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Abstract: Face recognition technology automatically identifies an individual
from image or video sources. The detection process can be done by attaining
facial characteristics from the image of a subject face. Recent developments in
deep learning (DL) and computer vision (CV) techniques enable the design of
automated face recognition and tracking methods. This study presents a novel
Harris Hawks Optimization with deep learning-empowered automated face
detection and tracking (HHODL-AFDT) method. The proposed HHODL-
AFDT model involves a Faster region based convolution neural network
(RCNN)-based face detection model and HHO-based hyperparameter opti-
mization process. The presented optimal Faster RCNN model precisely rec-
ognizes the face and is passed into the face-tracking model using a regression
network (REGN). The face tracking using the REGN model uses the fea-
tures from neighboring frames and foresees the location of the target face
in succeeding frames. The application of the HHO algorithm for optimal
hyperparameter selection shows the novelty of the work. The experimental
validation of the presented HHODL-AFDT algorithm is conducted using two
datasets and the experiment outcomes highlighted the superior performance
of the HHODL-AFDT model over current methodologies with maximum
accuracy of 90.60% and 88.08% under PICS and VTB datasets, respectively.

Keywords: Face detection; face tracking; deep learning; computer vision; video
surveillance; parameter tuning

1 Introduction

Face recognition is considered a hot research topic in computer vision (CV) and human-computer
interaction (HCI) [1]. It is the fundamental step for a system which deals with face analysis. Several
studies had completed pointing to automatic face detection [2]. Face detection exists in everyone’s lives,
but many technology users may not think in depth. If not using a digital camera, the social media
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app Snapchat, the phone camera, tagging feature of Facebook, chances are you have experienced
face detection earlier [3]. Face detection can be the implementation of computer technology for
detecting faces in digital images. The latest research in CV mainly aims at face detection in uncontrolled
environments due to changes in face appearances (e.g., pose changes and illuminations) that can result
in the worst sturdiness of the system. Recently, convolutional neural networks (CNNs) have become
the most typically utilized techniques for representing features and reached good outcomes in face
detection issues [4]. Face detection is of 2 categories; one is face verification, in which 2 faces are
presented, and the system should be verified if these two faces belong to the same individual, and
another one is face identification, in which a face image can be represented with an unknown identity
and the system should determine this identity [5].

The CNN needs an additional computational period for computing complicated features for
improvising accuracy [6]. But the added computational load is normalized by reducing several
cascade stages. The decrease in cascade stages minimizes the computational load without affecting
the performance. A decline in cascade phases will make the entire computation stay unmodified. This
monitoring can be encouraged with the help of advanced features-related techniques for face detectors.
The CNN-related techniques contrasted with the hand-engineered feature-related approaches [7]. It
deals with hard visual differences by using a large trained dataset. CNN functions similarly to the
typical artificial neural network (ANN). Still, the neuron in a CNN layer was associated with a
particular subarea of the former layers. Conversely, every neuron was completely linked in ANN [2].
The neuron in a CNN layer has been organized in 3 dimensions: height, width, and depth. Many
interesting researchers concentrating on face detection have attained higher success [8]. But whether
the pose was altered or the face was presented at an angle, the individual could not identify. Earlier
techniques for face detection were dependent upon the discriminative classifying method were well-
trained on a dataset of familiar identities, and an intermediate bottleneck layer was utilized as a
depiction for detection. This technique specifies a huge representation for every face, but only some
studies attempted to reduce dimensionality using principal component analysis (PCA) [9].

Though several models are available in the literature, most of the works have not focused on
hyperparameter tuning process. Therefore, this study presents a novel Harris Hawks Optimization
with deep learning-empowered automated face detection and tracking (HHODL-AFDT) model. The
proposed HHODL-AFDT model involves Faster region-based convolutional neural network (RCNN)
based face detection model and HHO based hyperparameter optimization process. The presented
optimal Faster RCNN model precisely recognizes the face and is passed into the face-tracking model
using a regression network (REGN). The face tracking using the REGN model uses the features from
neighboring frames and foresees the location of the target face in succeeding frames. The experimental
validation of the presented HHODL-AFDT algorithm is conducted using two datasets, and the
outcomes are inspected using various aspects.

