includes F2 means the existence of F1 in an LDT configuration implies the inclusion
of F2 in the configuration, such as the patient address has street, city, and country.

If all constraints are not satisfied, the LDT design remains inconsistent, i.e., erroneous, unreli-
able, and sometimes invalid. Typically, practitioners consult with each other and try to resolve all
constraints. It is also complicated and requires comprehensive analytical skills. Most of the time, it is
impossible to resolve all constraints through manual deliberation. According to the U.S. Food & Drug
Administration (FDA), this poses a severe threat to health care because patients’ health decisions are
based on inconsistent LDT results.

4.2 Opt-LDT: An Optimized Laboratory-Developed Test Prototype

This subsection presents our proposed solution to the problems mentioned in Section 4.1. We label
it opt-LDT (optimized-LDT), an independent module to configure LDTs. It can be easily integrated
with existing LIMS because it does not require any dependent working modules. It is already discussed
that the opt-LDT model of the LDT design process is a feature selection problem that has to comply
with the given set of constraints. Violations of these constraints during the feature selection lead to
an inconsistent LDT configuration. A natural solution to resolve inconsistencies is to automate the
LDT configuration process. Moreover, generating an optimized configuration that models as a feature
selection problem is not a new domain for the software industry. Many solutions are proposed to
solve the problem, specifically Artificial Intelligence (AI) techniques such as optimization based on
evolutionary computing, logic-based and ontological reasoning, swarm intelligence, and predictive
analytics [23].

GA is a standard evolutionary computing algorithm with many successful applications [15], also
widely employed to solve inconsistency issues in product configuration. Based on the existing liter-
ature, a GA-based opt-LDT solution is proposed to configure LDT feature selection and efficiently
resolve inconsistencies to generate a consistent configuration that selects the optimal LDT feature
subset.

To address our research inquiries, we employed the opt-LDT approach to enhance the previously
unoptimized manual LDT configurations from a local hospital. In this paper, under non-disclosure
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agreement requirements, we will only show the more generic features of these configurations, such
as PatientName and PatientAddress (a partial list is shown in Table 1), and avoid the more critical
(disease-related) ones. In our hospital, a group of ten practitioners from three different clinical fields
configured the LDT in two days. Initially, a discussion was conducted with practitioners to discuss and
validate the LDT issues. As mentioned before, the clinicians concurred on the difficulty of selecting
the feature subset; extended manual deliberation led them to make some compromises on feature
constraints, and hence, they agreed that their final LDT product was inconsistent. The clinicians also
did not give any guarantee regarding the health safety of their LDT for the patients.

Table 1: A snapshot from the feature and constraint repositories of optimized-Laboratory Developed
Test (opt-LDT)

Feature-ID Features Constraints

LS01 Laboratory setting Include LS02, LS03
Mandatory

LS02 Lab ID Mandatory
LS03 Lab name Mandatory
LS04 Lab logo Optional
LS05 Intended use of test Mandatory
PT01 Purpose of the test Mandatory
PT02 Test method to be used Mandatory
TR01 Test requester identifier Mandatory
NP New patient Mandatory include P01, P02
P01 Patient unique identifier Mandatory
P02 Name Mandatory
P03 Address Optional include P04, P05, P06
P04 City Optional
P05 Country Optional
P06 Additional information Optional
P07 Date of birth Optional OR P07 P08
P08 Age Optional
P09 Gender Optional OR P07 P08
P10 Contact info Optional include P11 OR P12
P11 Racial information Optional
P12 Email Optional
P13 Smoker? Optional
SP01 Type of specimens retained (whole blood) Optional exclude SP01 SP02
SP02 Type of specimens retained (DNA sample) Optional exclude SP01 SP03
TP01 Test permission level (Lab director) Alternative TP01 TP02 TP03

