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Abstract: The convolutional neural network (CNN) is one of the main
algorithms that is applied to deep transfer learning for classifying two essential
types of liver lesions; Hemangioma and hepatocellular carcinoma (HCC).
Ultrasound images, which are commonly available and have low cost and low
risk compared to computerized tomography (CT) scan images, will be used
as input for the model. A total of 350 ultrasound images belonging to 59
patients are used. The number of images with HCC is 202 and 148, respectively.
These images were collected from ultrasound cases.info (28 Hemangiomas
patients and 11 HCC patients), the department of radiology, the University
of Washington (7 HCC patients), the Atlas of ultrasound Germany (3 HCC
patients), and Radiopedia and others (10 HCC patients). The ultrasound
images are divided into 225, 52, and 73 for training, validation, and testing. A
data augmentation technique is used to enhance the validation performance.
We proposed an approach based on ensembles of the best-selected deep
transfer models from the on-the-shelf models: VGG16, VGG19, DenseNet,
Inception, InceptionResNet, ResNet, and EfficientNet. After tuning both the
feature extraction and the classification layers, the best models are selected.
Validation accuracy is used for model tuning and selection. The accuracy,
sensitivity, specificity and AUROC are used to evaluate the performance. The
experiments are concluded in five stages. The first stage aims to evaluate the
base model performance by training the on-the-shelf models. The best accu-
racy obtained in the first stage is 83.5%. In the second stage, we augmented
the data and retrained the on-the-shelf models with the augmented data. The
best accuracy we obtained in the second stage was 86.3%. In the third stage,
we tuned the feature extraction layers of the on-the-shelf models. The best
accuracy obtained in the third stage is 89%. In the fourth stage, we fine-
tuned the classification layer and obtained an accuracy of 93% as the best
accuracy. In the fifth stage, we applied the ensemble approach using the best
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three-performing models and obtained an accuracy, specificity, sensitivity, and
AUROC of 94%, 93.7%, 95.1%, and 0.944, respectively.

Keywords: Transfer learning; liver lesions; ultrasound images and
convolutional neural network

1 Introduction

Liver cancer can affect the liver cells and is considered a major death reason worldwide. The
cause of liver cancer sometimes is known (i.e., chronic hepatitis infections), and sometimes the cause
is not clear, and it can happen in people with no underlying diseases. The features obtained from
contrast-enhanced CT scan and magnetic resonance image (MRI) are considered reliable in identifying
cancerous liver tissue [1–3]. An MRI can be created with a sophisticated computing system, which
utilizes a strong magnetic field that is merged with radio frequencies for building detailed images.
On the other hand, CT scan uses computer processing technology to combine X-rays images that are
taken from different angles. With the help of image processing techniques, computer-aided diagnostics
tools can be applied to classify liver cancer and provide great support in making decisions for many
clinicians [4]. Several computational algorithms were designed to classify and detect cancer in the
liver using Images data. Deep learning techniques have achieved high results in many classification
problems [5,6]. Deep learning algorithms utilize large datasets, which can be a collection of images,
and extract raw features from these datasets to build a model using the hidden patterns buried inside
these features [7]. Traditional machine and deep learning techniques are implemented for liver cancer
classification using image data. The authors of [8] proposed an approach using instance optimization
(IO) and support vector machine (SVM) as a classifier. Their work used particle swarm and local
optimization to organize the classifier parameters. The input data for their classifier are liver CT scan
images. As presented in [9], a method based on SVM is used to train the SVM for detecting the tumor
region. They performed feature extraction and morphological operations on the segmented binary
image in their methods to explore the SVM results. The authors of [10] proposed a method that uses
four machine learning classifiers: SVM, Random Forest (RF), multilayer perceptron (MLP), and J48.
The data set they used is a fusion of MRI and CT scan images. As shown in [11], the machine learning
methods: J48, Logistic Model Tree (LMT), RF, and Random Tree (RT) is used for liver cancer multi-
class classification. They used CT scan images to measure the performance of the ML methods. The
authors of [12] proposed a method based on a feed-forward network to classify and detect liver cancer
using a CT scan images dataset. They used image enhancement techniques to remove noise from the
CT scan images. As presented in [13], a Gaussian distribution mechanism is used to model liver cancer
based on family distribution. The authors performed a simulation study on family samples to test the
estimation efficiency based on the sample size. Another enhanced liver cancer classification model
is presented in [14], where an equilibrium optimizer method is used with median filtering (MF) for
performing data preprocessing on liver cancer images. The authors used the VGG19 model for feature
extraction of images to collect different feature vectors.