2 Related Works

Wang et al. [10] developed a methodology for face detection in real-time surveillance video
using the deep learning (DL) technique. Firstly, target real-time video surveillance data is created
automatically and increasingly with face purifying, recognition, tracking, and labelling. Next, a CNN
using the labelled data is finetuned. In [11], the researchers aim to utilize DL to detect face masks in
the video automatically. The presented architecture comprises two mechanisms. Face detection and
tracking are initially designed using machine learning and OpenCV; the facial frame is later processed
to the presented deep transfer learning (TL) model MobileNetV2 for identifying the mask region. The
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presented architecture was tried under dissimilar images and videos using the smartphone camera.
Lei et al. [12] developed a hybrid module-based DL and visual tracking system to accomplish face
detection. Firstly, a video sequence is classified into reference frame (RF) and non-reference frame
(NRF). Next, the DL-based model in RF recognizes the target face. Meanwhile, the Kernelized-
correlation-filter-based visual tracing methodology is utilized for accelerating FR. In [13], the authors
proposed a toddler tracking system using a deep neural network (DNN). The presented technique
depends on object tracking algorithms and faces recognition and is generated by a pretrained neural
network. The system depends on recognizing the toddler’s face and follows each toddler’s movement
in the house. Cárdenas et al. [14] developed a new methodology for face recognition in lower-
resolution video depending on the morphology of the upper body of persons and the usage of CNN.
Saypadith et al. [15] designed face detection architecture that is carried out on the embedded graphical
processing unit (GPU) method.

3 The Proposed Model

In the study, a new HHODL-AFDT model has been established to detect and track faces in videos.
The suggested HHODL-AFDT model follows two stages: Faster RCNN-based face detection model
and HHO based hyperparameter optimization process. At the initial stage, the presented optimal
Faster RCNN model precisely recognizes the face. Secondly, the tracking of faces takes place using
the REGN model, which utilizes the features from neighbouring frames and foresees the face location
in succeeding frames.

3.1 Face Detection: Faster RCNN Model

This work employs the Faster RCNN architecture to effectively identify faces in the input video
frames [16]. R-CNN is a simple and novel technique as a pioneer advanced, providing above thirty
percent mean average precision (mAP) compared to the earlier studies on PASCAL Visual Object
Classes (VOC). The RCNN structure comprises four major stages. In the initial phase, the RCNN
network resizes the image into 227 × 227 and takes them as input. The selection search technique
for an image produces two thousand candidates of the presented bounding box as the warped region
utilized for the input data. The network extracts a 4096-dimension vector from all the regions and
later calculates the feature for all the regions. At last, utilizing the linear classification behindhand,
the final layer categorizes the region for considering if any objects exist. In RCNN, the lower-level
image feature (HOG) is substituted by the CNN feature, which is a discriminatory representation. But
the evaluation of images is wasteful and highly expensive since RCNN should apply the convolution
network two thousand times. In addition, resizing the input might create a problem that affects smaller
objects that it easier to lose or deform data as the resolution changes from their original size. The region
proposal overlapped, thus leading to the computation of notable features several times. With all the
region proposals, it should be saved to disk beforehand implementing the feature extraction. Besides,
numerous bounding boxes over-lapped will leads to a drop of mAP when the smaller object is closer
to the big object since there is a bias to select the bounding box that comprises big and smaller objects.