Optional
TP02 Test permission level (Supervisor) Alternative TP01 TP02 TP04

Optional
TP03 Test permission level (Technician) Alternative TP01 TP02 TP05

Optional
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To solve this problem, we employed an opt-LDT for a hospital. The architecture of opt-LDT
is shown in Fig. 1. opt-LDT primarily divides into two parts, i.e., repositories and GA-Engine. The
Clinical Data Repository (CDR) stores all relevant medical data required to configure an LDT. It
validates medical data from various standard medical sources. It also saves the potential features for
LDT configurations. This feature set can be updated through reviews and feedback from clinicians
and practitioners, research activities, or synchronization with other medical repositories. Two sub-
repositories are populated from CDR, i.e., Constraint Repository (CR) and Features Repository (FR).
For a particular LDT configuration, FR collects potential features such as Test Requester Identifier
and Patient gender. At the same time, CR contains the applicable constraints on selected features, e.g.,
mandatory (Test Requester Identifier) and optional (Patient gender). FR stores 100 potential features
for our experiments, and CR has 78 constraints. Both storages share an interface to help practitioners
in an LDT design configuration stored in the LDT Design Configuration (LDC) repository.

Figure 1: Optimized-Laboratory Developed Test (opt-LDT)

Table 1 presents a subset of 27 potential features and constraints from FR and CR. Here, F-ID,
Features, and Constraints represent the identifier, feature description, and applicable constraints. As
already mentioned, the configuration of a complex LDT is a collaborative task involving multiple
clinicians. Every clinician configures features of their domain which are stored in LDC. A clinician
uses a unique credential (password and user name) to access the interface, which helps track the source
dependency of the added test feature. After clinicians complete the LDT configuration, opt-LDT starts
working by fetching the configuration from LDC. An objective function defined in Section 4.3 encodes
the LDT design as an optimization problem.

Moreover, LDT configuration is mapped into a chromosomal representation (detailed in Section
4.3), generating the initial population with multiple candidates. Hyperparameters such as population
size, cross-over function, cross-over fraction, and mutation rate are tuned. The chromosomal repre-
sentation of the given LDT configuration with the optimal adjusted values of the hyperparameters is
passed to the GA-Engine for final optimization. GA-Engine starts with generating the population of
candidates with the tuned value of population size. The two fittest LDT configurations evaluated by the
objective function are selected to reproduce further. Genetic operators, i.e., cross-over and mutation,
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are applied to these selected configurations to produce the next generation of offspring. The process
repeats until one of the stopping criteria is met, such as an LDT configuration is acquired that satisfies
the minimum function criteria, the maximum number of generations are completed, and the highest
ranking LDT configuration fitness is met.

4.3 Formalizing GA Objective Function and Chromosome Encoding

GA objective function is centered on two activities: 1) maximizing the number of features selection
and 2) prioritizing different types of inconsistencies. To understand the first activity, suppose an
inconsistent LDT configuration is given as Conf = {LS01, . . . , TP01, TP02, . . . } (defined earlier).
The simplest way to remove inconsistencies is to remove both inconsistent features, i.e., TP01 and
TP02. However, such exclusion is illogical and could leave a small set of available features to complete
the configuration. To prevent this in opt-LDT, we design the objective function to maximize feature
selection and minimize inconsistencies (described next).

The second activity is to give weights to various inconsistencies and represent the real-world sce-
nario in which clinicians give importance to those constraints’ violations that have more significance.
We target four inconsistencies, i.e., exclude, include, alternative and mandatory. They are arranged
based on the decreasing severity level, i.e., Mandatory, followed by Exclude, Alternative, and Include.
Later, we normalize the weight values from 0–1. We randomly assign a weight of 0.4 to a mandatory
and 0.3 to each of the alternatives, excluding or including violations. We did not assign weights to
Optional and OR constraints because their selection does not introduce any inconsistencies.