On the other hand, many recent liver predictions and classification methods utilized deep learning
approaches. As proposed in [15], a CNN algorithm is applied with 3D dual-path multiscale for
segmenting liver tumors. They applied conditional random fields to verify the results. They eliminated
the false segmentation points using conditional random fields to improve their accuracy. As presented
in [16], a method based on the CT scan slices is developed to utilize the current CT scan technology,
which can produce hundreds of slices that can help localize the disease. They sorted the CT scan slices
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into six categories based on the localization. They spread the disease, and the priority of investigation
is to automate the selection of the CT scan slices that need more attention. As shown in [17], a deep-
learning approach is proposed for liver CT scan segmentation and classification. Their approach is
based on modifying road scenes by classifying semantic pixel-wise. As presented in [18], deep learning
algorithms are applied to predicting drug response in liver cancer patients. A prediction model is
developed based on ResNet101 that uses transfer learning where the last three ResNet101 layers are
retrained to detect treated and untreated cancer cells. Most research methodologies focused on using
MRI and CT scan images for liver classifications. There are few studies that used ultrasound liver
images [19–22]. Recent research methodologies of using ultrasound images have been presented in
[23], where ultrasound images contain some speckle noise that may affect image recognition. During
the image analysis, removing the speckle noise from the synthetic aperture radar (SAR) can cause
a loss of information that results in incorrect disease diagnosis. Therefore, a filtering mechanism is
applied where eight pixels are involved during the analysis process to increase the intensity of a single
ultrasound image. Another enhanced mechanism for automatic segmentation using ultrasound images
has been proposed in [24]. The proposed method tests the images using three stages with three-color
modes. Then, different filters are applied to reduce the image de-noising. The last stage is to detect
veins in the images using edge detection. Using neural networks, the authors of [25] proposed an
interactive method for reducing speckle noise in ultrasound images. The authors collected the dataset
from Kaggle for training and testing to filter images based on neural networks that can detect speckle
noise in the images. Using ultrasound images has many advantages. These advantages include the low
cost, high sensitivity for differentiating cystic and solid lesions, and it has no ionizing radiation. In
contrast, patients will be exposed to radiation doses in CT scan images. In both CT scan and MRI
images, there is a contrast contraindicated in renal failure. Besides that, MRIs are very costly and less
widely available. The authors of [26] applied a novel method based on deep learning approaches for
identifying the disease of maize leaves using the architecture of Alexnet. This architecture integrates
the dilated and multi-scale convolutional neural network to improve the extraction of features that can
increase the model’s robustness. In addition, the authors of [27] provided a deep learning method for
detecting forest fire smoke. The extraction of features is applied on both static and dynamic frames.
The static features are retrieved from a single image, while the dynamic features are retrieved from
a continuous stream of images. The prediction results achieved high performance for the detection
process.