Fast R-CNN [17] is a new technique that presents different innovations for improving the time of
testing and training phases and effectively categorizing object proposals while improving the accuracy
rate with the help of a deep convolution network. The structure of Faster RCNN is trained with a multi-
task loss. Especially the convolution networks take images of any size as input and region of interest
(RoI). Rather than RoI on an input, Faster RCNN employs the RoI on a feature map afterwards the
convolution layer of the base network. The network comprises output vectors for each RoI: softmax
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probability and bounding-box regression offset. The main characteristic of RoI is memory and shared
computation in the backward and forward passes from a similar image. The great involvement of
Faster RCNN is that it presents a novel training methodology that fixes the drawback of SPP-net
and RCNN while improving the accuracy rate and running time. The benefit is that the mean average
precision (mAP) is high compared to SPP-net and RCNN. The training stage is a single stage, with a
multi-task loss, and could upgrade the network layer.

Fast R-CNN [18] is an innovative technique enhanced from Fast RCNN. Different from the two
preceding techniques, rather than producing a bounding box with the external algorithm involved, Fast
RCNN runs its technique named the region proposal network (RPN). Fig. 1 depicts the structure of
RPN. Afterward, getting in-depth features from the previous convolution layer, RPN is considered
and window slide over the feature maps for extracting features for all the region proposals. RPN is
considered a full convolution network (FCN) that concurrently predicts the bounding box of objects
and object score at every location. The intermediate layer is fed into 2 distinct subdivisions, one for
object score (defines either the region is stuff or thing) and another for regression. The RPN enhances
running time and accuracy besides preventing the generation of excess suggestion boxes since the RPN
minimizes the cost by sharing computations on convolution features. Faster RCNN and RPN are
combined into an individual network by sharing the convolution feature. This mixture assists Faster
RCNN to have superior performance on accuracy; however, it results in the framework as a two-phase
network that decreases the processing speed. Fig. 2 illustrates the overview of the RPN method.

Figure 1: Structure of faster RCNN

3.2 Hyperparameter Tuning: HHO Algorithm

The HHO algorithm was exploited to tune the hyperparameters related to the Faster RCNN
model. The HHO algorithm introduces many updating disciplines for individuals in the swarms for
updating the position [19]. Four special conditions have been taken into account, and four kinds
of updating methods are included, individual in the HHO swarm choose a method from the four
according to the randomness and the escaping energy E.
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Figure 2: Overview of the RPN model

a) Exploration procedure

If the E escaping energy of the rabbit is smaller than −1 or larger than 1, then the individual in
the HHO swarm explores the entire area very fast; two approaches are used:

X (t + L) = {Xrand (t)−r1 |Xrand (t) − 2r2X (t)| q ≥ 0.5 Pb (t)−Xm (t)−r3 (LB + r4 (UB − LB)) q < 0.5

(1)

In Eq. (1), Xrand (t) refers to a randomly chosen candidate at the current iteration, Xm (t) indicates
the average location of each individual at the existing iteration and is computed as follows. q refers to
a random integer that lies between zero and one.

Xm (t) = 1
N

∑n

i
Xi (t) (2)

b) Exploitation process

Once the rabbit finds prey, the individual in the HHO swarm performs a procedure based on the
status of the rabbit with smart action. The escaping energy of the rabbit controls such behaviors:

E = 2E0

(
1 − t

maxIter

)
(3)

In Eq. (3), E0 denotes the primary energy of the rabbit. If |E| ≥ 1, the individual in the HHO
swarm performs exploration; on the other hand, if |E| < 1, the individual implements exploitation
and chooses one way to update the position according to a random number and the real-time escaping
energy value.

i) Soft besiege if r ≥ 0.5 and |E| ≥ 0.5, individuals in the HHO swarm are aware that the rabbit
keeps stronger and runs fast to escape, thus, flying nearby to the prey and attacking them,
which is expressed as

X (t + 1) = Pg (t) − X (t) − E
∣∣J · Pg (t) − X (t)

∣∣ (4)
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In Eq. (4), J indicates the capability of the prey to jump arbitrarily as follows:

J = 2 (1 − r5) (5)

In Eq. (5), r5 is another random integer between zero and one.