The mathematical formalization of our objective function is as follows:

Suppose,

Þ = An inconsistent LDT design configuration

F = Potential feature set {F1, F2, . . . , Fn} configured in Þ

C = A set of constraints {C1, C2, . . . , Cn} applicable on Fi of Þ

W = Weights [0, 1] given to constraints Cn ∈ C and

I = {w1C1F1, w2C2F2, . . . , wjCjFj} represents the j inconsistencies, where ωk ∈ W and j are not
always the same as n. Eq. (1) illustrates the maximization of selected features:

Max
∑n

i=1
(Fi) (1)

Also, the configured product should minimize constraints in C such that:

Min
∑n

i=1
(wiCiFi) ∼ 0 (2)

The given inconsistent LDT configuration is encoded as a chromosome. We assume this config-
uration has n features. We map these features to a chromosome with n genes. Bit strings (0 and 1) are
used for encoding, where 1 shows the selection, and 0 shows the de-selection of a configured feature.

To select potentially useful candidates from a population, we use the standard stochastic uniform
selection, which employs unbiased and proportionate selection with a minimal spread. It begins with
the ordering of the population according to the fitness value. In each iteration, two individuals are
selected, and crossover and mutation are applied to acquire the next set of chromosomes. We also use
the typical GA replacement approach, which replaces a parent with its offspring in case the offspring
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has a higher fitness score than the parent. Otherwise, the candidate with the smallest fitness value in
the population is replaced.

5 Dataset, Experiments, and Results

This section presents a detailed description of the dataset, experiments, and results. We performed
these test experiments on a machine with Windows 7 OS, Intel Core i7 2.4 GHz processor, and
16 GB RAM.

5.1 Generating Inconsistent LDT Configurations Dataset

To test the proposed prototype, opt-LDT, we need an inconsistent LDT design configuration. We
created ten randomized, inconsistent LDT configurations using the feature set outlined in Table 1.
The configurations are required to run the GA experiments. We named them LDT-C01 to LDT-C10.
We wrote Java code to analyze inconsistent configurations. We also counted the number of features
and inconsistencies in the given configuration. Our main objective was to reduce inconsistencies, so we
chose three configurations with the largest number of inconsistencies, namely LDT-C07 (74), LDT-
C08 (70), and LDT-C06 (69). Additionally, to test the effectiveness of opt-LDT on a feature set with
fewer inconsistencies, we included LDT-C02 (55). This also provided the opportunity to initialize the
GA algorithm with input from clinicians. Table 2 shows details of these configurations, specifically the
missing mandatory features, including the missing features and alternative/Exclude features that cause
inconsistencies.

Table 2: Frequency of different inconsistency types in LDT configurations

Type LDT-C07 LDT-C08 LDT-C06 LDT-C02

Mandatory 24 22 23 16
Include 40 42 38 33
Alternative/Exc. 10 6 8 6
Total 74 70 69 55

To give some detail about the inconsistencies, the relevant features related to these inconsistency
types for LDT-C07 are shown next:

• Missing Mandatory Features: The mandatory features such as the intended use of the test, the
purpose of the test, the test method to be used, the test requester identifier, the patient unique
identifier, and sex are not selected in LDT-C07.

• Alternative/Exclude Features: The values ‘Whole blood’ and ‘DNA’ samples are both selected
for the feature type of specimens retained, which introduces an exclude inconsistency because
whole blood and DNA cannot co-exist in a consistent LDT configuration. Similarly, LDT-
C07 contains both ‘lab director’ and ‘supervisor’ level permissions, which causes an alternative
inconsistency.

• Missing Include Features: The feature Patient address is selected without ‘street,’ ‘city,’ and
‘country’ selection, which introduces an include inconsistency.
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5.2 Experimental Results
5.2.1 GA Parameters’ Tuning Results

We tune four GA parameters as shown in Table 3, on a selected inconsistent configuration. To
determine the optimal values for the parameters, we employed a conventional method of parameter
tuning by testing and evaluating various values prior to the actual run [24]. We arbitrarily chose LDT-
C07 for this purpose. The experiments were repeated ten times to determine the best average value for
each parameter setting [23], as shown in Table 3. We explored LDT-C07 using three standard mutation
rates (0.01, 0.05, and 0.1) to identify the optimal mutation rate. These mutation rates were selected
based on the rationale presented in [25]. With a mutation rate of 0.01, GA selects 55% of features
and removes 90.4% of the inconsistencies, on average. With a 0.05 mutation rate, GA selected 61% of
features and resolved 90.9% of the inconsistencies. However, a 0.1 value for mutation rate generates
the optimal results, selects 87% of features, and resolves 91.9% of the inconsistencies.