This paper uses the transfer learning approach to classify two essential types of the liver. These
types are lesion hemangioma and HCC, based on Ultrasound images. Transfer learning has a
significant contribution, especially in analyzing medical data, as it overcomes the problem of the need
for a large amount of data annotated by experts [28]. This can be achieved by leveraging knowledge
learned in other tasks and utilizing it in a new classification task [29]. Many on-the-shelf models
are trained on the ImageNet dataset. From these models, Inception, VGG16, VGG19, DenseNet,
InceptionResNet, ResNet, and EfficientNet are selected to construct our classification model. We
used five stages of experiments. In the first stage, we used each of the on-the-shelf models to build
a baseline model with two classes. In the second stage, we retrained the on-the-shelf models with
an augmented dataset, and then we selected the best three performing models. In the third stage,
we fine-tuned the feature extraction layers of the best three performing models to obtain models
with optimal retrained points. In the fourth stage, we tuned the classification part of the best three
performing models to obtain models with optimal classification layers. In the fifth stage, we ran an
ensemble of the best three performing models and calculated the final score on a test dataset. The
cross-validation method splits the dataset to different portions that are used for training and testing
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using different iterations. This method is effective when the number of the dataset is relatively small.
In this paper, the data after augmentation becomes around 7.5 K images which takes a very long
time for training, which is different from our case. We proposed an approach based on ensembles
of the best-selected deep transfer models from the on-the-shelf models: VGG16, VGG19, DenseNet,
Inception, InceptionResNet, ResNet, and EfficientNet. We employed the training, validation, and
testing of the dataset splitting for training, tuning, and scoring (testing) the models. After tuning both
the feature extraction and the classification layers, the best models are selected. The score presented
in this research resulted from the execution of experiments three times.

2 Material and Methods
2.1 Dataset

In this paper, the collected dataset was from four different sources. The first one is from the
ultrasound cases website, from which we collected 28 cases of Hemangiomas and 11 cases of HCC. The
second source is from the Radiology University of Washington department, from which we collected
7 cases of HCC. The third source is from the Atlas of ultrasound Germany, from which we collected
3 cases of HCC. The fourth source was Radiopedia and others, from which we collected 10 cases of
HCC. Each case from the above can have more than one image. The images we obtained from the
above cases are 139 HCC and 200 Hemangioma. All collected images are resized to a size of (224,
224) which is the default input size for the models. Fig. 1 shows samples of the images for HCC and
Hemangioma from different sources. The ultrasound cases website contains a large number of general
ultrasound cases that are taken. The ultrasound cases website can be accessed from [30]. The Atlas
of ultrasound Germany provides a collection of videos and ultrasound images, which can be accessed
from [31]. Radiopedia is one of the medical resources from around the world that can be accessed
from [32].

Ultrasound cases website 
(Hemangiomas)

Ultrasound cases website (HCC) Department of Radiology 
University of Washington 

(HCC)

The Atlas of Ultrasound 
Germany (HCC)

Radiopedia (HCC)

Figure 1: Images samples for HCC and hemangioma from the different sources
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2.2 Convolutional Neural Networks

CNN is a machine-learning model mainly used for classifying images. They are designed to imitate
the human visual cortex arrangement. CNN can capture the relationship between images pixel using
relevant filters. They keep all the essential features when reducing the image features and arrange
them in a way that is easier to process to obtain good classification performance. The building blocks
of CNNs consist of different types of layers arranged in a sequence. Each layer has a differentiable
function that produces output for the layer that comes after it. A typical CNN model is normally
composed of three types of layers. These layers start with the convolutional layer, which creates the
image features map. The pooling layer follows the convolutional layer. The average and maximum
pooling are two types of pooling that can be used in the pooling layer. Maximum pooling returns
the maximum value from the image part that is converted by the kernel. Maximum pooling also
performs de-noising by removing noisy activations. On the other hand, in the average pooling process,
the dimension of the image is reduced, and the noise in the image data is controlled [33]. The pooling
layer is followed by the fully connected layer. In CNN, a tensor of r rows, c columns, and three channels
representing RGB (Red-Green-Blue) colors are used as input.

Besides the tensor, the spatial image structure is considered by CNN. The input passes through
the three types of CNN layers, where the output of each layer is passed to the layer that follows it. The
initial input of the CNN is a neuron of size 3 ∗ r ∗ c followed by a convolutional layer. The convolutional
layer has a local receptive field of l × l and a three-feature map representing the R.G. and B color
channels. If stride one is used, the convolutional layer will yield hidden neurons of 3 × (r-l + 1) × (c-
l + 1) hidden feature neurons. The results of the convolutional layer will pass through the pooling
layer, yielding 3 × (r-d + 1)/2 × (c-d + 1)/2 hidden features neurons. The CNN uses the convolution
operation given in Eq. (1) to generate the feature map to multiply the filter elements by the elements
of the input matrix element-wise, then the results of the multiplication is summed for obtaining one
feature map pixel. Moving the filter across the image matrix will produce all the image features.