ii) Soft besiege with progressive fast dives. If r < 0.5 and |E| ≥ 0.5, the prey energy is larger for
escaping the capture, hence the HH should dive around the prey, and it is formulated by

X (t + 1) = {Y = Pg (t) − E
∣∣J · Pg (t) − X (t)

∣∣ f (Y) < f (X (t))

Z = Y + r6 × LF (D) f (Z) < f (X (t)) (6)

Here, r6 denotes a randomly generated integer, and LF(D) indicates the Levy flight and is
computed by:

LF (x) = 0.01 × μ × σ

|v| 1
β

, σ =
(

� (1 + β) × sinsin
(

πβ

2

)
�

(
1+β

2

) × β × 2
(

β−1
2

)
) 1

β

(7)

In Eq. (7), μ and ν denote random values lying between zero and one, and β denotes a constant.

iii) Hard besiege. If r ≥ 0.5 and |E| < 0.5, an individual in the HHO swarm performs using the
lower escaping energy of a rabbit, they are eager to catch the prey and update the position
related to the optimal global location:

X (t + 1) = Pg (t) − E
∣∣Pg − X (t)

∣∣ (8)

iv) Hard besiege with progressive fast dives. If r < 0.5 and |E| < 0.5, the escape energy of the
prey is lower escape. Hence the HH conducts a hard besiege and, lastly, grabs the prey, and the
following equation formulates it.

X (t + 1) = {Y = Pg (t) − E
∣∣J · Pg (t) − Xm (t)

∣∣ f (Y) < f (X (t))

Z = Y + r6 × LF (D) f (Z) < f (X (t) (9)

Algorithm 1: Pseudo-code of HHO algorithm
Inputs: N population size and T maximal quantity of iterations
Outputs: The rabbit position and its fitness values
Set the arbitrary population Xi (i = 1, 2, . . . , N)

while (ending state was not seen) perform
Calculate the hawk fitness value
Set Xrabbit as the rabbit location (optimal site)
for (every hawk (Xi)) do
Upgrade the jump strength J and primary energy E0

Upgrade the E
if (|E| ≥ 1) after
Upgrade the position vectors
If (|E| < 1), then

If (r ≥ 0.5 and |E| ≥ 0.5) after
(Continued)
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Algorithm 1: Continued
Upgrading the location vector

else if (r ≥ 0.5 and |E| < 0.5) after
Upgrading the location vectors

else if (r < 0.5 and |E| ≥ 0.5) after
Upgrading the location vectors

else if (r < 0.5 and |E| < 0.5) after
Upgrading the location vectors

Return Xrabbit

3.3 Face Tracking: REGN Model

In order to track the faces, the REGN model has been utilized in this work. The presented REGN
model derives facial characteristics of the two nearby frames and recognizes the face location in the
next frame [20]. In the REGN face tracking method, the place of moving face from the provided video
sequences isn’t altered much in 2 neighboring frames that also get prior data to the trained model.
The connection between the present

(
c′

x, c′
y

)
and the preceding

(
cx, cy

)
frame target center location

coordinates are computed as:

c
′
x = cx + w · �x, c

′
y = cy + h · �y, (10)

whereas w and h indicate the width and height of rectangular boxes, �x and �y were arbitrary
variables, and it is given as follows:

f (μ, b) = 1
2b

exp
[
−|x − μ|

b

]
. (11)

Get μ = 0, b = 1/5 as to Eq. (11), and it is attained:

f
(

μ = 0, b = 1
5

)
= 5

2
exp [−1 |x|] . (12)

The connection amongst (w′, h′) and (w, h) target rectangle variables of present and preceding
frames were determined:

h′ = h · γh, w′ = w · γw, (13)

whereas γw and γh fulfil the Laplace distribution (μ = 1 and b = 1/15). During this approach, this
condition is suitable for our assumption of the motion of objects in effect. According to the trained
REGN approach, it can be input the video orders as to the REGN approach, and afterwards, input
the target face from the initialized window. It identifies the location

(
cx, cy

)
of target faces from the

primary frame of video sequences, whereas w and h were utilized as the initializing window. To face
the tracking procedure on all the frames (that is, the tth frame), the cropped image of the tth frame
and the preceding t − 1th frame were utilized as the input of the REGN method. Next, the REGN
approach forecasts the place of the target face on the t + 1th frame and utilizes the forecasted place as
the initialized window on the succeeding frames.