Table 3: Genetic algorithm parameters’ tuning

Parameters Averaged results

Features Inconsistencies

Mutation rate 0.01 55 9.6
0.05 61 9.1
0.1 87 8.1

Population size 20 75 9
40 88 8.1
80 88 8.4

Cross-over fraction 0.8 87 8.3
0.6 68 9.3
0.4 57 9.8

Crossover function SinglePoint 57 9.7
TwoPoint 64 9.3
Scattered 85 8.1

To find the optimal population size, we began with a low value and gradually increased it until
the best value was found [26,27]. We experimented with LDT-C07 with small (20 features), medium
(40 features), and large (80 features) population sizes. We determined these feature sets concerning
the opt-LDT feature set. With a small population, GA selects 75% of features and resolves 91% of
inconsistencies. On the other hand, for a large population, it selects 88% of features and resolves 91.6%
of the inconsistencies. The optimal is a medium population that selects 88% of features and removes
91.9% of the inconsistencies.

Typical cross-over values lie between 0.5 and 1 [28]. However, 1 is exclusive [29]. In our experi-
ments, we chose crossover fractions as 0.4, 0.6, and 0.8. GA selects 57% of features and removes 90.2%
of inconsistencies on average, and with a 0.6 crossover fraction, GA selects 68% of features and resolves
90.7% of inconsistencies. The crossover fraction’s optimal value is 0.8, which selects 87% of features
and resolves 91.7% of inconsistencies. Finally, we tested LDT-C07 with three standard functions for
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the crossover function, i.e., single-point, two-point, and scattered [30]. The single-point selects 57% of
the features and removes 90.1% of inconsistencies, while the two-point selects 64% of the features and
can remove 90.7% of inconsistencies. The scattered crossover function produces the optimal results,
with 85% of the features and 91.9% consistent LDT configuration.

After running the GA parameter tuning experiments, we obtained the optimal values for mutation
rate (0.1), crossover fraction (0.8), crossover function (scattered), and population size (medium-sized).
We use these optimal values to run the final section of experiments.

5.2.2 Optimizing the Inconsistent LDT Configuration

After tuning the parameters, selected configurations are experimented with opt-LDT to obtain the
optimization results and answer the research questions Q1 and Q2. Here, we optimize four inconsistent
LDT configurations, i.e., LDT-C06, LDT-C07, LDT-C08, and LDT-C02. opt-LDT applies GA with
the optimal parameter values, i.e., medium-sized (40) population, scattered crossover function, 0.1
mutation rate, and 0.8 crossover fraction. GA experiments are run ten times for each configuration to
find an optimal, consistent configuration.

Initially, we answer the research question Q1, i.e., does GA have the potential to produce a
consistent (conflicts-free) LDT configuration? For this, opt-LDT should maximize the number of
selected features and minimize the number of inconsistencies in each configuration. Table 4 presents
the results of the selection of potential features. Here, InitFtr and opt-LDTFtrSet represent the unop-
timized and optimized (averaged over ten runs) feature set size, respectively, while %Incr represents
the percentage increase. Our results show that opt-LDT significantly increases the number of features
in each configuration by more than 100% in LDT-C07, LDT-C08, and LDT-C02, and approximately
50% in LDT-C06.