O (l, j) =
∑l

m=1

( ∑l

o=1
input (n + m − 1, j + o − 1 ) kernel (m, o)

)
(1)

2.3 Transfer Learning

The CNN needs to be trained on a large amount of data to produce good results. The medical data
are very scarce, especially the medical images for training CNN. Moreover, expert manual labeling,
an expensive, time-consuming process and prone to errors, is required to prepare the images for the
training [34]. In CNN, the transfer learning enables the transformation of knowledge learned from
one domain to another. This will allow the pre-trained CNNs, also called on-the-shelf models, to be
used for classification or detection by fine-tuning them, or they can be used for feature extraction. The
pre-trained CNNs that receive sufficient fine-tuning can be robust for the size of the data and perform
better than the CNNs that are trained from scratch [35]. These CNNs use useful information mined
in data from different sources to better deal with the tasks at hand [36].

3 Transfer Learning Approach for Classifying Liver Cancer

The ultrasound data-acquiring process is challenging, and the performance of the deep learning
algorithms is affected negatively due to the limited number of training data. Also, several general
assumptions should be satisfied for the machine learning algorithms. These assumptions include
that the training data and the test samples should be generated from the same distribution, but
understanding the distribution of the data in case of small data is very difficult. Therefore, even if
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we use the best classifier, it will not give a satisfactory prediction accuracy. To better understand the
distribution of the limited ultrasound images, we need to leverage information from other data by
using on-the-shelf models trained on a massive amount of data (transfer-learning).

To design our transfer-learning model for the liver cancer classification, we used Colab pro with
NVIDIA T4 Tensor Core GPUs and 32 GB RAM, and 15 GB persistent storage. The number of
epochs is set to 100, the initial learning rate is set to 0.001, and the Adam optimizer is used. The early
stopping mechanism is adopted in our learning model. We divided the data set into a 65% training
set, a 15% validation, and a 20% testing set. The entire architected of our proposed transfer learning
approach is shown in Fig. 2, where we proposed seven on-the-shelf pre-trained CNNs models using
Inception, VGG16 [37], VGG19, DenseNet, InceptionResNet, ResNet, EfficientNet. We utilized these
models, and then we selected the best-performing model through different stages for constructing an
ensemble model that can be used for liver cancer classification. We tuned the parameters of the best-
selected model using Ultrasound images that can avoid side effects and reduce the cost of obtaining
images compared to MRI inspection practices for liver cancer patients. We replaced the classification
layer of all seven models with a layer that reflects the two liver lesion types. Before we started the
training process, we split the liver lesion ultrasound datasets into training, validation, and testing sets.
All seven models are trained with the training set to obtain baseline models that helped us determine
the efficiency of the subsequent steps. To further limit the effects of the small data size, we augmented
our training data sets to increase our model’s generalization ability. Also, data augmentation will help
add variability to our data, which can help differentiate between lesion liver cancer and hemangiomas.
Hemangiomas usually are detected incidentally during imaging investigations, and they are a kind of
tumor in the form of clusters of blood-filled cavities. These tumors are fed by the hepatic artery and
lined by endothelial cells [38].

Figure 2: Proposed liver cancer classification approach

We used the augmented data to train the best three models selected from the baseline models
and then fine-tuned the features extraction layers of the best three models to obtain the best retrain
point for each model. Fine-tuning the features extraction layer will make the on-the-shelf model more
relevant to our lesion cancer ultrasound data. Also, Fine-tuning the features extraction layer will yield
models with optimal retrained points. In addition to models with optimal feature extraction layers,
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we need to have models with optimal classification layers; therefore, we fine-tuned the classification
part of the best three models. Then we combined the decision of the best three models using the
ensemble approach. The ensemble approach will help increase the classification accuracy and decrease
the variance, making the models sensitive to the provided inputs. Also, the ensemble approach can help
us eliminate feature noise and bias. Finally, we tested our model using the dataset and calculated its
performance.