During the training stage of the method, the REGN system was trained on the provided video
sequence. If the error of the REGN approach converges afterwards trained, this method is utilized for
predicting a novel video sequence. During the face-tracked procedure of the novel video, the trained
REGN approach was utilized to input the face place of the preceding frame and the searching area of
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the present frame. Lastly, the REGN approach outcomes the face location of the following frame and
recognizes the face track.

4 Experimental Results and Discussion

In these subsections, the experimental results analysis of the HHODL-AFDT model is tested
using two benchmark datasets psychological image collection at stirling (PICS) and Visual tracker
benchmark (VTB) dataset. The result analysis of the HHODL-AFDT algorithm on two benchmark
datasets is elaborated in the following sections. Fig. 3 illustrates the sample face detection results of the
HHODL-AFDT approach. The figure illustrates that the HHODL-AFDT algorithm has effectually
recognized the faces under different conditions.

Figure 3: Visualization of detected faces by the proposed model
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4.1 Result Analysis on PICS Dataset

The PICS [21] comprises a set of face images exploited for psychological experiments. In this
work, we have chosen four facial image subsets that feature ambient light variations, face deflection,
and expression modifications. The dataset contains 1698 images, as demonstrated in Table 1.

Table 1: PICS dataset details

Datasets Images

Aberdeen 687
Pain 599
Stirling 312
Nottingham 100

Total 1698

Table 2 and Fig. 4 show the overall face recognition and tracking performance of the HHODL-
AFDT technique on the test PICS dataset. The experimental outcome implied that the HHODL-
AFDT approach had illustrated effective results with maximum accuracy values under all
sub-datasets. For example, on the Aberdeen dataset, the HHODL-AFDT model has offered increased
accuracy of 91.28% while the Ada-boost, YOLO, ResNets, discriminative correlation filters (DCF),
convolutional support vector machines (CSVM), head-cascade RCNN (HRCNN), and SEN-ResNet
models have shown reduced accuracy of 80.13%, 79.76%, 84.90%, 80.07%, 80.22%, 83.53%, and
88.51% correspondingly. Also, on the Stirling dataset, the HHODL-AFDT approach has increased
accuracy by 92.68%. In contrast, the Ada-boost, YOLO, ResNets, DCF, CSVM, HRCNN, and SEN-
ResNet methodologies have revealed decreased accuracy of 76.70%, 80.18%, 80.03%, 77.72%, 79.35%,
80.78%, and 88.90% correspondingly.

Table 2: Accuracy analysis of the HHODL-AFDT method with distinct classes under the PICS dataset

Accuracy (%)

Class name Ada-boost YOLO ResNet DCF CSVM HRCNN SEN-ResNet HHODL-AFDT

Aberdeen 80.13 79.76 84.90 80.07 80.22 83.53 88.51 91.28
Pain 78.34 81.98 83.28 78.18 79.85 86.76 85.87 89.06
Stirling 76.70 80.18 80.03 77.72 79.35 80.78 88.90 92.68
Nottingham 77.64 79.68 82.31 76.95 79.89 82.24 85.96 89.36