Table 4: Opt-LDT results; Type = Inconsistency type, {C6, C7, C8, C2} = Unoptimized LDT-C06,
LDT-C07, LDT-C08, and LDT-C02, {opt-C06, opt-C07, opt-C08, opt-C02} = Opt-LDT-C06, LDT-
C07, LDT-C08 and LDT-C02, %Dec = Percentage decrease, AvgTm = Average time taken for each
configuration, InitFtr = Total no. of features in inconsistent configurations, opt-LDTFtrSet = Total
no. of features selected in opt-LDT averaged over 10 runs, %Incr = Percentage increase in no. of
selected features

C06 opt-C06 C07 opt-C07 C08 opt-C08 C02 opt-C02 %Dec

Type: Mandatory 23 0.1 24 0.1 22 0 16 0 99.7
Type: Include 38 4.2 44 5.1 42 4.1 33 2.8 89.7
Type:
Alternative/Exclude

8 2.7 10 2.8 6 3 6 3.3 58.3

Type: Total 69 7 78 8 70 7.1 55 6.1 89.6
AvgTm - 6.2 - 6.4 - 6 - 6 -
InitFtr 54 - 40 - 33 - 32 - -
opt-LDTFtrSet - 80.2 - 80 - 79.6 - 80.2 -
%Incr. - 48.5 - 100 - 141 - 150 -

Table 4 also presents the results for minimizing inconsistencies. We observe considerable min-
imization in the number of inconsistencies for each inconsistency type in each configuration. The
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mandatory constraints are completely resolved, followed by the include constraints (90%) and
alternative/exclude constraints (58.3%). Overall, opt-LDT can collectively resolve around 90% of
constraints in all four configurations. Based on these results, we conclude that GA-based optimization
can generate consistent LDT configurations that maximize the selected features by 100% and resolve
almost 90% of constraints. These results are independent of the frequency of available features and
inconsistencies in the initial unoptimized configurations.

A graphical representation of these results is shown in Fig. 2 for LDT-C06, LDT-C07, LDT-C08,
and LDT-C02. In all graphs, R1–R10 show the runs of GA experiments. The upper solid black line
illustrates the number of features chosen in the optimal configuration for each iteration, while the lower
double line indicates the inconsistencies that were not resolved in the generated optimal configuration.
The number of selected features in each iteration ranges from 72 to 86, surpassing the original feature
set size of each configuration. Additionally, the number of unresolved inconsistencies ranges from
3 to 15, as compared to the 55–70 inconsistencies in the initial configurations. Finally, each run’s
optimized values’ deviation is insignificant for both lines in each graph, indicating consistency in opt-
LDT performance.

Figure 2: Opt-LDT results

We now answer research question Q2, i.e., is GA more efficient than a manual LDT configuration?
For this, opt-LDT should minimize the time required to generate a consistent configuration. Table 4
(AvgTm) shows the time needed to produce an optimal, consistent configuration. One can observe
that the average time to obtain an optimized configuration varies between 6 and 6.5 s. These times
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are negligible compared to a manual LDT configuration, which can easily extend over several days.
Hence, GA technology is considerably efficient compared to the manual effort of LDT designers.

We statistically evaluate the optimization results to check the working of opt-LDT on all given
LDT configurations. Table 5 presents the primary statistics; we are not expounding the table here
because it is self-explanatory.

Table 5: Basic statistics of optimized LDT configuration

Sample name Number of samples Mean Standard deviation

LDT-C06 10 7.000 3.018
LDT-C07 10 8.100 2.885
LDT-C08 10 7.100 3.247
LDT-C02 10 6.100 2.514

A t-test is used to determine if there is a statistically significant difference between the optimization
results of the given configurations or opt-LDT optimized the given configurations with different/any
number of inconsistencies. Our alternative hypothesis to test was “opt-LDT optimizes the all given
configuration by resolving the existing inconsistencies.”

Table 6 presents the test summary based on a p-value threshold of 0.05. There is not a statistically
significant difference between: {LDT-C06, LDT-C07, LDT-C08, and LDT-C02}, so we reject the null
hypothesis and accept the alternative one that opt-LDT optimizes the given inconsistent configuration
with any number of inconsistencies.