4 Applied Evaluation Metrics

The evaluation metrics that we used to evaluate our approach are accuracy and F1-score. The
correctly classified events or cases is known as the classification accuracy and is calculated using the
equation.

Accuracy = TP + TN
TP + TN + FP + FN

× 100 (2)

F1-Score is an evaluation metric that combines precision and recall, which can be seen as a
measure of quality and quantity, respectively. Precision means the events percentage that are predicted
as positive from the predicted ones, while the recall refers to the cases percentage that are predicted as
positive from the observed positive cases. The F1-score can be calculated using the equation:

F1 − score = 2TP
2TP + FP + FN

(3)

We adopted the receiver operating characteristic (ROC) curve that can be adapted and applied
as a threshold-independent measure. The ROC curve provides an effective liver lesions classification
method. The area under the ROC curve (AUC) reflects the classification reliability. An area close to 1
means good classification performance, while an area of 0.5 means random classification performance.

5 Tuned Models’ Results

The proposed approach is tested on datasets collected from the sources: the ultrasound cases web-
site, the Department of the Radiology University of Washington, The Atlas of ultrasound Germany,
and Radiopedia. The images we obtained from the above sources are 139 HCC and 200 Hemangioma.
The transfer learning approach is used for training and testing our model. We used the on-the-shelf
models in the transfer learning approach (Inception, VGG16, DenseNet, InceptionResNet, ResNet,
and EfficientNet). The classification layers of the on-the-shelf models are modified to be suitable for
the two liver lesion types (HCC/Hemangiomas). We tuned the model parameters using the validation
dataset in all experiments performed on the dataset. We experimented in five stages.

In stage 1, as the dataset was collected from different sources and there is no classification using
this new dataset, our strategy is to retrain these on-the-shelf models to obtain a baseline score of the
classification of the Hemangioma and HCC. The performance of the baseline models is shown in
Table 1. Table 1 shows that the densenet201 obtained the best score (92.3% validation accuracy and
83.5% test accuracy).

In stage 2, after obtaining the baseline score, we augmented the dataset and retrained these on-
the-shelf models with the augmented data. In the augmentation process, we adjusted the parameters
shear_range, zoom_range, horizontal_flip, and fill_mode to 0.15, 0.20, True, and “nearest,” respec-
tively. This adjustment is based on clinical advice, which states that moving the ultrasound scan
around the stomach area can result in different sizes and positions, especially for Hemangioma. The
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total number of images obtained after the augmentation process is 3176 and 4199 for HCC and
Hemangioma, respectively. The models performance on the augmented data is shown in Table 2.
According to Table 2, the best-performing models (models with the highest validation accuracy) on
the augmented data are Densenet201, Densenet169, and ResNet152V2.

Table 1: On-the-shelf baseline models’ performance

Keras API Validation accuracy Test accuracy

DenseNet121 82.7% 75.3%
DenseNet169 90.4% 86.3%
DenseNet201 92.3% 83.6%
VGG16 91.1% 86.3%
VGG19 92.3% 74.0%
Inception 84.6% 79.5%
ResNet152V2 86.5% 79.5%
InceptionResNetV2 75.0% 69.9%
EfficientNetV2M 71.2% 60.0%
EfficientNetB0 57.7% 56.2%
EfficientNetB1 57.7% 56.2%
EfficientNetB2 57.7% 56.2%
EfficientNetB7 57.7% 57.7%

Table 2: Baseline models’ performance on the augmented data

Keras API Validation accuracy

DenseNet201 94.2%
DenseNet169 94.2%
Densenet121 88.5%
VGG16 86.5%
VGG19 86.5%
Inception 86.5%
ResNet152V2 92.3%
InceptionResNetV2 76.9%
EfficientNetV2M 76.9%
EfficientNetB0 71.2%
EfficientNetB1 71.2%
EfficientNetB2 71.2%
EfficientNetB7 71.2%

In stage 3, we fine-tuned the feature extraction part of the selected pre-trained models by applying
different retrained points and measuring the validation accuracy to select the best-retrained point for



CMC, 2023, vol.75, no.3 5113

each model. Fig. 3 shows the selection mechanism of the retrain points for each model (DenseNet201,
DenseNet169, or ResNet152V2). The best retrained-point results and validation accuracies are shown
in Table 3. The table shows that the Retrained points of the models Densenet169, Densenet201, and
ResNet152V2 (the best-performing models in stage 2) are 590, 692, and 559, respectively.