Average 78.20 80.40 82.63 78.23 79.83 83.33 87.31 90.60

A comparative execution time (ET) evaluation of the HHODL-AFDT model with current
techniques is made in Table 3 and Fig. 5. The experimental outcomes implied that the HHODL-AFDT
model had reached better results with minimal values of ET under all sub-datasets. For instance, on
the Aberdeen dataset, the HHODL-AFDT method has a reduced ET of 2.13 s. In contrast, the Ada-
boost, YOLO, ResNets, DCF, CSVM, HRCNN, and SEN-ResNet models have exhibited higher ET
of 23.39, 22.18, 21.76, 13.36, 13.35, 6.65, and 4.16 s respectively. Eventually, on the Stirling dataset,
the HHODL-AFDT approach resulted in a lower ET of 3.44 s. In contrast, the Ada-boost, YOLO,
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ResNets, DCF, CSVM, HRCNN, and SEN-ResNet techniques have exhibited superior ET of 23.66,
19.70, 14, 12.84, 9.92, 6.96, and 5.19 s correspondingly.

Figure 4: Accuracy analysis of HHODL-AFDT approach under PICS dataset (a) aberdeen, (b) pain,
(c) stirling, and (d) nottingham

Table 3: Execution time analysis of HHODL-AFDT approach with distinct classes under the PICS
dataset

Execution time (sec)

Class name Ada-boost YOLO ResNets DCF CSVM HRCNN SEN-ResNet HHODL-AFDT

Aberdeen 23.39 22.18 21.76 13.36 13.35 6.65 4.16 2.13
Pain 26.92 24.59 17.89 16.14 15.94 15.39 4.59 2.35
Stirling 23.66 19.70 14.00 12.84 9.92 6.96 5.19 3.44
Nottingham 26.99 24.68 20.55 17.97 15.18 13.00 3.59 2.22

Average 25.24 22.79 18.55 15.08 13.60 10.50 4.38 2.54
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Figure 5: Average ET analysis of HHODL-AFDT technique under the PICS dataset

The average accuracy analysis of the HHODL-AFDT with existing models on the PICS dataset
is described in Fig. 6. The figure exhibited that the HHODL-AFDT model has reached improved
accuracy values under all training iterations compared to other models. In addition, it is observed that
the Ada-boost and YOLO models have shown lower average accuracy values.

Figure 6: Average accuracy analysis of HHODL-AFDT approach on the PICS dataset

Fig. 7 provides a comprehensive loss graph inspection of the HHODL-AFDT and existing
techniques on the test PICS dataset. The figure denoted that the Ada-boost and YOLO techniques
have demonstrated poor performance with higher values of average loss. Followed by the HRCNN and



4928 CMC, 2023, vol.75, no.3

SEN-ResNet models have resulted in certainly reduced values of average loss. However, the HHODL-
AFDT model has accomplished effectual performance over other models with lower average loss.

Figure 7: Average loss analysis of HHODL-AFDT approach on the PICS dataset

Fig. 8 demonstrates the receiver operating characteristic (ROC) curve results offered by the
HHODL-AFDT methodology on the test PICS dataset. The results show that the HHODL-AFDT
system has enhanced performance with maximum ROC values over the other models.

Figure 8: ROC analysis of HHODL-AFDT approach on the PICS dataset
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4.2 Result Analysis of VTB Dataset

VTB [22] is a visual tracker benchmark for online visual tracking. Five facial video subsets can
be selected that contain the features of changes in ambient light, variations from the human pose, and
occlusion. The dataset contains 4014 frames, as shown in Table 4.