Table 6: Test summary

Test name Friedman test

Number of LDT configurations set 4 (LDT-{C06, 07, 08, 02})
Number of individuals in each set N = 10
Statistical significance p = 0.467

6 Evaluation, Practice Implication, and Limitations

Questionnaires collect information about participants’ knowledge and beliefs on a particular
domain [31]. Similarly, we used it to analyze the different acceptability dynamics of opt-LDT
by presenting the opt-LDT configurations for LDT-C06, LDT-C07, LDT-C08, and LDT-C02 to
the practitioners for analysis and acquiring their feedback on these results through a subjective
questionnaire, as shown in Table 7.

We designed this questionnaire according to the standard guidelines for questionnaire design
[32]. This feedback was acquired anonymously from clinicians. The questionnaire is divided into four
sections, each for feedback on LDT-C06, LDT-C07, LDT-C08, and LDT-C02. Each section has five
questions about the results obtained through opt-LDT, marked on a scale of 1 (strongly disagree) to
5 (strongly agree). We circulated the questionnaire to our ten clinicians and calculated each question’s
average response for each of our four configurations. As might have been expected, Q4 received an
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average rating of 5 for each configuration, i.e., all clinicians unanimously concurred (strongly agreed)
on the efficiency of opt-LDT compared to their manual effort. The best subjective response is obtained
for LDT-C02, with all questions getting an average score > 4.5 (average response is 4.8). The apparent
reason for this is that, amongst all the configurations, the clinicians best understood the one they
had designed, i.e., LDT-C02, compared to the other nine random configurations. Notwithstanding
this, responses for Q1-Q5 for different configurations are all >3.6, with an average response of >4.1.
This indicates the acceptability and concurrence of clinicians for the optimized opt-LDT results.
Interestingly, after Q4, both Q1 and Q3 received the same average agreement rating of 4.3, indicating
that clinicians unanimously concurred that opt-LDT resolves inconsistencies and produces optimized
LDTs. The average rating for Q5 was also 4, indicating that clinicians are convinced of the practicality
of opt-LDT. Furthermore, the work done in this paper will be submitted to DRAP for regulatory
approval. At this point, we cannot predict the exact time frame for this activity. Considering these
results, opt-LDT can significantly impact the LDT design and clinical validity process. Moreover, our
work aptly addresses the LDT designers’ challenges and DRA’s concerns about LDTs.

Table 7: A subjective questionnaire

Q1 The optimized LDT configuration is useful and acceptable for practitioners.
Q2 The generated features configuration is optimized (performance)
Q3 The inconsistencies are removed, and LDT is consistent.
Q4 It is efficient as compared to manual configurations.
Q5 It has practical applicability to the healthcare domain.

Although opt-LDT is tested and validated in a real-time clinical environment, it still needs
more testing to validate the working of opt-LDT with LDTs of different dynamics and complexities.
Moreover, opt-LDT does not fully automate the encoding of the given LDT problem in a chromosome
which is a tedious task, a partially automated prototype is used for problem encoding in this
research work.

7 Conclusion and Future Work

The LDTs are configured by selecting feature constraints from medical repositories available in
existing LIMS. This configuration process is done manually due to the unavailability of automated
support, which is time-consuming and prone to human errors. It leads to inconsistent design configura-
tions in which standard constraints remain to be solved, and essential features could remain unselected.
In this paper, we proposed opt-LDT, an optimization-based framework to automate and manage the
LDT configuration, which can be easily integrated with existing LIMS and help the clinician generate
a consistent LDT configuration. To validate the acceptability of opt-LDT, we implemented and tested
it in a real-time healthcare setup. The results show that opt-LDT resolved 90% of the inconsistencies in
6.5 s and generated a consistent LDT configuration. The practicability and usefulness of the generated
LDT configurations are also validated through a subjective questionnaire. Considering these results,
opt-LDT can significantly impact the LDT design and clinical validity process. Moreover, these results
will be submitted to DRAP for regulatory approval. This regularization will help LDT designers in
solving the LDT configuration issues.

In the future, swarm intelligence algorithms could be implemented, including ant colony opti-
mization and particle swarm optimization. Furthermore, the application of the proposed technique
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in futuristic healthcare applications based on 6G could also be studied [33]. The researchers can also
study a link between LDT and Explainable AI [34].
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