Figure 3: Selection mechanism of the retrain points for each model (Densenet201, Densenet169, or
ResNet152V2)

Table 3: Best retrained-point results along with validation accuracies for the models Densenet201,
Densenet169, or ResNet152V2

Keras API model Re-trained point Validation accuracy

Model 1 (Dense169) 590 94.2%
Model 1 (Dense169) 587 94.2%
Model 1 (Dense169) 583 94.2%
Model 1 (Dense169) 580 92.3%
Model 2 (Densenet201) 702 92.3%
Model 2 (Densenet201) 699 94.2%
Model 2 (Densenet201) 695 94.2%

(Continued)
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Table 3: Continued
Keras API model Re-trained point Validation accuracy

Model 2 (Densenet201) 692 96.2%
Model 3 (ResNet152V2) 559 92.2%
Model 3 (ResNet152V2) 556 88.5%
Model 3 (ResNet152V2) 552 90.4%
Model 3 (ResNet152V2) 548 90.4%

In stage 4, we fine-tuned the classification part of the best three performing models we obtained
in stage 3 (the models with the best retrain points). To tune the classification part, we added different
dense layers after the feature extraction part of each model then we measured the validation accuracy
for selecting the best classification configurations. The classification performance for the best three
models using different configurations is shown in Table 4. In the 2nd and 10th, we added three dense
layers and 3 dropout layers in the sequence model to enhance the performance.

Table 4: Classification performance for the best three models using different configurations

Keras API model Classification configuration Validation accuracy

Model Densnet169-590 Dense(4096), dropout(0.2) 96.2%
Model Densnet169-590 3Dense(4096), 3dropout(0.2) 94.2%
Model Densnet169-590 Dense(1024), dropout(0.2) 92.3%
Model Densnet169-590 Dense(512), dropout(0.2) 92.3%
Model Densnet169-590 Dense(4096), dropout(0.2),

Dense(1024), dropout(0.2)
94.2%

Model Densnet169-590 Dense(128), dropout(0.2) 94.2%
Model Densnet201-692 Dense(1024), dropout(0.2) 92.3%
Model Densnet201-692 Dense(512), dropout(0.2) 96.2%
Model Densnet201-692 Dense(4096), dropout(0.2) 92.3%
Model Densnet201-692 3Dense(4096), 3dropout(0.2) 94.2%
Model Densnet201-692 Dense(128), dropout(0.2) 98.1%
Model ResNet152V2-559 Dense(4096), dropout(0.2) 90.4%
Model ResNet152V2-559 Dense(512), dropout(0.2) 88.5%
Model ResNet152V2-559 Dense(1024), dropout(0.2) 90.4%
Model ResNet152V2-559 Dense(128), dropout(0.2) 92.3%
Model ResNet152V2-559 Dense(4096), dropout(0.2),

Dense(1024), dropout(0.2)
92.3%

Model ResNet152V2-559 Dense(128), dropout(0.2),
Dense(128), dropout(0.2)

88.5%

In stage 5, we applied the ensemble approach of the best three models that are obtained in stage 4,
as shown in Table 5. We used the average voting for the results of the three models. After applying the
ensemble, our proposed approach achieved a testing accuracy, sensitivity, specificity, precision, and F1
score of 95%, 95%, 94%, 95%, and 95%, respectively.