Table 4: VTB dataset details

Datasets Frames

Dudek 1145
David 770
FaceOcc1 892
FleetFace 707
Girl 500

Total 4014

Table 5 offers the overall face recognition and tracking performance of the HHODL-AFDT
methodology on the test VTB dataset. The outcome exposed that the HHODL-AFDT methodology
has revealed effectual outcomes with maximal accuracy values under sub-datasets. The HHODL-
AFDT technique has improved accuracy by 87.13% for the sample on the Dudek dataset. In contrast,
the MeanShift, CamShift, Kernelized Correlation Filters (KCF), HRCNN, CSVM, Contour-motion
feature (CMF), and Regression Network-based Face Tracking (RNFT) systems have outperformed
reduced accuracy of 80.60%, 79.52%, 82.93%, 84.25%, 84.72%, 79.88%, and 83.49% correspondingly.
Followed by the Girl dataset, the HHODL-AFDT approach has obtainable enhanced accuracy of
80.51%. In contrast, the MeanShift, CamShift, KCF, HRCNN, CSVM, CMFs, and RNFT techniques
have outperformed lesser accuracy of 78.12%, 78.61%, 82.35%, 84.69%, 81.99%, 80.43%, and 85.75%
correspondingly.

Table 5: Accuracy analysis of HHODL-AFDT approach with distinct classes under the VTB dataset

Accuracy (%)

Dataset MeanShift CamShift KCF HRCNN CSVM CMFs RNFT HHODL-AFDT

Dudek 80.60 79.52 82.93 84.25 84.72 79.88 83.49 87.13
David 78.91 80.66 82.85 87.19 81.51 82.07 86.97 90.15
FaceOcc1 76.51 75.31 81.31 85.47 80.95 79.82 85.37 88.30
FleetFace 76.81 80.02 82.15 83.28 80.00 79.90 85.99 91.50
Girl 78.12 78.61 82.35 84.69 81.99 80.43 85.75 80.51

Average 78.19 78.82 82.32 84.98 81.83 80.42 85.51 87.52

Table 6 and Fig. 9 depict an average accuracy performance of the HHODL-AFDT approach on
the test VTB dataset with a distinct training set (TRS). The outcome implied that the HHODL-
AFDT method had exhibited effectual results with higher average accuracy values under all TRS.
For instance, on 500 TRS, the HHODL-AFDT approach has offered increased average accuracy of
81.40%. In contrast, the MeanShift, CamShift, KCF, HRCNN, CSVM, CMFs, and RNFT models
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have shown lower average accuracy of 76.52%, 77.56%, 79.17%, 79.74%, 78.28%, 79.22%, and 80.72%
respectively. Besides, on 2000 TRS, the HHODL-AFDT methodology has an obtainable increased
average accuracy of 88.08%. In contrast, the MeanShift, CamShift, KCF, HRCNN, CSVM, CMFs,
and RNFT methodologies have shown decreased average accuracy of 80.72%, 81.97%, 83.88%,
87.20%, 85.49%, 83.78%, and 87.41% correspondingly.

Table 6: Average Accuracy analysis of HHODL-AFDT approach with distinct training set under VTB
dataset

Average accuracy

Size of
training set

MeanShift CamShift KCF HRCNN CSVM CMFs RNFT HHODL-AFDT

500 76.52 77.56 79.17 79.74 78.28 79.22 80.72 81.40
100 77.40 78.65 80.36 83.00 81.29 80.57 83.37 84.35
1500 79.89 80.36 82.28 84.35 83.11 81.66 85.18 86.11
2000 80.72 81.97 83.88 87.20 85.49 83.78 87.41 88.08

Figure 9: Average accuracy analysis of HHODL-AFDT approach under the VTB dataset

A comparative ET estimation of the HHODL-AFDT model algorithm with recent approaches
under the VTB dataset is demonstrated in Table 7. The outcome revealed that the HHODL-AFDT
method had reached optimum outcomes with decreased values of ET under all sub-datasets. For
sample, on the Dudek dataset, the HHODL-AFDT technique has resulted in a minimal ET of 2.15 s.
In contrast, the MeanShift, CamShift, KCF, HRCNN, CSVM, CMFs, and RNFT methodologies have
exhibited higher ET of 27.78, 22.11, 17.64, 10.61, 9.42, 9.16, and 4.33 s correspondingly. Finally, on the
Girl dataset, the HHODL-AFDT technique has resulted in a reduction of ET of 3.72 s. In contrast,
the MeanShift, CamShift, KCF, HRCNN, CSVM, CMFs, and RNFT methodologies have exhibited
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superior ET of 23.35, 19.86, 17.92, 17.78, 16.08, 13.27, and 5.37 s correspondingly. From the detailed
discussion and outcomes, it is ensured that the HHODL-AFDT algorithm has illustrated enhanced
performance over other techniques.

Table 7: Execution time analysis of HHODL-AFDT approach with distinct classes under the VTB
dataset

Execution time (sec)

Dataset MeanShift CamShift KCF HRCNN CSVM CMFs RNFT HHODL-AFDT

Dudek 27.78 22.11 17.64 10.61 9.42 9.16 4.33 2.15
David 27.65 27.12 13.88 13.68 13.38 6.29 5.76 3.44
FaceOcc1 27.96 22.67 17.73 11.81 9.65 5.55 3.92 1.61
FleetFace 27.02 26.70 22.17 20.34 17.94 5.62 3.83 1.96
Girl 23.35 19.86 17.92 17.78 16.08 13.27 5.37 3.72

Average 26.75 23.69 17.87 14.84 13.29 7.98 4.64 2.58

5 Conclusion

In the study, a new HHODL-AFDT model has been established to recognise and track faces
in videos. The presented HHODL-AFDT model follows a two-stage process: Faster RCNN-based
face detection model and HHO based hyperparameter optimization process. At the initial stage, the
presented optimal Faster RCNN model precisely recognizes the face. Secondly, the tracking of faces
takes place using the REGN model, which utilizes the features from neighboring frames and foresees
the location of the target face in succeeding frames. The experimental validation of the HHODL-
AFDT technique is conducted under two datasets, and the outcome is inspected using various aspects.
The experiment results highlighted the superior performance of the HHODL-AFDT model over
current approaches. In the future, an ensemble learning process can be introduced to improve face
recognition performance by using multiple DL models.
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[6] A. Kwaśniewska, J. Rumiński and P. Rad, “Deep features class activation map for thermal face detection
and tracking,” in 10th Int. Conf. on Human System Interactions (HSI), Ulsan, Korea (South), pp. 41–47,
2017.

[7] V. Arulkumar, S. J. Prakash, E. K. Subramanian and N. Thangadurai, “An intelligent face detection by
corner detection using special morphological masking system and fast algorithm,” in 2021 2nd Int. Conf.
on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 1556–1561, 2021.

[8] J. Dong and X. Xie, “Visually maintained image disturbance against deepfake face swapping,” in 2021
IEEE Int. Conf. on Multimedia and Expo. (ICME), Shenzhen, China, pp. 1–6, 2021.

[9] M. Chowdhury, I. Hossain, N. M. Sakib, S. M. M. Ahmed, M. Zeyad et al., “Human face detection
and recognition protection system based on machine learning algorithms with proposed ar technology,”
in Advances in Augmented Reality and Virtual Reality, Studies in Computational Intelligence Book Series,
Singapore: Springer, vol. 998, pp. 177–192, 2022.

[10] Y. Wang, T. Bao, C. Ding and M. Zhu, “Face recognition in real-world surveillance videos with deep
learning method,” in 2nd Int. Conf. on Image, Vision and Computing (ICIVC), Chengdu, China, pp. 239–
243, 2017.

[11] S. Asif, Y. Wenhui, Y. Tao, S. Jinhai and K. Amjad, “Real time face mask detection system using transfer
learning with machine learning method in the era of COVID-19 pandemic,” in 4th Int. Conf. on Artificial
Intelligence and Big Data (ICAIBD), Chengdu, China, pp. 70–75, 2021.

[12] Z. Lei, X. Zhang, S. Yang, Z. Ren, O. F. Akindipe et al., “RFR-DLVT: A hybrid method for real-time face
recognition using deep learning and visual tracking,” Enterprise Information Systems, vol. 14, no. 9–10, pp.
1379–1393, 2020.
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