CMC, 2023, vol.75, no.3 5115

Table 5: The best-tuned models

# Models Validation accuracy

Model 1 Model densnet201-692-Dense(128), dropout(0.2) 0.9808
Model 2 Model densnet169-590-Dense(4096), dropout(0.2) 0.9615
Model 3 Model ResNet152V2-559-Dense(128), dropout(0.2) 0.9231

Fig. 4 shows the result of the ensemble of the best two models and the three models. The ensemble
of the best two models achieved a validation accuracy of 94% and a test accuracy of 93%. In contrast,
the ensemble of the best three modes resulted in a validation accuracy of 96% and a test accuracy
of 94.4%. The confusion matrix of the ensemble of the best three models is depicted in Fig. 5. Fig. 6
shows the ROC curves for Liver lesions classification using an ensemble of the best three models. The
AUC (0.94) highlights the effectiveness of using the ensemble model.

Figure 4: Result of the ensemble of the best-tuned models

Figure 5: Confusion matrix of the ensemble of the best three models
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Figure 6: The ROC curve and AUC score of the classification of testing data on the ensemble of the
best three models (AUC = 0.94)

6 Discussion

The benign liver tumor composed of blood-filled cavities clusters known as Hepatic hemangiomas
[39]. In Hepatic hemangiomas, the clusters of blood-filled cavities are surrounded by endothelial cells
supplied by the liver artery. Most Hepatic hemangiomas are asymptomatic and often accidentally
found in imaging studies of unrelated diseases. Capillary hemangiomas are a kind of hemangiomas
with size ranges between a few mm and three cm, and their size does not increase over time. Therefore,
they do not cause future symptoms. Medium and small-size hemangiomas usually require regular
follow-up but do not require active treatment. Occasional reports stated that big-size (around 10 cm
and can reach 20+ cm) hemangiomas could develop complications and symptoms that need surgical
interventions or other types of treatment. A careful diagnosis is required to differentiate between
Hepatic hemangiomas and other liver diseases; also co-occurring diagnosis is required. There are
many types of imaging techniques for diagnosing Hepatic hemangiomas. These imaging techniques
include contrast-enhanced CT scan, ultrasound, contrast-enhanced ultrasound, and MRI. Among
these techniques, ultrasound is recommended especially for patients with liver cancer-related cirrhosis
and for diagnosing liver hemangioma, and they are showing promising screening results. Besides,
ultrasounds are widely available, can be reproduced, and do not have irradiation effects. Therefore,
they are considered the first diagnostic step for Hepatic hemangiomas.

Routine ultrasound screening is widely available now. Therefore, Hepatic hemangiomas are now
more frequently detected than before. Pathologically, many endothelial-lined vascular spaces compose
hemangiomas. A fibrous septum separates these endothelial-lined vascular spaces. The overall size of
these vascular spaces can vary. Now it is essential to distinguish between hemangiomas and other
hepatic tumors, and this is achieved in 95% of the cases without requiring further investigation
using contrast-enhanced ultrasound. However, some uncertainty may occur if there is a typical
enhanced pattern. The percentage of the precise primary diagnosis (before histologic examination and
surgery) can be increased if practitioners are familiar with the appearance of Hepatic hemangiomas
on ultrasound or contrast-enhanced ultrasound. Gray scale ultrasound show hemangiomas as well-
defined lesions and further investigation will be required if the feature is atypical in conventional
ultrasound. For focal liver lesions characterization, contrast-enhanced ultrasound is found to be
reliable and particular. Operators with high skills and adequate equipment are required to detect small
nodules in the cirrhotic liver. Such operators or equipment may only be available sometimes. Therefore,
computational methods trained in ultrasound images will be highly beneficial. The approach proposed
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in this study shows a detection accuracy of 94% on ultrasound images. Based on the properties of the
contrast-enhanced ultrasound that we discussed in this section, our approach can even show higher
accuracy.

The main limitations of ultrasound are that it depends heavily on operators and patients [39].
They show the Hepatic hemangiomas as hyperechoic homogenous nodules with clear margins with
posterior acoustic enhancement. Also, in ultrasound, the Hepatic hemangiomas usually do not change
in size in the follow-up exams when comparing the current and previous scans. Hepatic hemangiomas’
histology explains Hyperechoic ultrasound patterns. Hyper echogenicity is the result of a large number
of interfaces between the Hepatic hemangiomas-composite endothelial sinuses and their blood. In the
case of larger lesions, the images are classified as inhomogeneous with hypoechoic and hyperechoic,
and that is due to possible necrosis, hemorrhage, or connective tissue fibrosis. The lesions with this
pattern are considered Hepatic atypical hemangiomas, showing no Doppler signals in the Doppler
ultrasound.

Table 6 shows a comparison between our proposed approach and other existing methods for liver
cancer classification. Our method achieves the highest classification accuracy among the ultrasound
image methods. Although the authors of [40] achieved a classification accuracy that is slightly higher
than our methods, they used MRI images that have side effects and can be obtained at a high cost. Our
proposed method can avoid side effects and reduce the cost of obtaining images. The authors of [19]
achieved an accuracy of 91.6% using deep learning on ultrasound images. They first used ResNet50
Neural Network to resize the images of size 240 × 345 to 8 × 11. Then they used an attention block to
detect image anomalies, and their final prediction results were obtained using logistic regression. The
authors of [41] and [42] also utilized ultrasound images and obtained currencies of 93.8% and 91.8%,
respectively. The authors of [41] performed feature extraction, enhancement, utilized support vector
machines, and artificial neural networks as computer-aided diagnostics. The authors of [42] obtained
features in three phases and performed classification in two stages, and they used linear and nonlinear
SVMs with radial basis functions in their method. The authors of [43–45] used MRI images in their
classification methods, while the authors of [46] used CT scan images.

Table 6: A comparison between the proposed transfer learning approach and recent approaches

Ref. Technique Data Accuracy

Proposed
approach

Transfer learning approach based
on ultrasound images

Ultrasound images 94%

[19] Deep learning Ultrasound images 91.6%
[40] Retrospective fusion of CT scan,

PET scan and MRI scan
CT/MRI/Positron
emission tomography
(PET)

94.7%

[41] Internal edge, Echogenicity,
Echo, Morphology

Ultrasound images 93.8%

[42] Spatial and temporal features Ultrasound images/CT 91.8
[43] MRI and risk factors MRI 77%

(Continued)
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Table 6: Continued
Ref. Technique Data Accuracy

[44] SIOPEL/GPOH technique
COG mechanism
JPLT mechanism

MRI 92.5%

[45] Mammogram segmentation MRI 86.67%
[46] Fused feature with fuzzy

C-Means algorithm
CT 91.63%

7 Conclusion

This paper proposed an ensemble method based on transfer deep learning. The dataset used is
obtained from three different sources. We experimented in 5 stages using 14 different on-the-shelf
models. In the first stage, we applied the on-the-shelf models in the original dataset to create base-
line-models. In the second stage, we augmented the dataset and then retrained the baseline models on
the augmented data. In the third stage, we selected the top 3 models with the highest performance in
stage two, and we fine-tuned the features extraction part of these models to select the best-retrained
point for each model. In stage 4, we tuned the classification layer of the best top three performing
models by adding different dense layers after the feature extraction part of each model and then
measuring the validation accuracy to select the best classification configurations. In stage 5, we applied
the ensemble approach to the best three models obtained in stage 4 using the average voting process.
Our proposed approach achieved a test accuracy, precision, recall, and F1-measure score of 95%. This
paper deals with primary liver cancer (HCC), the most common primary hepatic malignant tumor,
and Hemangioma, the second most common benign hepatic lesion. HCC refers to the development
of cancer in the liver’s tissue. Other liver cancers are caused by the spread of cancer in the liver from
other body parts. These kinds of cancers are known as metastatic liver cancer, and doctors refer to
these cancers as the same type of primary cancer, such as melanoma, colorectal, and gastrointestinal
cancers. In addition, another kind of liver cancer that affects the ducts that drain bile from the liver is
called Cholangiocarcinoma. In future works, we intend to develop a computational method based on
deep learning to classify the aforementioned types of cancers.
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